Встроенная процессор графика radeon r7. Железный эксперимент: играем в разрешении Full HD на встроенной в процессор графике

Производительность нового гибридного процессора A10-7850K сравнивалась со скоростью работы его прямого конкурента — Core i5-4440, интеловского предложения аналогичной стоимости, построенного на базе новейшего дизайна Haswell. Попутно по скорости работы флагманской модели Kaveri мы сравнивали и со старшей модификацией Richland, A10-6800K. Также в число результатов тестов добавлены показатели производительности рассмотренного нами ранее A8-7600: этот процессор по сравнению с A10-7850K имеет более низкую тактовую частоту и снабжён урезанным графическим ядром, построенным на базе 384 шейдерных процессоров.

В результате набор тестового оборудования приобрёл следующий вид:

  • Процессоры:
    • AMD A10-7850K (Kaveri, 4 ядра, 3,7-4,0 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • AMD A10-6800K (Richland, 4 ядра, 4,1-4,4 ГГц, 2x2 Мбайт L2, Radeon HD 8670D);
    • AMD A8-7600 (Kaveri, 4 ядра, 3,3-3,8 ГГц, 2x2 Мбайт L2, Radeon R7 Series);
    • Intel Core i5-4440 (Haswell, 4 ядра, 3,1-3,3 ГГц, 4x256 Кбайт L2, 6 Мбайт L3, HD Graphics 4600).
    • Процессорный кулер: Noctua NH-U14S.
  • Материнские платы:
    • ASRock FM2A88X Extreme6+ (Socket FM2+, AMD A88X);
    • Gigabyte Z87X-UD3H (LGA1150, Intel Z87 Express).
  • Память: 2x8 Гбайт DDR3-2133 SDRAM, 9-11-11-31 (G.Skill F3-2133C9D-16GTX).
  • Графические карты:
    • AMD Radeon HD 7750 (2 Гбайт/128-бит GDDR5, 900/4500 МГц);
    • AMD Radeon R7 250 (2 Гбайт/128-бит GDDR5, 1000/4600 МГц);
    • NVIDIA GeForce GTX 780 Ti (3 Гбайт/384-бит GDDR5, 876-928/7000 МГц).
  • Дисковая подсистема: Crucial m4 256 Гбайт (CT256M4SSD2).
  • Блок питания: Corsair AX760i (80 Plus Platinum, 760 Вт).

Тестирование выполнялось в операционной системе Microsoft Windows 8.1 Enterprise x64 с использованием следующего комплекта драйверов:

  • AMD Chipset Drivers 13.12;
  • AMD Catalyst Graphics Driver 14.1 beta 1.6;
  • Intel Chipset Driver 9.4.0.1027;
  • Intel® Iris and HD Graphics Driver 15.33.8.64.3345;
  • Intel Management Engine Driver 9.5.0.1345;
  • Intel Rapid Storage Technology 12.9.0.1001;
  • NVIDIA GeForce 332.21 Driver.

⇡ Производительность с дискретной графикой

В первую очередь мы тестируем процессоры в платформах с установленной производительной дискретной видеокартой. Такая конфигурация позволяет сравнивать x86-производительность различных архитектур и даёт информацию о том, насколько те или иные CPU подходят для работы в составе производительных систем, где внешние видеокарты верхнего ценового диапазона устанавливаются в обязательном порядке. В этом случае графическое ядро процессоров задействовать невозможно, и оно деактивируется.

Следует подчеркнуть, что в контексте изучения A10-7850K такое тестирование имеет прямой практический смысл. AMD отказалась от дальнейшего развития своих процессоров серии FX, поэтому роль CPU для систем с дискретной графикой постепенно перейдёт к Kaveri или к их последователям.

Futuremark PCMark 8 2.0

По традиции в первую очередь для измерения производительности мы пользуемся интегральным тестом PCMark 8 2.0, который моделирует различные варианты типовой нагрузки на систему. Рассматриваются три сценария: Home — обычное домашнее использование ПК, Creative — использование ПК для развлечений и для работы с мультимедийным контентом и Work — использование ПК для типичной офисной работы.

Если вы читали наш предыдущий материал о процессорах Kaveri, то приведённые результаты не станут для вас неожиданностью. Да, вычислительная производительность ядер Steamroller невысока, поэтому четырёхъядерный Kaveri сильно отстаёт от младшего четырёхъядерного Haswell. Это было вполне ожидаемо, поэтому гораздо более сильное удивление способен вызвать тот факт, что A10-7850K отстаёт не только от Haswell, но и от A10-6800K поколения Richland. Очевидно, микроархитектурных улучшений Steamroller категорически не хватает для того, чтобы скомпенсировать понизившуюся тактовую частоту этого процессора. В результате старая модель APU оказывается быстрее новой на 3-4 процента.

Забавно, что, оправдывая достаточно большую установленную на A10-7850K цену, сама AMD ссылается на высокие показатели этого процессора именно в PCMark 8. Дело в том, что AMD имеет в виду результаты со включённым OpenCL-ускорением, но в случае использования дискретной видеокарты им воспользоваться невозможно, что и приводит к той печальной картине, которая отображена на приведённых диаграммах.

Производительность в приложениях

В Adobe Photoshop CC проводится тестирование производительности при обработке графических изображений. Измеряется среднее время выполнения тестового скрипта, представляющего собой творчески переработанный Retouch Artists Photoshop Speed Test, который включает типичную обработку четырёх 24-мегапиксельных изображений с цифровой камеры.

В Autodesk 3ds max 2014 мы тестируем скорость финального рендеринга. Измеряется время, затрачиваемое на рендеринг в разрешении 1920x1080 с применением рендерера mental ray одного кадра стандартной сцены Space_Flyby из тестового пакета SPEC.

В Мaxon Cinebench R15 проводится измерение быстродействия фотореалистичного трёхмерного рендеринга в анимационном пакете CINEMA 4D. Применяемая в бенчмарке сцена содержит порядка 2 тысяч объектов и состоит из 300 тысяч полигонов.

Тестирование скорости архивации измеряется в WinRAR 5.0. Здесь тестируется время, затрачиваемое архиватором на сжатие директории с различными файлами общим объёмом 1,7 Гбайт. При этом используется максимальная степень компрессии.

Для тестирования скорости транскодирования видео в формат H.264/AVC мы пользуемся широко распространённым кодеком x264 версии r2358. Для оценки производительности используется исходный 1080p@50fps AVC-видеофайл из бенчмарка x246 FHD Benchmark 1.0.1, имеющий битрейт около 30 Мбит/с.

Отставание A10-7850K от похожего по стоимости Core i5-4440 составляет от 30 до 70 процентов. Иными словами, выбор процессоров семейства Kaveri для использования в составе систем с дискретной видеокартой смысла не имеет вообще. Даже более дешёвый A10-6800K, относящийся к прошлому поколению APU, зачастую способен предложить более высокую скалярную вычислительную производительность.

Производительность в играх

Тестирование в играх мы провели с использованием Full HD-разрешения и высоких настроек качества. Наша высокопроизводительная дискретная видеокарта GeForce GTX 780 Ti позволяет увидеть существенные различия в процессорной скорости даже в этом случае. Используемые настройки:

  • Batman — Arkham Origins: разрешение 1920x1080, Anti-Aliasing = MSAA 4x, Geometry Details = DX11 Enhanced, Dynamic Shadows = DX11 Enhanced, Motion Blur = On, Depth of Field = DX11 Enhanced, Distortion = On, Lens Flares = On, Light Shafts = On, Reflections = On, Ambient Occlusion = DX11 Enhanced, Hardware Accelerated Physx = High.
  • Civilization V: Brave New World: разрешение 1920х1080, Antialiasing = 4xMSAA, High-Detail Strategic Vie = On, GPU Texture Decode = On, Overlay Detail = High, Shadow Quality = High, Fog of War Quality = High, Terrain Detail Level = High, Terrain Tesselation Level = High, Terrain Shadow Quality = High, Water Quality = High, Texture Quality = High. Используется DirectX 11-версия игры.
  • F1 2013: разрешение 1920x1080, Ultra Quality, 4xAA, DirectX11. Используется трасса Texas и версия игры с поддержкой AVX-инструкций.
  • Metro: Last Light: разрешение 1920x1080: DirectX 11, High Quality, Texture Filtering = AF 16X, Motion Blur = Normal, SSAA = On, Tesselation = On, Advanced PhysX = On. При тестировании используется сцена D6.

Полученные в игровых тестах результаты ещё раз подтверждают всё сказанное выше. Вычислительная производительность A10-7850K не лучше, чем у A10-6800K. Процессор поколения Richland, хоть и основывается на микроархитектуре Piledriver, а не Steamroller, имеет на 10 процентов более высокую тактовую частоту и более агрессивную технологию турбо. Этого вполне хватает, чтобы обеспечить большее количество кадров в секунду в играх при использовании дискретной видеокарты.

Поэтому нет ничего удивительного и в том, что A10-7850K не сравним по игровому быстродействию с Core i5-4440. Интеловский четырёхъядерник выдаёт куда более высокие показатели производительности в играх, так что для производительных геймерских систем платформа Socket FM2+ совершенно не подходит. Впрочем, это вряд ли стало для кого-то неожиданностью: с невысокой игровой производительностью процессоров AMD мы сталкиваемся каждый раз, когда речь заходит о носителях микроархитектуры Bulldozer или её последователей.

Steamroller против Piledriver

Полученные в вычислительных тестах результаты заставляют задаться вопросом, насколько же в действительности микроархитектура Steamroller прогрессивнее своей предшественницы. AMD утверждала, что рост производительности при постоянной тактовой частоте составит 15-20 процентов. Но практические результаты явно говорят о том, что внедрённые усовершенствования зачастую не компенсируют 10-процентное снижение тактовой частоты. Поэтому мы решили посмотреть, насколько Kaveri будет быстрее Richland, при условии их тактования на одинаковой частоте.

В следующей таблице приводятся результаты тестов, проведённых с процессорами A10-7850K и A10-6800K, частота которых была принудительно установлена на отметке 4,0 ГГц.

Kaveri 4,0 ГГц Richland 4,0 ГГц Преимущество Steamroller
PCMark 8 2.0, Home 2937 2873 +2,2 %
PCMark 8 2.0, Work 2825 2796 +1,0 %
PCMark 8 2.0, Creative 2990 2894 +3,3 %
WinRAR 5.0, секунды 204,8 197,3 -3,7 %
Photoshop CC, секунды 150,3 157,5 +4,8 %
3ds max 2014, секунды 248 339 +36,7 %
x264 (r2358), fps 15,1 12,92 +16,9 %
Cinebench R15 336,8 310,8 +8,4 %
Metro: Last Light, 1920x1080 SSAA HQ 45,8 43,1 +6,3 %
Civilization V, 1920x1080 4xAA HQ 56,3 53,7 +4,8 %
F1 2013, 1920x1080 4xAA UHQ 72,5 75,8 -4,4 %
Batman: Arkham Origins, 1920x1080 4xAA UHQ 75 71,1 +5,5 %

Соотношение между производительностью Steamroller и Piledriver оказывается очень неоднородным. В лучшем случае преимущество новой микроархитектуры превышает 35 процентов, а в худшем — она проигрывает до 4 процентов. Среднее же значение превосходства Kaveri над Richland в производительности на одинаковой тактовой частоте составляет около 7 процентов.

Характер полученных результатов позволяет сделать однозначный вывод, что в первую очередь превосходство Steamroller над Piledriver выявляется на многопоточных алгоритмах, задействующих целочисленные инструкции. Иными словами, выполненное в Steamroller разделение общего на двухъядерный модуль декодера инструкций вместе с другими оптимизациями позволило поднять эффективность работы целочисленных исполнительных устройств. Поэтому задачи вроде трёхмерного рендеринга или перекодирования видео получили очень заметный прирост в скорости выполнения. В том же случае, когда приложения активно используют всё ещё разделяемый блок операций с вещественными числами или SIMD-инструкции, прирост производительности оказывается заметно меньше.

Наблюдающееся же в отдельных случаях падение производительности, похоже, связано с ухудшением скоростных характеристик контроллера памяти, который у Kaveri создаёт бо льшую латентность при обращениях, чем у Richland.

Kaveri 4,0 ГГц

Richland 4,0 ГГц

Причины этого эффекта, вероятно, состоят в том, что контроллер памяти Kaveri на уровне архитектуры спроектирован универсальным и, помимо двух DDR3-каналов, имеет два дополнительных канала с поддержкой GDDR5-памяти. У имеющихся на данный момент моделей процессоров эта функциональность заблокирована, но её потенциальное наличие, как показывают тесты, несколько тормозит работу всей подсистемы памяти.

⇡ Производительность интегрированного графического ядра

Игровая производительность

То, что традиционная вычислительная производительность A10-7850K не столь высока, как того хотелось бы, ещё ничего не значит. Просто не надо рассматривать этот процессор в качестве возможной основы системы, оснащённой дискретной видеокартой, — он для этого совершенно не годится. Его сильная сторона в другом: Kaveri может позволить обойтись вообще без какой-либо видеокарты. Встроенное в него графическое ядро семейства Radeon R7 нацеливается на то, чтобы предложить достойную для игровых систем производительность.

Говоря о возможностях встроенной в A10-7850K графики, AMD подчёркивает, что она быстрее, чем графические карты, установленные в 35 процентов игровых компьютеров (по данным Steam).

Благодаря этому данный гибридный процессор может обеспечить достаточно высокий уровень графической производительности (больше 30 кадров в секунду в Full HD-разрешении) не только в большинстве сетевых игр, но и в популярных однопользовательских играх.

Однако начать тестирование графической производительности видеоядра процессора A10-7850K мы решили с традиционного бенчмарка 3DMark Professional Edition 1.2. Результаты этого гибридного процессора сопоставлялись с показателями не только интегрированной графики A10-6800K, A8-7600 и Core i5-4440, но и дискретных видеоускорителей Radeon HD 7750 и Radeon R7 250.

Превосходство графического ядра A10-7850K над всеми остальными вариантами интегрированной графики очевидно. Благодаря новой архитектуре GCN 1.1 и увеличенному до 512 числу шейдерных процессоров рассматриваемый APU заметно превосходит по скорости как старший Richland, так и Haswell. Фактически A10-7850K на данный момент действительно предлагает самую производительную интегрированную графику для настольных компьютеров.

Однако, несмотря на это, A10-7850K всё-таки не дотягивает по своему результату до показателей графических карт Radeon HD 7750 и Radeon R7 250. Проблема встроенной в APU графики известна давно: недостаточно высокая пропускная способность подсистемы памяти ограничивает её производительность. Поэтому A10-7850K не только заметно отстаёт от Radeon HD 7750 с 512 шейдерными процессорами, но и проигрывает даже Radeon R7 250, у которого число шейдерных процессоров ограничено 384. Дискретные видеокарты оснащаются GDDR5 с пропускной способностью свыше 70 Гбайт/с, используемая же в платформе Socket FM2+ двухканальная память DDR3-2133 может предложить полосу пропускания лишь на уровне 34 Гбайт/с.

Впрочем, давайте посмотрим, что происходит в реальных играх.

В многопользовательском шутере Battlefield 4 интегрированная графика процессора A10-7850K, как и обещала AMD, оказывается способной обеспечить в Full HD-разрешении комфортное количество кадров в секунду даже при средних настройках качества. Превосходство над старшим Richland составляет 16-18 процентов, а над Haswell — достигает 70 процентов. Однако любителям поиграть при высоком качестве изображения всё-таки придётся снизить разрешение где-то до уровня 720p. К сожалению, графика A10-7850K не может предложить сравнимый с показателями Radeon HD 7750 и Radeon R7 250 уровень быстродействия: эти видеокарты быстрее на 35-40 процентов.

Популярный шутер Crysis 3 отличается высокими требованиями к производительности графического ускорителя, и здесь мы сталкиваемся с тем, что A10-7850K не может выдать приемлемую производительность в Full HD даже при минимальном качестве изображения. Очевидно, обладателям игровых систем на базе A10-7850K придётся в некоторых случаях разрешение снижать. Например, в том же Crysis 3 30 кадров в секунду при среднем качестве изображения можно получить лишь в разрешении 720p. Надо заметить, что видеокарты Radeon HD 7750 и Radeon R7 250 от такой проблемы избавлены.

Гоночный симулятор F1 2013 не отличается высокими требованиями к производительности графической подсистемы, поэтому, имея платформу на базе A10-7850K, в Full HD в него можно играть даже с высоким качеством изображения. Преимущество старшего Kaveri перед Richland здесь составляет 25-30 процентов.

Ещё одна требовательная к мощности графики игра, помимо Crysis 3, — это шутер Metro: Last Light. Обладая конфигурацией на базе A10-7850K без дискретного видеоускорителя, комфортно поиграть в него в Full HD-разрешении не удастся даже при минимальных настройках, а при среднем качестве разрешение придётся понижать до 720p. Стодолларовые дискретные видеокарты Radeon HD 7750 и Radeon R7 250 предлагают на 30-40 процентов более высокую производительность и неплохо справляются с отображением Metro: Last Light в недоступном для A10-7850K разрешении 1920x1080. Иными словами, говорить о Kaveri как о процессоре, встроенный графический движок которого способен обеспечить возможность установки Full HD-разрешения в любых играх, совершенно неправомерно.

В приключенческом боевике от третьего лица Tomb Raider производительность графической составляющей A10-7850K находится на неплохом уровне. В разрешении 1920x1080 возможна установка среднего качества изображения, при этом превосходство над Richland составляет 7-15 процентов. Графическое ядро GT2 процессора Haswell отстаёт от графики A10-7850K на внушительные 50-75 процентов, делая любые десктопные интеловские предложения плохим вариантом для использования в игровых системах, опирающихся на встроенные в CPU графические ядра.

Кстати, хочется обратить внимание на один любопытный момент: A10-7850K демонстрирует лишь слегка более высокое быстродействие, чем A8-7600, несмотря на то, что количество шейдерных процессоров в старшем APU на треть больше. Это — ещё одна иллюстрация к тому, что производительность интегрированных ядер AMD упёрлась совсем не в их графические ресурсы, а в пропускную способность памяти. Поэтому то, что Radeon HD 7750 и Radeon R7 250, оснащённые 128-битной GDDR5-памятью, выдают на 35-40 процентов более высокий FPS, удивлять не должно.

AMD отдельно напирает на то, что интегрированные системы, построенные на её процессорах, могут стать хорошим выбором для поклонников сетевых Free-to-play- игр. Наши тесты в многопользовательском боевом авиационном аркадном симуляторе War Thunder это всецело подтверждают. Обладатели конфигураций с процессором A10-7850K смогут комфортно играть в эту игру в Full HD-разрешении при выборе высокого качества изображения. Выгодно смотрятся тут и другие процессоры AMD. Интеловский же Haswell с графическим ядром GT2 подобный уровень производительности обеспечить не в состоянии.

В то же время самая популярная многопользовательская игра World of Tanks предъявляет к производительности графической подсистемы более высокие требования. Для получения комфортной частоты кадров в разрешении 1920x1080 обладателям A10-7850K в ней придётся снизить качество до среднего. И кстати, старший Kaveri тут не обеспечивает заметных преимуществ по сравнению с Richland — вероятно, причина кроется в высокой процессорозависимости данной игры. Впрочем, как бы то ни было, гибридный процессор A10-7850K — вполне достойный выбор для системы преданного поклонника танков. Однако дискретные графические карты с ценой порядка 100 долларов и здесь, как и в других случаях, позволяют получить на 30-35 процентов более высокую производительность.

⇡ Влияние частоты памяти

То, что внешние видеокарты с аналогичной A10-7850K конфигурацией графического ядра обладают заметно более высоким быстродействием, а также то, что разница в практической скорости графики у A10-7850K и A8-7600 достигает лишь 5-10 процентов, явно указывает на главное узкое место в графической производительности — скорость подсистемы памяти. Совершенно очевидно, что для повышения производительности работы встроенной в Kaveri графики нужна более быстрая память. AMD планировала наделить Kaveri поддержкой более скоростных, чем DDR3, типов SDRAM, но что-то пошло не так, и финальные версии десктопных процессоров, хотя и перешли на новую платформу Socket FM2+, оказались совместимы лишь с традиционной DDR3 SDRAM.

Это значит, что нарастить скорость подсистемы памяти в Kaveri можно лишь использованием более скоростных модулей DDR3. Формально эти процессоры поддерживают модули с частотой до DDR3-2133, и именно с такой памятью мы и проводили тесты. Однако, как показала практика, в системы с A10-7850K можно устанавливать и DDR3-2400. О том, какой прирост производительности можно получить в этом случае, мы и поговорим ниже. А заодно посмотрим, насколько потеряет в своей скорости A10-7850K, если систему с ним комплектовать не DDR3-2133, а более медленными модулями.

Приведённые диаграммы вряд ли нуждаются в подробных комментариях. Они очень наглядно указывают на то, насколько важна для Kaveri быстрая память. Переход с DDR3-2133 на DDR3-2400 позволяет получить заметный прирост быстродействия — порядка 5 процентов. Если же в системе с A10-7850K использовать не DDR3-2133, а, например, ширпотребную DDR3-1600, то потери в игровом быстродействии будут доходить до 20 процентов. Иными словами, собирая недорогую геймерскую систему с A10-7850K, экономить на памяти явно не следует.

⇡ Программный интерфейс Mantle

Как и графические карты поколения Volcanic Islands, процессоры Kaveri, основанные на той же архитектуре GCN, обладают поддержкой нового графического программного интерфейса Mantle. Это название давно будоражит умы обладателей новых видеокарт AMD, так как внедрение данного интерфейса обещает достаточно серьёзное увеличение производительности в играх. Аналогично дело обстоит и с Kaveri: внедрение Mantle может стать ещё одним способом более полного раскрытия потенциала встроенного графического ядра. Будучи хорошо осведомлённым об аппаратных тонкостях APU, Mantle предлагает специально оптимизированную прослойку между игровым движком и аппаратными ресурсами вычислительных и графических ядер. Подобный низкоуровневый программный интерфейс давно используется в игровых консолях, и там он показывает очень хорошие результаты. Поэтому широкое внедрение Mantle в современных играх способно поднять привлекательность Kaveri для экономных геймеров.

Для систем, построенных на базе процессоров Kaveri, Mantle не только реализует разнообразные низкоуровневые оптимизации, но и осуществляет более равномерное распределение нагрузки, создаваемой графическим драйвером, по x86-ядрам процессора. Однако следует иметь в виду, что в наибольшей степени Mantle эффективен тогда, когда игровая производительность упирается в скорость вычислительных ресурсов процессора, а в конфигурациях, использующих интегрированные видеоядра, ситуация обычно обратна: узким местом выступают мощности GPU и пропускная способность шины памяти. Тем не менее в момент представления Kaveri AMD говорила о возможном росте производительности, который можно получить за счёт фирменного API, — этот рост в реальных играх якобы достигает 45-процентной величины.

На данный момент у AMD уже готов бета-драйвер версии 14.1, поддерживающий Mantle, и существует игра — Battlefield 4, способная использовать этот программный интерфейс. Естественно, мы протестировали, как включение Mantle сказывается на частоте кадров в том случае, когда для запуска Battlefield 4 используется геймерская система с интегрированной графикой, построенная на базе процессора A10-7850K.

Никакими 45 процентами прироста тут и не пахнет. Увеличение количества кадров в секунду в Battlefield 4 в системе, основанной на A10-7850K, не превышает единиц процентов. Как известно, максимальный прирост активация Mantle даёт в системах со слабым процессором и мощной графической картой, а в случае с A10-7850K соотношение производительности вычислительных ядер и GPU — обратное.

В то же время от включения Mantle в системе на базе A10-7850K есть и заметный негативный эффект. Просто смотреть надо не на средний, а на минимальный FPS.

Минимальный FPS при задействовании Mantle по сравнению с DirectX заметно падает, то есть фирменный программный интерфейс AMD ухудшает плавность игры без каких-либо к тому предпосылок. Возможно, проблема кроется в том, что на данный момент драйвер Mantle находится в бета-стадии. Хочется верить, что AMD ещё внесёт в него какие-то изменения, которые смогут исправить низкий минимальный FPS и дополнительно поднимут скорость работы Battlefiled 4 через Mantle в системах, построенных на APU компании.

⇡ Технология Dual Graphics

Каждый раз, когда дело касается тестирования встроенной процессорной графики, компания AMD предъявляет свой уникальный козырь — технологию Dual Graphics. Эта продвигаемая со времён Llano технология позволяет формировать ассиметричные CrossFire-конфигурации с участием встроенного в процессор графического ядра. Не обошла она стороной и Kaveri. Интегрированное видеоядро процессора A10-7850K, относящееся к серии Radeon R7, может быть «спарено» с любой дискретной видеокартой того же семейства Radeon R7, установленной в слот PCI Express. Ранее считалось, что на архитектуру таких видеокарт накладываются определённые ограничения, но на самом деле никаких рамок нет: вместе с A10-7850K в режиме Dual Graphics может работать любая графическая карта Radeon R7 с архитектурой GCN.

Причём с выпуском Kaveri и выходом драйвера Catalyst 14-й версии AMD наконец-то удалось решить давнюю проблему с тиарингом (разрывами кадров) выводимого изображения, которая напрямую затрагивала Dual Graphics-конфигурации. Теперь технология Dual Graphics работает значительно лучше и не вызывает никаких неприятных артефактов, поэтому её вполне можно рассматривать в качестве одного из путей увеличения графической производительности.

Для ознакомления с работой Dual Graphics в системе на базе Kaveri мы протестировали производительность комбинации A10-7850K и графической карты Radeon R7 250 с GDDR5-памятью.

Максимальный прирост быстродействия технология Dual Graphics обещает в том случае, если производительность процессорной графики и дискретной видеокарты примерно одинакова. Поэтому самой выгодной парой для A10-7850K AMD называет Radeon R7 240. Radeon R7 250 же дороже и быстрее, поэтому встроенная в процессор графика помогает ему не слишком сильно: увеличение производительности по сравнению с одиночной видеокартой составляет от 35 до 45 процентов.

При этом технология Dual Graphics так и не лишилась своих ограничений, которые во многих случаях ставят её полезность под вопрос. Как можно видеть по результатам, положительный эффект она даёт далеко не всегда. Существует огромное число игр, которые не только не получают прирост от Dual Graphics, но и, напротив, начинают выдавать меньшую частоту кадров. Связано это как с отсутствием необходимых оптимизаций драйвера, так и с тем, что в ряде случаев Dual Graphics вообще не включается на программном уровне. Например, эта технология может ускорять исключительно игры, работающие через DirectX 10/11, но не DirectX 9. Иными словами, масштабируемость, которую может предложить Dual Graphics, совершенно не впечатляет.

⇡ Гетерогенная производительность

Наряду с игровыми приложениями графическое ядро процессоров Kaveri могут использовать для ускорения вычислений и обычные приложения общего назначения. Как уже говорилось, с выходом Kaveri компания AMD внедряет архитектуру HSA, делающую шейдерные кластеры графического ядра самостоятельными структурными единицами и упрощающую тем самым программирование и использование для вычислений параллельных шейдерных процессоров. Однако внедрение HSA и заточенного под эту архитектуру фреймворка OpenCL 2.0 — дело отдалённого будущего, пока же AMD даже не может предложить необходимого для включения данной технологии драйвера. Зато поддержка OpenCL 1.1 в Kaveri, как и в других разновидностях современных процессоров с интегрированной графикой, превосходно работает, и поддерживающие OpenCL приложения могут переносить часть своей вычислительной работы на шейдерные конвейеры через этот программный интерфейс.

База программных продуктов, способных задействовать гетерогенные возможности гибридных процессоров, неуклонно растёт и сегодня включает внушительное число популярных программ.

Предстоящее внедрение HSA должно расширить этот список, тем не менее стоит заметить, что ускорить за счёт использования параллельных процессоров графического ядра можно всё-таки не любые алгоритмы. В качестве применений, где использование гибридных возможностей APU может иметь практический смысл, AMD называет задачи распознавания образов, анализ биометрических параметров, системы дополненной реальности, задачи кодирования, редактирования и перекодирования аудио и видео, а также поиск и индексирование мультимедийных данных.

В идеале, мы бы не хотели прибегать к отдельным тестам производительности в задачах, использующих OpenCL. Было бы гораздо лучше, если бы поддержка гетерогенных процессоров появилась в общеупотребительных приложениях, в том числе и тех, которые мы используем для обычного тестирования. Однако такого пока нет: гибридные вычисления внедрены далеко не везде, причём в подавляющем числе случаев OpenCL-ускорение применяется лишь для реализации каких-то конкретных функций, и, чтобы его увидеть, необходимо придумывать специальные тесты. Поэтому исследование гетерогенной производительности и стало отдельной и независимой частью нашего материала.

Первым и наиболее известным тестом OpenCL-производительности выступает бенчмарк Luxmark 2.0, который построен на базе рендера LuxRender, использующего физическую модель распространения света. Для оценки гетерогенной производительности процессоров мы используем сцену средней сложности Sala, а её рендеринг выполняем с задействованием как графических, так и x86-ядер.

Как нетрудно заметить, подключение к работе вычислительных ресурсов графических ядер приводит к серьёзному увеличению производительности, но качественно меняет не слишком многое. Процессоры Intel, как и APU компании AMD, вполне способны предложить похожую функциональность: их современные модификации поддерживают OpenCL 1.1 полноценно и без каких-либо ограничений. Поэтому при использовании мощности графического ядра старший Kaveri сохраняет своё отставание от четырёхъядерного Haswell. Оно здесь не столь катастрофично, как в задачах, опирающихся лишь на x86-ядра, но тем не менее A10-7850K полноценным конкурентом для Core i5-4440 не выглядит.

Ещё один тест, активно задействующий ресурсы графических ядер, это SVPMark 3. Он измеряет производительность системы при работе с пакетом SmoothVideo Project, направленным на повышение плавности воспроизведения видео путём добавления в видеоряд новых кадров, которые содержат промежуточные положения объектов.

На диаграмме можно увидеть производительность процессоров как без задействования ресурсов их графических ядер, так и после включения GPU-ускорения. Достаточно любопытно, что заметное ускорение при этом получает не только Kaveri, но и Haswell. Так, задействование OpenCL поднимает производительность A10-7850K на 48 процентов, а Core i5-4440 ускоряется на 33 процента. Если же учесть, что Core i5 может предложить четыре x86-ядра с более высокой удельной производительностью, в конечном итоге гетерогенное быстродействие A10-7850K и Core i5-4440 устанавливается примерно на одинаковом уровне.

Одним из самых значительных достижений концепции APU, свидетельствующих о её принятии рынком программного обеспечения, стало появление поддержки OpenCL в популярном архиваторе WinZIP. Поэтому измерение скорости архивации в WinZIP 18 мы обойти стороной не могли. В целях тестирования сжатию подвергалась папка с распакованным дистрибутивом Adobe Photoshop CC.

WinZIP хорошо иллюстрирует тезис о том, что ускорению за счёт переноса нагрузки на графические ядра можно подвергнуть далеко не все алгоритмы. Хотя формально WinZIP имеет поддержку OpenCL, в реальности параллельные графические ядра подключаются к работе лишь при сжатии файлов объёмом более 8 Мбайт. Более того, особого выигрыша в скорости от этого нет, поэтому разница в производительности гибридных процессоров со включённым и отключённым OpenCL минимальна. Соответственно, более высокое быстродействие здесь во всех случаях показывает интеловский четырёхъядерный Haswell.

Формальная поддержка OpenCL появилась и в популярном графическом редакторе Adobe Photoshop CC. Правда, на самом деле гетерогенные возможности APU используются лишь в работе нескольких фильтров. В частности, AMD рекомендует измерять производительность при выполнении операции Smart Sharpen, что мы и проделали с 24-мегапиксельным изображением.

Прирост скорости работы фильтра Smart Sharpen, который можно получить при вовлечении в работу графической части современных процессоров, впечатляет. Данная операция начинает выполняться в системе с A10-7850K на 90 процентов быстрее, а в системе с Core i5-4440 — быстрее на 45 процентов. Иными словами, на примере фильтра Smart Sharpen мы можем увидеть хорошую вычислительную производительность графического ядра Kaveri, но она всё равно не позволяет A10-7850K опередить похожий по стоимости четырёхъядерный Haswell. И кстати, даже со включённым OpenCL-ускорением старший Richland превосходит A10-7850K за счёт более высокой тактовой частоты своих вычислительных и графических ядер.

Может быть перенесена на GPU и часть операций по транскодированию видео высокого разрешения. Для проверки того, какой прирост в скорости можно получить в этом случае, мы воспользовались поддерживающей OpenCL утилитой MediaCoder 0.8.28. Оценка производительности проводится с использованием исходного 1080p@50fps файла в AVC-формате из бенчмарка x246 FHD Benchmark 1.0.1, имеющего битрейт около 30 Мбит/с.

Здесь производительность Kaveri за счёт задействования для вычислений графического ядра удаётся увеличить совсем незначительно. Зато интеловский Core i5-4440, обладающий поддержкой специальной технологии для перекодирования видео Quick Sync, при включении вычислительных ресурсов графического ядра наращивает свою скорость в разы. На самом деле и в процессорах AMD есть похожая технология для аппаратного кодирования видеоконтента — VCE. Однако по какой-то причине ни одна из распространённых утилит для перекодирования видео этот движок не поддерживает. Будем надеяться, что с внедрением в Kaveri новой и более гибкой версии этого движка VCE 2 ситуация наконец сможет поменяться.

Ещё один пример популярного приложения, поддерживающего OpenCL, — это профессиональная программа для редактирования и монтажа видео Sony Vegas Pro 12. При выполнении в ней рендеринга видео нагрузка может распределяться по разнородным ресурсам гибридных процессоров.

Вовлечение в вычислительную работу графического ядра процессоров Kaveri позволяет получить очень весомый прирост в скорости рендеринга видео. Однако это всё равно не позволяет старшему APU компании AMD догнать конкурирующий Core i5-4440. Современные интеловские процессоры располагают гораздо более производительными x86-ядрами, поэтому даже при активации OpenCL A10-7850K серьёзно не дотягивает до скорости Haswell. Кроме того, интеловские процессоры тоже поддерживают OpenCL и ускоряются при подключении к вычислительной работе ресурсов графического ядра. Прирост скорости при этом не такой впечатляющий, как у APU компании AMD, тем не менее списывать его со счетов явно не стоит.

По просьбе AMD мы включили в эту часть тестирования и Futuremark PCMark 8 2.0. Данный бенчмарк при моделировании обычной пользовательской активности в общеупотребительных задачах может задействовать OpenCL-ускорение. И тогда мы можем получить представление о той производительности, которую будут показывать гибридные процессоры в идеальном случае, когда эффективную поддержку гетерогенных вычислений получат все распространённые приложения.

Понятно, почему AMD использует результаты PCMark 8 2.0 во всех своих маркетинговых материалах. Благодаря своему сильному графическому ядру A10-7850K побеждает во всех трёх сценариях: Home, Creative и Work. Это явно указывает на то, что при условии грамотной гетерогенной оптимизации приложений процессоры Kaveri могут оказаться гораздо лучше интеловских CPU. Иными словами, развиваемая AMD концепция APU действительно имеет большой потенциал, полноценно раскрыть который и должно помочь внедрение технологии HSA.

⇡ Энергопотребление

Энергопотребление — это ещё один традиционно больной вопрос для процессоров AMD. По крайней мере для их производительных модификаций, которые не имеют искусственно заниженных частот для удовлетворения требованиям экономичных тепловых пакетов. С выпуском процессоров Kaveri AMD рассчитывала немного поправить сложившуюся ситуацию и даже немного уменьшила расчётные показатели тепловыделения для старших моделей линейки A10. Помочь улучшению энергетических характеристик должен был не только новый 28-нм техпроцесс, но и снизившиеся тактовые частоты. Иными словами, удельная производительность в пересчёте на каждый затраченный ватт должна была возрасти.

Как же обстоит дело на практике? На следующих ниже диаграммах приводится полное потребление систем (без монитора), использующих встроенную процессорную графику, измеренное на выходе из розетки, в которую подключен блок питания тестовой платформы. Все имеющиеся в процессорах энергосберегающие технологии активированы. Нагрузка на процессорные ядра создаётся 64-битной версией утилиты LinX 0.6.5 с поддержкой набора инструкций AVX, а графические ядра нагружаются утилитой Furmark 1.12.

Потребление современных процессоров в состоянии простоя близко к нулю, так что показатели, приведённые на графике выше, касаются скорее платформ в целом, нежели исследуемых APU. Поэтому не удивительно, что, вне зависимости от того, какой процессор установлен в платформе Socket FM2+ , потребление получается примерно одинаковым. Система же на базе Haswell потребляет меньше — сказываются энергосберегающие технологии, которыми располагают современные наборы логики Intel.

При полной нагрузке на x86-ядра неожиданно выясняется, что A10-7850K стал даже более прожорливым, чем предыдущий флагман поколения Richland, A10-6800K. Потребление нового процессора выше на 9 Вт — даже несмотря на то, что его рабочие частоты заметно меньше. Соответственно, ни о каком соперничестве в экономичности с интеловскими четырёхъядерниками речь вести невозможно.

При графической нагрузке ситуация несколько отличается. Графическое ядро процессоров Kaveri обладает заметно лучшей экономичностью, чем графика Richland. Однако необходимо упомянуть один нюанс: Kaveri умеют динамически управлять частотой своего графического ядра, и при высокой нагрузке она автоматически снижается. По всей видимости, в данном случае мы как раз и столкнулись с пределом по потреблению, поскольку во время тестирования A10-7850K и A8-7600 частота их GPU периодически снижалась со штатных 720 МГц до 650 МГц, а временами — даже до 550 МГц.

Невысокое потребление демонстрируют Kaveri и при параллельной нагрузке на все ядра одновременно. Однако в данном тесте мы столкнулись с интеллектуальным управлением частотой не только GPU, но и вычислительных ядер. Как оказалось, при высокой графической нагрузке Kaveri не только сбрасывают частоту своего GPU, но и ограничивают частоту процессорных ядер 3-гигагерцовой величиной. В результате при одновременной высокой нагрузке на все ресурсы гибридного процессора его потребление оказывается не слишком большим, но это, естественно, сказывается и на производительности.

⇡ Разгон

Старшая модель Kaveri, A10-7850K, формально относится к числу оверклокерских моделей, обладающих разблокированными множителями, — на это недвусмысленно указывает литера K в конце модельного номера. Но в данном случае это скорее дань традиции, нежели реальная сильная сторона новинок. Новый, применяемый для изготовления Kaveri, 28-нм SHP (Super High Performance) техпроцесс совершенно не способствует появлению у этих APU нераскрытого частотного потенциала. И даже с теоретических позиций новые гибридные процессоры должны гнаться ещё хуже, чем их предшественники, тоже не отличавшиеся хорошими возможностями разгона.

Это подтвердилось и на практике. Максимальной частотой, при которой A10-7850K, с одной стороны, сохранял стабильность, а с другой — не снижал свою скорость из-за превышения предельной температуры, оказалась 4,4 ГГц. Напряжение питания на процессоре при этом пришлось поднять до 1,375 В.

Следует подчеркнуть, что разгон A10-7850K — не такая уж и тривиальная процедура из-за интеллектуальных алгоритмов динамического управления частотой в зависимости от температурного режима и нагрузки. Увеличение процессорного множителя выше номинала на первый взгляд проходит очень легко и редко когда вызывает проблемы со стабильностью. Но при тестировании под нагрузкой нередко выясняется, что процессор для сохранения своей работоспособности самовольно сбрасывает частоту отдельных ядер существенно ниже заданных в BIOS материнской платы значений. К сожалению, эта интеллектуальность никак не отключается, поэтому при рассмотрении оверклокерских результатов, помимо всего прочего, требуется уделять отдельное внимание проверке реальных частот всех четырёх процессорных ядер. Такое самопроизвольное «торможение» процессора, к сожалению, не даёт возможности существенно поднимать его напряжение питания.

Попутно с традиционной процессорной частью можно разогнать и встроенное в APU графическое ядро. С увеличением напряжения на северном мосту процессора до 1,375 В, стабильности GPU нам удалось добиться при повышении его частоты в BIOS материнской платы до 960 МГц.

Впрочем, на самом деле, разгон графики в A10-7850K имеет мало практического смысла. Во-первых, отнюдь не частота ограничивает производительность GPU, а пропускная способность шины памяти. Во-вторых, при повышении частоты GPU вновь приходится сталкиваться со слишком интеллектуальным автономным управлением частотой. Увеличение частоты графического ядра приводит к тому, что в реальности при 3D-нагрузке она начинает систематически сбрасываться до более низких значений, и наблюдаемая на практике игровая производительность практически не возрастает.

Иными словами, AMD старалась сделать из Kaveri процессоры с предсказуемым энергопотреблением и тепловыделением, а это потребовало внедрения технологий управления реальной частотой, которые плохо уживаются с оверклокингом. Это значит, что Kaveri для экспериментов по разгону подходит неважно.

⇡ Выводы

В целом Kaveri оказался очень неоднозначным продуктом, и мнения о нём могут кардинально различаться в зависимости от того, под каким углом смотреть на новинку. Об этом мы уже говорили, когда рассматривали модификацию A8-7600, это же должны повторить и сейчас, по итогам знакомства с A10-7850K.

Новый процессор безумно интересен тем, что он развивает концепцию гетерогенных вычислений и внедряет технологию HSA, которая позволяет разработчикам программных продуктов легко перейти к написанию алгоритмов, исполняющихся на вычислительных кластерах графического ядра. Кажется, ещё немного — и AMD добьётся того, что новые приложения будут работать на её процессорах не хуже, чем на CPU компании Intel. Для этого у Kaveri есть все необходимые ресурсы и, самое главное, огромная теоретическая вычислительная мощность, кроющаяся в графическом ядре.

Однако не всё так просто. Пока существует не так много даже простых оптимизированных под OpenCL приложений, а эффективность имеющихся реализаций гетерогенных вычислений оставляет желать лучшего. К тому же на параллельные вычислители графического ядра могут быть перенесены далеко не любые алгоритмы. В результате, подчёркивая, что в теории системы на базе Kaveri могут быть очень продуктивны, мы вынуждены констатировать реальное и заметное отставание рассмотренной нами старшей модели A10 от конкурирующего четырёхъядерного Core i5 в подавляющем большинстве счётных задач. Причём такая ситуация наблюдается сейчас не только в приложениях, исполняемых исключительно на x86-ядрах, но и там, где поддержка OpenCL уже реализована.

Другое дело — игры. Здесь у AMD всё совсем хорошо, даже несмотря на то, что скорость встроенного в A10-7850K GPU категорически упёрлась в пропускную способность шины памяти. Несмотря на это, конфигурации, построенные на этом процессоре и использующие возможности интегрированного графического ядра, с полным правом могут считаться полноценными игровыми системами начального уровня. Большинство современных игр может исполняться на A10-7850K в Full HD-разрешении, а многие из них, например популярные сетевые проекты, при этом вполне сносно работают даже с выбором среднего или высокого качества изображения. Десктопные Haswell подобную игровую производительность не могут предложить в принципе, по крайне мере до тех пор, пока Intel не решится перенести в настольные модели процессоров старшие модификации своих графических ядер GT3/GT3e.

В итоге на данный момент A10-7850K можно рекомендовать лишь как основу недорогих настольных компьютеров для нетребовательных игроков. Для энтузиастов же этот процессор малоинтересен — в первую очередь из-за своей ограниченной x86-производительности. Впрочем, если AMD умерит свои амбиции и снизит цены, противопоставив A10-7850K не четырёхъядерным, а двухъядерным процессорам конкурента, мы будем готовы пересмотреть свою позицию.

При покупке ноутбука одним из важнейших вопросов для любого покупателя является выбор типа графического ядра: интегрированного или дискретного. Если вы будете играть в компьютерные игры, то вам однозначно нужен будет ноутбук с выделенной графической системой, если вы хотите играть с комфортом, запускать игры на высоких настройках графики и высоких разрешениях дисплея, например, Full HD (1080p), то в этом случае вам придется раскошелится на ноутбук с игровой дискретной видеокартой хотя бы начального уровня типа nVidia Ge Force GTX 850\ 950M, но как правило стоимость таких ноутбуков переваливает за 50.000 рублей.

А что делать, если играть на ноутбуке хочется, а денег на высокопроизводительную машину нет. Выход из создавшейся ситуации безусловно есть, но только в том случае, если ваши потребности в 3D-графике ограничиваются трехмерными пользовательскими интерфейсами, а в компьютерных играх вы будете довольствоваться низкими настройками графики и небольшими разрешениями, в таких случаях ноутбук с интегрированным в процессор GPU подойдет как нельзя кстати. Ноутбуки со встроенными графическими решениями обычно продаются дешевле, да и уровень производительности некоторых встроенных видеокарт последнее время не уступает дискретным видеокартам нижнего и даже среднего ценового диапазона. Долгое время рынок интегрированных графических систем был целиком под властью компании Intel, при этом уровень производительности встроенной графики в 3D-приложениях был ниже всякой критики. Впрочем, она изначально предназначалась для корпоративного сектора рынка и полностью удовлетворяла его потребности, но время шло и от встроенной графики стало требоваться все больше производительности. Вскоре к Intel подтянулась, и компания AMD и какое-то время ей даже удалось вырваться вперед со своими гибридными APU, но с выходом в этом году новых процессоров на архитектуре, Broadwell и Skylake от intel, производительность встроенных решений в 3D приложениях, от обеих компаний практически сравнялась.

Итак, рассмотрим, что же на данный момент нам предлагают AMD и Intel в сегменте встроенной мобильной графики.

Новое поколение встроенной графики от Intel.

Начнем с компании Intel. Интересной особенностью, которая впервые появилась в архитектуре процессоров Intel Sandy Bridge - было интегрированное видеоядро. Это означало, что, несмотря на наличие дискретного графического решения в вашем ноутбуке, вы всегда могли воспользоваться дополнительными мощностями процессора, что позволяло без проблем кодировать видео, смотреть фильмы в высоком разрешении, просматривать 3D-контент и запускать простые игры. Сегодня в состав Skylake входит интегрированная видеокарта, которая во многом превосходит подобные решения в предшествующих процессорах. Девятое поколение интегрированной графической подсистемы – Intel Gen9 Graphics, реализованное в составе новой архитектуры, и, как и весь чип Skylake, изготавливаемое с соблюдением норм 14-нм техпроцесса, получило мощные структурные изменения наряду с повышенной энергоэффективностью. Унаследовав базовые черты от предыдущей архитектуры Broadwell, новая графика включает в себя огромную гамму решений, от базовой логики HD Graphics 510 (GT1e) на основе одного модуля с 12-ю исполнительными устройствами до мощнейшей графической подсистемы Iris Pro Graphics 580 (GT4e) на базе трех модулей с 72 исполнительными устройствами, встроенным eDRAM-буфером емкостью 128 Мбайт, с суммарной пиковой производительностью до 1152 гигафлопс (Gen9 GT4 больше чем Gen8 GT3 примерно в полтора раза). Графическая производительность у 9-го поколения значительно различается, самыми низко производительными будет встроенная графика HD Graphics 510 (GT1e), Graphics 515 (GT2e) и Graphics 520 (GT2e), данные решения станут неотъемлемой частью процессоров семейства Core M. Встроенные видеокарты в составе CPU Core M, в лучшем случае потянут только старые игры на низких настройках графики. За ними по производительности идет встроенное графическое ядро HD Graphics 530 (GT3e), которое станет неотъемлемой частью некоторых процессоров линейки Core i5, Core I7, в плане производительности данное графическое решение с легкостью справится со многими компьютерными играми правда только на разрешении дисплея не больше 720р(HD), причем на низких, а в некоторых игровых приложениях и на средних настройках графики. По сути графическая производительность HD Graphics 530 соответствует дискретной видеокарте GeForce 920M. В следующую группу можно выделить HD Graphics 540 и HD Graphics 550 данная встроенная графика станет скорее всего неотъемлемой частью UVL процессоров на архитектуре Skylake, от HD Graphics 530 эти два решения отличаются вдвое увеличенным количеством исполнительных устройств 48 против 24 у HD Graphics 530 остальные характеристики у все трех встроенных видеокарт одинаковые частотные характеристики составляют 300-1150МГц, а Пропускная способность памяти равна 64/128 бит. По производительности HD Graphics 540\550 примерно соответствуют дискретной видеокарте GeForce 920M. Ну и замыкает линейку встроенных видеокарт от Intel высокопроизводительное графическое ядро Iris Pro Graphics HD Graphics 580 (GT4e) , который является самым мощным встроенным графическим решением от Intel на данный момент. Как обещает производитель производительность Graphics 580 в 3 D приложениях у будет сопоставима с настольной видеокартой NVIDIA GeForce GTX 750, GT4e должен обеспечить производительность на уровне 1,15 Гфлопс; прирост относительно GT3e (Broadwell) составит порядка 50%. В аккурат к появлению Windows 10 в новой графике Intel появилась полноценная аппаратная поддержка Direct X 12 для игр, а также технологий Open CL 2.0 и Open GL 4.4 для более чёткой и качественной картинки. По данным Intel, новая графика обеспечит прирост производительности в 3D-играх до 40% по сравнению с предыдущим поколением. Новое девятое поколение графики Intel также поддерживает расширенный список аппаратных функций ускорения кодирования и декодирования (HEVC, AVC, SVC, VP8, MJPG), расширенные возможности обработки и преобразования "сырых" данных непосредственно с 16-битной матрицы цифровой камеры с качеством до 4K 60p, а также расширенные возможности движка Quick Sync с режимом Video Fixed-Function (FF), позволяющие декодировать H.265/HEVC без обращения к вычислительным ядрам.

Технические характеристики

HD Graphics 5xx
Производитель
intel
Архитектура
Skylake GT2e Skylake GT3e Skylake GT4e
Название
HD Graphics 510 HD Graphics 515 HD Graphics 520 HD Graphics 530 HD Graphics 540 HD Graphics 550 HD Graphics 580
Исполнительные устройства
12 24 24 24 48 48 72
Тактовая частота ядра
300-950 МГц 300-1000 МГц 300-1050 МГц 300-1150 МГц 300-1050 МГц 300-1100 МГц нет данных МГц
Разрядность шины памяти
64\128 Бит
eDRAM
нет 128 МБ
DirectX
DirectX 12
Технология
14 н.м.

Новое поколение встроенной графики от AMD.

AMD Carrizo - это шестое поколение мобильных APU AMD Carrizo - это первые в мире APU производительного класса, полностью разместившиеся на одном кристалле, тогда как ранее в чипах такого класса графический чип или южный мост если и располагались на единой с процессором подложке, то в виде отдельного кристалла. Здесь же северный мост, Fusion Controller Hub (южный мост), графика и процессорные ядра уместились на одном кристалле, выращенном в рамках 28-нм техпроцесса Global Foundries. В Carrizo используется графика, которую сама AMD называет GCN третьего поколения. В третьем поколении архитектура претерпела некоторые изменения - по сути, это поколение GCN было использовано в GPU Tonga (Radeon R9 285). Также встроенное графическое ядро получило 512 Кбайт собственной кеш-памяти второго уровня. Среди прочего заявлены поддержка DirectX 12 (Level 12), улучшенная производительность при работе с тесселяцией, цветовая компрессия без потерь, обновленный набор инструкций ISA, связность CPU- и GPU-кешей и высококачественный скейлер. В Carrizo графический контроллер Radeon R7 имеет 8 вычислительных кластеров, в то время как мобильные варианты Kaveri обладали лишь шестью такими блоками, то есть графическое ядро Carrizo располагает 512 потоковыми процессорами и способно выдавать пиковую производительность до 819 GFLOPS. Carrizo имеет три встроенных контроллера дисплеев и поддерживает вывод изображения с разрешением до 4K включительно. Шестое поколение A-серии также стало первым решением для ноутбуков, которое поддерживает аппаратное декодирование HEVC, гетерогенную системную архитектуру HSA 1.0 и технологию ARM TrustZone. Производитель особо подчеркнул поддержку новыми процессорами функциональности вышедшей Наличие аппаратного декодера H.265/HEVC в новых процессорах AMD Carrizo позволяет не только более плавно воспроизводить видео высокой четкости, но и обеспечивать в разы более длительное время автономной работы. операционной системы Windows 10, включая оптимизацию графики DirectX 12. В процессорах 6-го поколения компании AMD для ноутбуков используется GPU уровня дискретных графических решений, а благодаря архитектуре Graphics Core Next (GCN) достигается двукратное превосходство в производительности по сравнению с конкурентами. Благодаря этому пользователь получает возможность играть на ноутбуке в самые популярные онлайн игры в HD-разрешении, в том числе: DoTA 2, League of Legends и Counter Strike: Global Offensive. В прочих играх прирост fps в сравнении с Kaveri составит от 30 до 40%/ Так же отметим, что технология AMD Dual Graphics позволяет использовать «в связке» процессоры 6-го поколения для ноутбуков и графические карты AMD Radeon R7 Mobile, что делает возможным увеличение частоты кадров до 42%, а фирменная технология AMD FreeSync обеспечивает высокую плавность геймплея. Отметим, что процессор поддерживает многопоточные API, в том числе DirectX 12, Vulkan и Mantle, позволяющие использовать передовые игровые технологии, направленные на повышение производительности и качества изображения. Модельный ряд встроенной графики AMD Radeon Rх, начинается с встроенного графического ядра AMD Radeon R7 Mobile, данный графический адаптер является самым производительным в линейке. AMD Radeon R7 (Carrizo) – интегрированная видеокарта в APU Carrizo, на момент анонса (середина 2015 года) использованная в SoC AMD FX-8800P с 512 шейдерами GCN и частотой 800 МГц. В зависимости от конфигурации TDP (12-35 Вт) и используемой ОЗУ (до DDR3-2133 в двухканальном режиме), производительность может существенно отличаться. Далее идет AMD Radeon R6 (Carrizo) – низкоуровневая встроенная видеокарта, анонсированная в середине 2015 года. Она разработана для APU Carrizo, к примеру, AMD A10-8700P или A8-8600P, и имеет 384 GCN шейдеров и 720 соответственно. Графика предлагает две конфигурации, отличающиеся TPD (от 12 до 35 Вт) и типом используемой памяти (до DDR3-2133 в двухканальном режиме). Следующий графический ускоритель Замыкает линейку Radeon R5 (Carrizo), который встраивается в некоторые процессоры, например AMD A6-8500P . Его производительности с трудом хватает даже на самые нетребовательные игры 2-летней давности (Tomb Raider, Dead Space 3, BioShock Infinite) на минимальных настройках в играх вроде Crysis 3 или Battlefield 4, данный видеоускоритель выдает максимум 10-20 кадров в секунду. Встроенная видеокарта Radeon R5 (Carrizo) имеет в своем арсенале 256 шейдерных процессоров (4модуля GCN) работающих на частоте 800 МГц. Что касается встроенной графики Radeon R4\R3\R2, то ее возможностей хватит в лучшем случае для игр 4-5 летней давности.

Технические характеристики

AMD Radeon Rx
Производитель
AMD
Архитектура
Carrizo
Название
AMD Radeon R7 AMD Radeon R6 AMD Radeon R5
Шейдерные процессоры
512 384 256 128(Carrizo-L)
Тактовая частота ядра
800 (Boost) МГц 850 (Boost) МГц
Разрядность шины памяти
64\128 Бит 64 Бит
Тип памяти
собственной видеопамяти нет
DirectX
DirectX 12
Технология
28 н.м.

Синтетические тесты

Для начала посмотрим производительность встроенной график в синтетическом тесте 3DMark (2013) - Fire Strike Standard Score на разрешении 1920x1080 пикселей.

Intel Iris Pro Graphics 6200-(Core i7 5950HQ)

Intel Iris Pro Graphics 5100-(Core i5 4158U)

Kaveri AMD Radeon R5-(AMD A8-7200P)

Kaveri AMD Radeon R4-(AMD A6 Pro-7050B)

В синтетическом тесте 3D Mark Fire Strike , как и следовало ожидать встроенная графика AMD немного отстает от графических решений компании Intel. Как в сегменте высокопроизводительных решений так и среди бюджетных видеокарт. Если с синтетическими тестами все понятно, то все же будет интересно посмотреть как поведет себя встроенная графика в реальных игровых приложениях. На наш взгляд, акцентировать внимание на производительности встроенной графики процессоров типа Core i7 4750HQ и им подобных, которые предназначенных для энтузиастов и геймеров, нет смысла. В 99% случаев в ноутбуке будет установлена более производительная дискретная 3D-карта. Так же отметим, что «тяжеловесные» настройки графики выявляют ряд игр, где потенциала даже такой графики как Iris Pro Graphics будет явно недостаточно. Приемлемая производительность в заветном разрешении Full HD будет достигнута только путем снижения качества графики до минимального в лучшем случае до среднего уровня.

Call of Duty: Advanced Warfare - разрабатывалась в течение трех лет с учетом всех возможностей игровых систем нового поколения. Обновленный подход к созданию игры позволит применить новую тактику. Продвинутые военные технологии и уникальный экзоскелет помогут выжить там, где обычный солдат не продержится и пяти минут! Кроме того, вас ожидает захватывающий сюжет и новые персонажи, роль одного из которых исполнил обладатель премии «Оскар» Кевин Спейси. Игровой движок для Call of Duty Advanced Warfare является продуктом собственной разработки студии Sledgehammer Games. В сети практически нет информации о структуре и разработке данного движка. Скорее всего, движок является дальнейшим развитием линейки продуктов для игр на базе собственной интеллектуальной собственности студии Sledgehammer Games.

720p (HD) Low

720p (HD) Normal

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4400-(Core i7 4500U)

Intel HD Graphics 4400-(Core i7 4500U)

AMD Radeon R9 M370X+(Core i7 4870HQ)

AMD Radeon R9 M370X+(Core i7 4870HQ)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Kaveri AMD Radeon R6-(AMD A10-7400P)

Kaveri AMD Radeon R6-(AMD A10-7400P)

Carrizo AMD Radeon R5-(AMD A6-8500P)

Metro Last Light (рус. Метро: Луч надежды) - компьютерная игра в жанре шутера от первого лица, сиквел игры Metro 2033. Сиквел разрабатывался на трёх основных руководящих принципах: первый - это сохранить атмосферу ужаса первой части, второй - разнообразить набор оружия, третий - усовершенствовать технологии Metro 2033. Разработчики из 4А Games также учли некоторые пожелания игроков и пообещали на этот раз исправить некоторые ошибки, подправить искусственный интеллект и стелс элементы. Авторы «Metro: Last Light » решили не брать за основу сюжета события второй книги Дмитрия Глуховского. Вместо этого, игра является прямым продолжением первой части с насыщенным линейным сюжетом. Главным героем «Metro: Last Light » вновь становится Артём, которому на этот раз приходится предотвратить гражданскую войну между обитателями московского метро. Metro Last Light разрабатывался на модифицированной версии 4А Engine, который использовался в Metro2033. Из улучшений следует отметить более продвинутый ИИ и оптимизацию графического движка. Благодаря использованию PhysX движок получил множество возможностей, например, разрушаемое окружение, симуляцию изгибов на одежде, волны на воде и другие элементы, полностью подверженные влиянию окружающей среды. Metro Last Light является на данный момент одним из самых технологических продуктов современности, даже несмотря на то, что игра вышла не только под персональные компьютеры, но и под текущее поколение игровых консолей.

720p (HD) Low (DX10)

720p (HD) Medium,(DX10) 4xAF

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

NVIDIA GeForce GTX 850M+(Core i7 4720HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 5200-(Core i7 4750HQ)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel Iris Pro Graphics 6100-(Core i5 5257U)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 530-(Core i7 6700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5600-(Core i7 5700HQ)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 5500-(Core i5 5300U)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4600-(Core i5 4210M)

Intel HD Graphics 4400-(Core i7 4500U)

Intel HD Graphics 4400-(Core i7 4500U)

AMD Radeon R9 M370X+(Core i7 4870HQ)

AMD Radeon R9 M370X+(Core i7 4870HQ)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Carrizo AMD Radeon R7-(AMD FX-8800P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Kaveri AMD Radeon R7-(AMD FX-7600P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Carrizo AMD Radeon R6-(AMD A10-8700P)

Kaveri AMD Radeon R6-(AMD A10-7400P)

Нельзя сказать, что AMD выпускает слабые видеокарты, особенно в недорогом сегменте. Производительности видеокарт зачастую хватает на большинство задач. Особенно если это не высоко требовательные задачи, вроде рендера видео или работы с 3D графикой. Для того чтобы лучше определить уровень производительности, следует рассмотреть две видеокарты серии AMD Radeon R7 200 Series.

В таблице описаны характеристики AMD Radeon R7 200 Series, а именно представлен сравнительный анализ двух видеокарт из этой серии.

Параметры видеокарты

Radeon R7 240
Oland XT

Частота ядра

780 МГц

Тип графической памяти

DDR3

Количество памяти

2 Гб

Частота памяти

1600 МГц

Техпроцесс

28

Потоковые процессы

320

Блоки рендеринга

8
20
128 бит

Транзисторы

1040 миллионов

1040 миллионов

Теплоотвод

30 Вт

Поддержка

DirectX 12

Стоит учитывать, что базовая частота ядра R7 240 составляет 730 МГц, а 780 МГц – это частота после разгона. В параметрах видеокарт указан тип памяти DDR3, но при этом есть ещё вариант с GDDR5 памятью. В сравнении будет использоваться DDR3, поскольку на данный момент это самый распространённый тип.

Обзор Radeon R7 200 Series

AMD Radeon R7 200 Series относиться к категории бюджетных и доступных видеокарт. Тем не менее, она выполнена достаточно качественно. Видеокарты, рассматриваемые в этом обзоре, представлены от компании Gigabyte.

Обзор Radeon R7 240

Модель получила 2 Гб видеопамяти типа DDR3. Также она имеет изначальный заводской разгон. Сама сборка выполнена качественно, хоть это и бюджетный сегмент.

На верхней части графической карты расположен охлаждающий кулер с большим радиатором. Такой решение обуславливается сильным нагревом карт AMD. Радиатор выполнен из алюминия, а сам вентилятор слегка выпирает. Длина всей видеокарты составляет 19,5 см.


В игре Metro Last Light результаты неплохие. Ядра работали на частоте 900 МГц. Видеокарта нагружалась на 90-100%, при этом средняя температура не превышала отметку в 46 градусов. Кулеры работали на 33%, а частота оборотов в минуту достигала 2-х тысяч. Кулер практически не издавал шумов.

Обзор Radeon R7 250

Внешнее оформление графической карты ничем не отличается от младшей модели. Она также имеет электроизоляционное покрытие из синего текстолита и ширину в 19,5 см. Радиатор такой же громоздкий, как и у AMD Radeon R7 240.

Отличаются рассматриваемые карты исключительно микросхемами памяти и фазами питания. Radeon R7 250 имеет трёхфазовое питание, в отличии от двухфазового R7 240.

Результаты тестирования в игре Metro Last Night схожи. Видеокарта стабильно работала на 90-100%, при этом особо не нагревалась. Температура не превышала 46-47 °C.

Отличие только в количестве оборотов в минуту. Вентилятор работал со скоростью в 1200 об/мин, что в двое меньше скорости Radeon R7 240. Показатель FPS стабильно держался в районе 30-40 кадров.

Как разогнать видеокарту Radeon R7 200 Series

Для начала потребуется установить следующие утилиты: MSI Afterburner, 3DMark, TechPowerUp GPU-Z, FurMark.

  1. Запускаем MSI Afterburner и кликаем по кнопке настройки (шестерёнка).
  2. Выбираем вкладку «User interface» и в настройках выставляем нужный язык.
  3. Нажимаем на копку «Settings» и во вкладке «Мониторинг» выносим наверх следующие параметры: частота ядра ГП, частота памяти ГП1, частота кадров, температура ГП1.
  4. Для каждого из выбранных параметров выставляем опцию «Показать в Оверлейном Дисплее» и сохраняем изменения.
  5. Снова кликаем на кнопку «Settings» и во вкладке «Основные» ставим галочки для «Разблокировать управление напряжением» и для «Разблокировать мониторинг напряжения».
  6. Запускаем программу FurMark и выбираем нужное разрешение экрана, а также максимально доступное сглаживание.

Теперь самый главный этап – разгон видеокарты AMD Radeon R7 200 Series. Начинаем с разгона видеопамяти. Сначала увеличиваем частоту памяти на 100 МГц и сохраняем настройку. После чего прогоняем видеокарту в FurMark. Повторяем данную процедуру до появления первых артефактов.

Если при тестировании компьютер зависнет, стоит немедленно его перезагрузить. После перезагрузки выставляем те параметры, при которых артефакты отсутствуют.

Напоследок проверяем карту в программе 3DMark, дабы избежать бликов, пятен и прочих дефектов.

С разгоном видео ядра ситуация такая же. Выставляем параметр «Power Limit» на максимум, после чего увеличиваем частоту ядра на 10 МГц. Тесты проводим в программах, которые использовали для разгона памяти.

Если появляются артефакты, то увеличиваем напряжение на ядро. Повторяем процедуру, пока не будет достигнут нужный результат.

Результаты тестирования в играх

В GTA V обе видеокарты показывают хороший результат. При низких настройках графики обе видеокарты выдавали в районе 35-40 FPS. На изначальных частотах R7 240 DDR3 немного выигрывает у и выдаёт на 10-15 FPS больше. Такие показатели достигаются не только из-за высокой производительности видеокарт, но и из-за хорошего уровня оптимизации GTA V.

В игре War Thunder при базовых частотах видеокарты выдают стабильные 35 FPS. А Radeon R7 240 опережает GT 730 на 13 FPS. Ситуация после разгона ещё лучше. Обе видеокарты от AMD не только идут вровень с GeForce GT 730 DDR3 и GeForce GT 730 типа GDDR5, но и опережают их на несколько процентов. Стоит отметить, что настройки графики были выставлены на средние значения.

Ну и последняя игра – Dota 2. Обе карты от AMD стабильно работают в районе 45 FPS. В сильно нагруженных сценах количество кадров просаживалось до 25-30 FPS. При базовых частотах Radeon R7 240 обгонял GeForce GT 730 на 25 FPS.

Ситуация с R7 250 немного хуже. Отсутствие разгона частоты видеопамяти сильно влияет на прирост производительности. Поэтому показатель FPS у Radeon R7 250 немного ниже показателя GeForce GT 730 (GDDR5). Тесты проводились на минимальных настройках графики.

В целом, тесты в играх AMD Radeon R7 200 Series показывают удовлетворительные результаты. Видеокарты способны тянуть вполне современные игры, хоть и на низких настройках. Сравнительный анализ показал, что в большинстве случаев видеокарты от AMD опережают видеокарты от Nvidia. Но нужно учитывать, что видеокарты находятся в бюджетном сегменте.

Давненько мы не посещали сектор бюджетных графических процессоров. Внимание тестовых лабораторий приковано к мощным высокопроизводительным GPU, ведь именно в них наиболее ярко проявляется движение прогресса. Изредка в поле зрения попадает видеокарта средней ценовой категории, ну а все, что ниже, — для энтузиастов попросту мышиная возня. Однако нужно спуститься с небес на землю. Младшие GPU продаются так, как и не снилось флагманам, ведь не все геймеры стремятся играть с бескомпромиссными настройками графики и готовы тратить немаленькие суммы на соответствующее железо. Это во-первых. Во-вторых, в бюджетном секторе сейчас происходят не столь яркие, как на самом верху, но по сути столь же значительные преобразования.

Ряд технологий, которые некогда дебютировали в дорогостоящих продуктах, продержались на рынке достаточно долго, чтобы у обоих основных производителей GPU сформировались модельные линейки, унифицированные по функциям и дифференцированные лишь по производительности. Везде поддерживается DirectX 11 с эффектами, соответствующими по меньшей мере feature level 11_0, из которых наиболее заметный — аппаратная тесселяция. Присутствует аппаратное декодирование видео стандарта H.264 и — за редкими исключениями — порт HDMI 1.2a, обеспечивающий совместимость с 4К-дисплеями и стереоскопическим 3D.

Переход AMD и NVIDIA на технологическую норму 28 нм также позволил бюджетным GPU сделать большой шаг вперед в тактовых частотах и производительности, оставаясь в рамках скромного энергетического бюджета. Не менее важный эффект оказало распространение памяти GDDR5: GDDR3 осталась признаком уж откровенно дешевых видеоадаптеров. Как результат, недорогие GPU демонстрируют в бенчмарках уровень производительности, которого трудно ожидать от невзрачных на вид видеокарточек, зачастую даже без дополнительного питания. В серии групповых тестов, которые мы периодически проводим в известных играх, бюджетные GPU раз за разом пробиваются в диаграммы наряду с более крупными чипами, преодолевая порог в 30 FPS при разрешении 1920х1080, пусть и с минимальными настройками графики.

Разумеется, присутствуют встречные усилия и со стороны производителей игр. Даже проекты класса ААА, которые на максимальных настройках создают существенные трудности для топовых GPU (Crysis 3, Battlefield 4, Metro: Last Light и пр.), хорошо масштабируются с тем, чтобы соответствовать возможностям бюджетного железа, сохраняя при этом большую долю визуальной привлекательности. Другая категория игр изначально лишена тяжелой графической оболочки, что не мешает им пользоваться бешеной популярностью, недоступной хитам одного сезона, которые обычно используются в качестве бенчмарков GPU. Это MMO-игры: классические RPG во главе с непреходящим лидером — World of Warcraft, равно как и всенародно любимые «Танки» с их последователями. Все эти проекты мало выигрывают от железа среднего уровня производительности, а на консервативных настройках вполне сносно работают не то что на бюджетных, а на ультрабюджетных GPU.

Наконец, наиболее важный тренд, побудивший нас обратиться к теме графики начального уровня, — это подъем APU (Accelerated Processing Unit) — процессоров с интегрированным графическим ядром, в терминологии AMD. Чисто технически любой CPU с встроенной графикой квалифицируется как APU, и само по себе это не новое явление. Текущая ситуация интересна тем, что интегрированные графические процессоры в составе APU по вычислительной мощи уже не только превосходят самые слабые из дискретных GPU, выпускаемых сегодня, но и вполне подпадают под определение «игровая графика».

Собственно, только чипы AMD среди десктопных процессоров в полной мере достойны введенного ею термина APU, поскольку относительно мощное ядро Iris Pro с внешним кешем четвертого уровня остается прерогативой ноутбучных моделей Intel, а настольные довольствуются примитивным вариантом в лице Intel HD Graphics. В последней итерации — ядро Kaveri — APU сделали крупный шаг вперед, соединив обновленные ядра x86 и GPU на архитектуре GCN. В результате получился процессор с беспрецедентно большой долей графического компонента — 47% площади кристалла. В наиболее полной конфигурации встроенный GPU Kaveri превышает по числу вычислительных блоков отнюдь не самые дешевые модели дискретных видеоадаптеров AMD уровня Radeon R7 250. И это не предел, ведь в консоли PlayStation 4 и Xbox One поставляются APU с еще более мощной графикой.

Все это побуждает взглянуть на сегмент бюджетной графики непредвзято и определить место APU в этой картине. Ранее мы уже делали подробный обзор архитектуры и тесты производительности двух представителей линейки Kaveri: A10-7850K и A8-7600 . Задача этого обзора — более широко раскрыть тему игровой производительности, сравнив APU с набором конкурентов из числа дискретных видеоадаптеров.

⇡ Участники тестирования

В тестировании производительности приняли участие следующие APU и GPU:

  • AMD A10-7700K
  • AMD A10-7850K
  • AMD Radeon R5 230
  • AMD Radeon R7 240 (GDDR 5)
  • AMD Radeon R7 250 (GDDR 5)
  • Intel Core i5-4460 (HD Graphics 4600 GT2)
  • NVIDIA GeForce GT 630
  • NVIDIA GeForce GT 640 (GDDR 5).

Модельный ряд Kaveri на текущий момент состоит из девяти APU, разделенных на категории A6, A8 и A10 в порядке возрастания производительности. Наряду с различной конфигурацией x86-ядер, APU различаются и в графической части. Младшие чипы, A6, комплектуются GPU Radeon R5 с 256 вычислительными ALU (потоковыми процессорами). A8 имеют 384 ALU, а A10 — 512. Единственным исключением является A10-7700K, который также включает 384 ALU.

Однако в продаже вы сейчас вряд ли сможете купить что-либо, кроме A10-7700K и A10-7850K, являющихся, соответственно, младшей и старшей моделью линейки AMD A10. Цены на Newegg.com составляют $160 и $190 , а в московских интернет-магазинах нашелся только A10-7850K по цене 6 000 руб. Вот эта парочка и будет участвовать в тестировании, что для наших целей вполне удобно: оба чипа включают 4-ядерный CPU, но интегрированную графику различной конфигурации.

Для APU критически важным параметром является пропускная способность оперативной памяти. A10 поддерживает двухканальную DDR3 SDRAM с частотой вплоть до 2133 МГц, причем для нужд графического процессора можно выделить до 2048 Мбайт объема. Таким образом, по части памяти APU соответствуют бюджетным дискретным видеоадаптерам со 128-битной шиной и чипами GDDR3, с поправкой на то, что пропускную способность приходится делить с x86-ядрами. Не вполне официально A10 может работать и с модулями DDR3-2400, которые сама AMD выпускает под маркой Radeon R9 Memory. Именно с такой памятью мы будем тестировать APU, хотя отдельно проверим, много ли потеряет процессор, если использовать ширпотребную DDR3-1600.

Для сравнения с интегрированной графикой мы выбрали дискретные видеоадаптеры в ценовой категории до $90. Участвуют самые младшие из розничных моделей на GPU AMD и NVIDIA, за исключением GeForce GT 610, который уже попросту слишком слаб с его 48 ядрами CUDA. Все карты оснащены памятью типа GDDR5, за исключением Radeon R5 230 и GeForce GT 630, которые используют GDDR 3 (хотя последний существует в варианте с GDDR5).

A10-7700K A10-7850K AMD
Radeon R5 230
AMD
Radeon R7 240
AMD
Radeon R7 250
NVIDIA
GeForce GT 630
NVIDIA
GeForce GT 640
Основные компоненты
GPU - - Caicos Oland PRO Oland XT GK208 GK107
Число транзисторов - - 0,37 1,04 1,04 1,3 1,3
Техпроцесс, нм 28 28 40 28 28 28 28
Тактовая частота GPU, МГц: Base Clock / Boost Clock 720/- 720/- 625/- 730/780 1000/1050 875/- 950/-
Потоковые процессоры / ядра CUDA 384 512 160 320 320 384 384
Текстурные блоки 24 32 8 20 20 16 32
ROPs 8 8 4 8 8 8 16
Видеопамять: тип, объем, Мбайт DDR3 SDRAM, до 2048 DDR3 SDRAM, до 2048 GDDR3 SDRAM, 1024 GDDR5 SDRAM, 1024 GDDR5 SDRAM, 1024 GDDR3 SDRAM, 2048 GDDR5 SDRAM, 1024
Тактовая частота памяти: реальная (эффективная), МГц до 1066 (2133) до 1066 (2133) 533 (1066) 1125 (4500) 1125 (4500) 900 (1800) 1250 (5000)
Ширина шины памяти, бит 128 128 64 128 128 64 128
Интерфейс - - PCI-Express 2.0 x16 PCI-Express 3.0 x16 PCI-Express 3.0 x16 PCI-Express 2.0 x8 PCI-Express 3.0 x16
TDP, Вт 95 95 19 30 75 25 НД
Средняя розничная цена, руб. Нет данных Нет данных Нет данных Нет данных Нет данных Нет данных Нет данных

Дискретные видеоадаптеры проходили тестирование на платформе Intel с процессором Core i5-4460. Выбор этого чипа не случаен, поскольку при рекомендованной цене $182 он наиболее близок к старшему Kaveri. Влияние платформы на производительность нам еще предстоит проверить. Интегрированный GPU Core i5 также участвует в тестах, хотя в сравнении с APU удача ему явно не светит.

Наконец, у гибридных процессоров AMD есть любопытная опция под названием Dual Graphics, которая представляет собой вариант CrossFire для соединения интегрированного GPU с дискретной графикой. Впрочем, поддерживаются только две модели с архитектурой GCN — Radeon R7 240 и R7 250, которые как раз сопоставимы по конфигурации с графическим ядром Kaveri A8-A10. Тестами Dual Graphics мы также займемся сегодня.

⇡ Тестовый стенд, методика тестирования

Конфигурация тестовых стендов
CPU Intel Intel Core i5-4460 AMD A10-7700K / AMD A10-7850K
Материнская плата ASUS Sabertooth Z97 Mark 1 ASRock FM2A88X Extreme6+
Оперативная память DDR3 Kingston HyperX 4x2 Гбайт, 1600 МГц, CL9 AMD Radeon R9 Gamer Series 2x8 Гбайт, 2400 МГц, CL11
ПЗУ Intel SSD 520 240 Гбайт
Блок питания Corsair AX1200i, 1200 Вт
Охлаждение CPU Thermalright Archon
Корпус CoolerMaster Test Bench V1.0
Операционная система Windows 7 Ultimate X64 Service Pack 1
ПО для карт AMD AMD Catalyst 14.4 WHQL
ПО для карт NVIDIA 335.23 WHQL

В настройках драйвера NVIDIA всегда в качестве процессора для вычисления PhysX выбирается CPU. В настройках AMD всегда настройка Tesselation переводится из состояния AMD Optimized в Use application settings. В CrossFire-конфигурациях остается включенной опция Frame Pacing.

Набор бенчмарков
Программа API Настройки Разрешение
3DMark 2011 DirectX 11 Профиль Entry -
3DMark DirectX 11 Тест Cloud Gate -
Unigine Heaven 4 DirectX 11 DirectX 11, мин. качество 1920x1080
DiRT Showdown . Встроенный бенчмарк DirectX 11 Среднее качество, Global Illumination выкл. Трасса Nevada, 8 машин 1920x1080
Far Cry 3 + FRAPS DirectX 11 DirectX 11, мин. качество, HDAO. Начало миссии Secure the Outpost 1920x1080
Tomb Raider. Встроенный бенчмарк DirectX 11 Мин. качество 1920x1080
Bioshock Infinite. Встроенный бенчмарк DirectX 11 Мин. качество. Postprocessing: Normal 1920x1080
Crysis 3 + FRAPS DirectX 11 Мин. качество. Начало миссии Post Human 1920x1080
Metro: Last Light. Встроенный бенчмарк DirectX 11 Мин. качество 1920x1080
Company of Heroes 2. Встроенный бенчмарк DirectX 11 Мин. качество 1920x1080
Batman: Arkham Origins. Встроенный бенчмарк DirectX 11 Мин. качество 1920x1080
Battlefield 4 + FRAPS DirectX 11 Мин. качество. Начало мисии Tashgar 1920x1080
Thief. Встроенный бенчмарк DirectX 11 Мин. качество 1920x1080
World of Tanks + FRAPS DirectX 11 Качество «среднее». Карта «Энск» 1920x1080

War Thunder. Встроенный бенчмарк

Качество High. Бенчмарк Eastern Front

Diablo III: Reaper of Souls + FRAPS

Texture quality: high; shadow quality: medium; physics: high; clutter density: high; anti-aliasing: off. Начало игры

⇡ Дискретные GPU на платформе AMD vs Intel

Две версии теста 3DMark показывают, что платформа с Core i5 имеет чрезвычайно небольшое преимущество перед AMD A10 при использовании дискретного видеоадаптера. В большинстве игровых тестов, напротив, процессор AMD обеспечивает немного лучший результат. По всей видимости, с адаптерами такого класса производительность целиком и полностью упирается в GPU, а x86-ядро не играет большой роли. Исключением является только World of Tanks, который извлекает из платформы Intel огромное преимущество.

Игровые тесты + Unigine Heaven 4

Итак, в целом от процессора что-либо зависит только в World of Tanks, то есть меньшая производительность CPU-части чипов AMD почти нигде не скажется на итоговых показателях. Учтем эти результаты и перейдем к сравнению производительности интегрированной и младшей дискретной графики.

⇡ Синтетические тесты

Между двумя моделями Kaveri выявлена существенная разница. Причем если A10-7700K недалеко ушел от дискретного Radeon R7 240, то A10-1850K стоит ближе к R7 250 или GeForce GT 640.

  • В новой версии бенчмарка отставание APU от лидирующих адаптеров, R7 250 и GT 640, намного больше. А разница между чипами AMD с интегрированной графикой, напротив, выражена слабее.
  • APU уступили в производительности даже Radeon R7 240, хотя без труда справились с GeForce GT 630 и ядром Intel HD Graphics 4600, встроенным в процессор Core i5.

Unigine Heaven 4

  • В Unigine Heaven наблюдается похожая картина. Разница между A10-7700K и A10-1850K несущественна, и оба уступают дискретному Radeon R7 240.
  • Преимущество APU перед Intel HD Graphics и самыми младшими дискретными адаптерами по-прежнему велико.

⇡ Игровые тесты

DiRT Showdown

  • DiRT принесла успех гибридным процессорам AMD. Старший Kaveri сумел справиться даже с Radeon R7 250, хотя не идет в сравнение с GeForce GT 640.
  • Младший Kaveri, в свою очередь, немного опередил Radeon R7 240.
  • Остальные участники теста расположились далеко позади чипов Kaveri.
  • Обратите внимание, что бенчмарк запускался со средними (а не минимальными, как большинство прочих) настройками графики, при которых APU обеспечивают частоту смены кадров от 50 FPS и выше.

Far Cry 3

  • Radeon R7 250 доминирует в этой игре.
  • Оба APU вместе с R7 240 образуют тесную группу, внутри которой разница в производительности минимальна.
  • Зато, пускай с минимальным отрывом, APU удалось превзойти GeForce GT 640, не говоря уже о заведомо более медленном GT 630.
  • Оба APU не в силах обеспечить минимально приемлемый фреймрейт в 30 FPS, несмотря на самые низкие настройки графики.

Tomb Raider

  • A10-7850K уступил место Radeon R7 240, а A10-7700K не справился даже с GeForce GT 630. Хуже только Intel HD Graphics или Radeon R5 230.
  • Впрочем, оба сохраняют частоту смены кадров на уровне выше 30 FPS.

Bioshock Infinite

  • Результаты процессоров AMD практически одинаковы и нисколько не отличаются от того, что продемонстрировал Radeon R7 240. Обоим APU очень далеко до R7 250 и GT 640.
  • Однако преимущество перед самыми младшими дискретными GPU никуда не делось, как и приемлемая частота смены кадров.

Crysis 3

  • Вновь по абсолютным результатам два APU мало отличаются друг от друга.
  • Неудачно выступили графические адаптеры на чипах NVIDIA: оба уступили дорогу интегрированной графике AMD, а GT 630 едва ли отличается от Intel HD Graphics.
  • О комфортной частоте смены кадров применительно к APU в Crysis 3 говорить не приходится — несмотря на широкое масштабирование, это все же слишком тяжелый движок.

Metro: Last Light

  • APU заняли промежуточное положение между GeForce GT 630 и Radeon R7 240 и, в отличие от R7 250 и GT 640, не обеспечивают играбельной частоты смены кадров.
  • На встроенной графике Core i5 игра попросту не запустилась, поэтому на диаграмме соответствующая строка осталась пустой.

Company of Heroes 2

  • В порядке счастливого исключения APU AMD заняли почетные второе и третье место на диаграмме, уступив Radeon R7 250.
  • Тест создал большие трудности для видеоадаптеров NVIDIA, отбросив GT 640 на уровень младшего чипа Kaveri.
  • И все же среди всех соперников только R7 250 взял планку в 30 FPS. Интегрированной графике это не под силу.

Batman: Arkham Origins

  • APU, вновь показавшие близкие результаты, уступают даже Radeon R7 240, и намного, а разница с R7 250 и GT 640 попросту колоссальна.
  • Впрочем, свои 30 FPS процессоры AMD по-прежнему выдают.

Battlefield 4

  • Чипы Kaveri сравнимы по производительности с Radeon R7 240, а между собой, в очередной раз, различаются слабо. Минимально приемлемый фреймрейт обеспечивается.
  • Продукты AMD в этом тесте явно доминируют над конкурентами от NVIDIA. Игра не видит разницы между GT 630 и GT 640. Оба адаптера стоят далеко позади интегрированных GPU AMD.

  • APU заняли привычное место чуть позади Radeon R7 240. Уровень производительности R7 250 или GT 640 остается недосягаемой вершиной.
  • Несмотря на относительное преимущество графики Kaveri перед GeForce GT 630, принципиальной разницы между ними нет, ведь в любом случае полученный фреймрейт находится намного ниже порога комфортной игры.
  • Более слабые дискретные видеоадаптеры не годятся в соперники гибридам.

Diablo III: Reaper of Souls

  • Diablo III — достаточно демократичная игра, чтобы даже GeForce GT 630 при неплохих графических опциях выдавал играбельную частоту смены кадров. Впрочем, отметим, что для измерения производительности использовалась довольно легкая начальная сцена игры.
  • A10-7700K недалеко ушел от GT 630, а вот A10-7850K занял место между Radeon R7 240 и R7 250.

По итогам тестов можно смело утверждать, что обе модели APU чувствуют себя уверенно среди геймерских видеоадаптеров младшей ценовой категории. По производительности в ряду дискретных видеокарт AMD с гибридными процессорами граничит Radeon R7 240 в модификации GDDR5 — младшая модель на базе архитектуры GCN. Radeon R5 230, которая также продается в рознице, базируется на 40-нм ядре Caicos с устаревшей архитектурой WLIV5 и сегодня представляет собой немногим более чем видеоадаптер в изначальном смысле слова — то есть устройство, обеспечивающее вывод изображения на экран. В ряде тестов APU даже превосходят R7 240, несмотря на ограничитель в виде системной памяти DDR3. Среди продуктов NVIDIA гибриды AMD A10 вписываются в промежуток между GeForce GT 630 и GT 640 (GDDR5), безоговорочно опережая первый и не в силах дотянуться до второго. Встроенная графика Intel HD Graphics остается слабым местом десктопных процессоров Intel и для игрушек совершенно непригодна.