Как определяется пропускная способность канала. Пропускная способность в IP-сетях: расчет и выбор сетевого оборудования

1.Что представляет из себя процесс передачи информации?

Передача информации - физический процесс, посредством которого осуществляется перемещениеинформации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

Источник информации. Приёмник информации. Носитель информации. Среда передачи.

Схема передачи информации:

Источник информации – информационный канал – приемник информации.

Информация представляется и передается в форме последовательности сигналов, символов. От источника к приёмнику сообщение передается через некоторую материальную среду. Если в процессе передачи используются технические средства связи, то их называют каналами передачи информации (информационными каналами). К ним относятся телефон, радио, ТВ. Органы чувств человека исполняют роль биологических информационных каналов.

Процесс передачи информации по техническим каналам связи проходит по следующей схеме (по Шеннону):

Термином «шум» называют разного рода помехи, искажающие передаваемый сигнал и приводящие к потере информации. Такие помехи, прежде всего, возникают по техническим причинам: плохое качество линий связи, незащищенность друг от друга различных потоков информации, передаваемой по одним и тем же каналам. Для защиты от шума применяются разные способы, например, применение разного рода фильтров, отделяющих полезный сигнал от шума.

Клодом Шенноном была разработана специальная теория кодирования, дающая методы борьбы с шумом. Одна из важных идей этой теории состоит в том, что передаваемый по линии связи код должен быть избыточным. За счет этого потеря какой-то части информации при передаче может быть компенсирована. Однако нельзя делать избыточность слишком большой. Это приведёт к задержкам и подорожанию связи.

2. Общая схема передачи информации

3.Перечислите известные вам каналы связи

Канал связи (англ. channel, data line ) - система технических средств и среда распространения сигналов для передачи сообщений (не только данных) от источника к получателю (и наоборот). Канал связи, понимаемый в узком смысле (тракт связи ), представляет только физическую среду распространения сигналов, например, физическую линию связи.

По типу среды распространения каналы связи делятся на:

проводные ; акустические ; оптические ; инфракрасные ; радиоканалы .

4. Что такое телекоммуникации и компьютерные телекоммуникации?

Телекоммуникации (греч. tele - вдаль, далеко и лат. communicatio - общение) - это передача и прием любой информации (звука, изображения, данных, текста) на расстояние по различным электромагнитным системам (кабельным и оптоволоконным каналам, радиоканалам и другим проводным и беспроводным каналам связи).

Телекоммуникационная сеть - это система технических средств, посредством которой осуществляются телекоммуникации.

К телекоммуникационным сетям относятся:

1. Компьютерные сети (для передачи данных)

2. Телефонные сети (передача голосовой информации)

3. Радиосети (передача голосовой информации - широковещательные услуги)

4. Телевизионные сети (передача голоса и изображения - широковещательные услуги)

Компьютерные телекоммуникации - телекоммуникации, оконечными устройствами которых являются компьютеры.

Передача информации с компьютера на компьютер называется синхронной связью, а через промежуточную ЭВМ, позволяющую накапливать сообщения и передавать их на персональные компьютеры по мере запроса пользователем, - асинхронной.

Компьютерные телекоммуникации начинают внедряться в образование. В высшей школе их используют для координации научных исследований, оперативного обмена информацией между участниками проектов, обучения на расстоянии, проведения консультаций. В системе школьного образования - для повышения эффективности самостоятельной деятельности учащихся, связанной с разнообразными видами творческих работ, включая и учебную деятельность, на основе широкого использования исследовательских методов, свободного доступа к базам данных, обмена информацией с партнерами как внутри страны, так и за рубежом.

5. Что такое пропускная способность канала передачи информации?

Пропускная способность - метрическая характеристика , показывающая соотношение предельного количества проходящих единиц (информации , предметов, объёма ) в единицу времени через канал, систему, узел.

В информатике определение пропускной способности обычно применяется к каналу связи и определяется максимальным количеством переданной/полученной информации за единицу времени.

Пропускная способность - один из важнейших с точки зрения пользователей факторов. Она оценивается количеством данных, которые сеть в пределе может передать за единицу времени от одного подсоединенного к ней устройства к другому.

Скорость передачи информации зависит в значительной степени от скорости её создания (производительности источника), способов кодирования и декодирования. Наибольшая возможная в данном канале скорость передачи информации называется его пропускной способностью. Пропускная способность канала, по определению, есть

скорость передачи информации при использовании «наилучших» (оптимальных) для данного канала источника, кодера и декодера, поэтому она характеризует только канал.

5. В каких единицах измеряется пропускная способность каналов передачи информации?

Может измеряться в различных, иногда сугубо специализированных, единицах - штуки, бит/сек , тонны ,кубические метры и т. д.

6. Классификация компьютерных каналов связи(по способу кодирования, по способу коммуникации, по способу передачи сигнала)

широковещательные сети; сети с передачей от узла к узлу.

7. Характеристика кабельных каналов передачи информации (коаксиальный кабель, витая пара, телефонный кабель, оптоволоконный кабель)

проводные – телефонные, телеграфные (воздушные) линии связи; кабельные – медные витые пары, коаксиальные, оптоволоконные;

а также на основе электромагнитных излучений:

радиоканалы наземной и спутниковой связи; на основе инфракрасных лучей.

кабели на основе скрученных (витых) пар медных проводов; коаксиальные кабели (центральная жила и оплётка из меди); волоконно-оптические кабели.

Кабели на основе витых пар

Кабели на основе витых пар служат для передачи цифровых данных, широкое применение получили в компьютерных сетях. Возможно, также использовать их и для передачи аналоговых сигналов. Скручивание проводов снижает влияние внешних помех на полезные сигналы и уменьшает излучаемые электромагнитные колебания во внешнее пространство. Экранирование удорожает кабель, усложняет монтаж и требует качественного заземления. На рис. представлена типовая конструкция UTP на основе двух витых пар.

Рис. Конструкция кабеля с незащищенной витой парой.

В зависимости от наличия защиты – электрически заземлённой медной оплетки или алюминиевой фольги вокруг скрученных пар, определяют разновидности кабелей на основе витых пар:

незащищенная витая пара UTP (Unshielded twisted pair) – отсутствует защитный экран вокруг отдельной пары;

фольгированная витая пара FTP (Foiled twisted pair) – имеется один общий внешний экран в виде фольги;

защищенная витая пара STP (Shielded twisted pair) – имеется защитный экран для каждой пары и общий внешний экран в виде сетки;

фольгированная экранированная витая пара S/FTP (Screened Foiled twisted pair) – имеется защитный экран для каждой пары в фольгированной оплетке и внешний экран из медной оплетки;

незащищенная экранированная витая пара SF/UTP (Screened Foiled Unshielded twisted pair) – двойной внешний экран из медной оплетки и фольги, каждая витая пара без защиты.

1.5.2.2. Коаксиальный кабель

Назначение коаксиального кабеля – передача сигнала в различных областях техники: системы связи; вещательные сети; компьютерные сети; антенно-фидерные системы аппаратуры связи и др. Этот тип кабеля имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки, отделенной от жилы слоем изоляции.

Типовая конструкция коаксиального кабеля представлена на рис.1.22.

Рис. 1.22. Типовая конструкция коаксиального кабеля

Благодаря металлической экранирующей оплетке он имеет высокую помехозащищенность. Основным преимуществом коаксиала над витой парой является широкая полоса частот пропускания, что обеспечивает потенциально более высокие по сравнению с кабелями на основе витых пар скорости передачи данных, которые составляют до 500 Мбит/с. Кроме этого коаксиал обеспечивает значительно большие допустимые расстояния передачи сигналов (до километра), к нему труднее механически подключиться для несанкционированного прослушивания сети, а также он заметно меньше загрязняет окружающую среду электромагнитными излучениями. Однако монтаж и ремонт коаксиального кабеля сложнее, чем витой пары, а стоимость выше.

Здесь используются обычные светодиодные трансиверы, что снижает стоимость и увеличивает срок службы по сравнению с одномодовым кабелем. На рис 1.24. приведена характеристика затухания сигналов в оптоволокне. По сравнению с другими типами кабелей используемых для линий связи этот тип кабеля имеет существенно более низкие величины затухания сигнала, которые обычно находятся в пределах от 0,2 до 5 дб на 1000 м длины. Многомодовое оптоволокно характеризуется окнами прозрачности затухания в диапазонах длин волн 380-850, 850-1310 (нм), а одномодовое соответственно 850-1310, 1310-1550 (нм).

Рис 1.24. Окна прозрачности оптоволокна.

Преимущества оптоволоконного типа связи:

Широкая полоса пропускания.

Обусловлена чрезвычайно высокой частотой несущего колебания. При применении технологии спектрального уплотнения каналов связи методом волнового

мультиплексирования в 2009 г сигналы 155 каналов связи со скоростью передачи по 100 Гбит/с в каждом удалось передать на расстояние 7000 километров. Таким образом, общая скорость передачи данных по оптоволокну составила 15,5 Тбит/с. (Тера = 1000 Гига);

Малое затухание светового сигнала в волокне.

Позволяет строить волоконно-оптические линии связи большой длины без промежуточного усиления сигналов;

Низкий уровень шумов в волоконно-оптическом кабеле.

Позволяет увеличить полосу пропускания, путем передачи различной модуляции сигналов с малой избыточностью кода;

Высокая помехозащищенность и защищенность от несанкционированного доступа.

Обеспечивается абсолютной защищенностью оптоволокна от электрических помех, наводок и полным отсутствием излучения во внешнюю среду. Это объясняется природой светового колебания, которое не взаимодействует с электромагнитными полями других диапазонов частот, как и само оптоволокно, которое является диэлектриком. Используя ряд свойств распространения света в оптоволокне, системы мониторинга целостности оптической линии связи могут мгновенно отключить "взламываемый" канал связи и подать сигнал тревоги. Такие системы особенно необходимы при создании линий связи в правительственных, банковских и некоторых других специальных службах, предъявляющих повышенные требования к защите данных;

Отсутствие необходимоости гальванической развязки узлов сети.

Оптоволоконные сети принципиально не могут иметь электрических "земельных" петель, которые возникают, когда два сетевых устройства имеют заземления в разных точках здания;

 Высокая взрыво и пожаробезопасность, стойкость к агрессивным средам.

Из-за отсутствия возможности искрообразования оптоволокно повышает безопасность сети на химических, нефтеперерабатывающих предприятиях, при обслуживании технологических процессов повышенного риска;

 Малый вес, объем, экономичность волоконно-оптического кабеля.

Основу волокна составляет кварц (двуокись кремния), который является широко распространенным недорогим материалом. В настоящее время стоимость волокна по отношению к медной паре соотносится как 2:5. Стоимость самого оптоволоконного кабеля постоянно снижается, однако применение специальных оптических приемников и передатчиков (оптоволоконных модемов), преобразующих световые сигналы в электрические и обратно, существенно увеличивает стоимость сети в целом;

 Длительный срок эксплуатации.

Срок службы оптоволокна составляет не менее 25 лет. Оптоволоконный кабель имеет и некоторые недостатки. Основным из них является высокая сложность монтажа. При соединении концов кабеля необходимо обеспечить высокую точность поперечного среза стекловолокна, последующую полировку среза и центровку стекловолокна при установке в разъём. Установка разъемов производится с помощью сварки стыка или методом склеивания с помощью специального геля, имеющего такой же коэффициент преломления света, что и стекловолокно. В любом случае для этого необходима высокая квалификация персонала и специальные инструменты. Кроме этого оптоволоконный кабель менее прочен и менее гибок, чем электрический, чувствителен к механическим воздействиям. Он чувствителен также и к ионизирующим излучениям, из-за которых снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала в кабеле. Резкие перепады температур могут привести к растрескиванию стекловолокна. Для уменьшения влияния этих факторов используются различные конструктивные решения, что сказывается на стоимости кабеля.

Учитывая уникальные свойства оптоволокна электросвязь на её основе находит всё более широкое применение во всех областях техники. Это компьютерные сети, городские, региональные, федеральные, а также межконтинентальные подводные первичные сети связи и многое др. С помощью оптоволоконных каналов связи осуществляются: кабельное телевидение, удалённое видеонаблюдение, видеоконференции и видеотрансляции, телеметрические и другие информационные системы.

8. Характеристика беспроводных каналов передачи информации(спутниковые,

радиоканалы, Wi-Fi, Bluetooth)

Беспроводные технологии - подкласс информационных технологий , служат для передачи информации на расстояние между двумя и более точками, не требуя связи их проводами. Для передачи информации может использоваться инфракрасное излучение , радиоволны , оптическое или лазерное излучение.

В настоящее время существует множество беспроводных технологий, наиболее часто известных пользователям по их маркетинговым названиям, таким как Wi-Fi , WiMAX , Bluetooth . Каждая технология обладает определёнными характеристиками, которые определяют её область применения.

Существуют различные подходы к классификации беспроводных технологий.

По дальности действия:

o Беспроводные персональные сети ( WPAN - Wireless Personal Area Networks). Примеры технологий -Bluetooth .

o Беспроводные локальные сети ( WLAN - Wireless Local Area Networks).

Примеры технологий - Wi-Fi .

o Беспроводные сети масштаба города ( WMAN - Wireless Metropolitan Area Networks). Примеры технологий -WiMAX .

o Беспроводные глобальные сети ( WWAN - Wireless Wide Area Network).

Примеры технологий - CSD , GPRS , EDGE , EV-DO , HSPA .

По топологии:

o «Точка-точка».

o «Точка-многоточка».

По области применения:

o Корпоративные (ведомственные) беспроводные сети - создаваемые компаниями для собственных нужд.

o Операторские беспроводные сети - создаваемые операторами связи для возмездного оказания услуг.

Кратким, но ёмким способом классификации может служить одновременное отображение двух наиболее существенных характеристик беспроводных технологий на двух осях: максимальная скорость передачи информации и максимальное расстояние.

Задачи Задача 1 . За 10 с по каналу связи передано 500 байт информации. Чему равна

пропускная способность канала? (500/10=50 байт/с=400бит/с)

Задача 2 . Какой объем информации можно передать по каналу с пропускной способностью 10 кбит/с за 1 минуту? (10 кбит/с*60 с = 600 кбит)

Задача 3. Средняя скорость передачи данных с помощью модема равна 36864 бит/с. Сколько секунд понадобится модему, чтобы передать 4 страницы текста в кодировке КОИ-8, если считать, что на каждой странице в среднем 2304 символа.

Решение: Количество символов в тексте: 2304*4 = 9216 символов.

В кодировке КОИ-8 каждый символ кодируется одним байтом, тогда информационный объем текста 9216*8 = 73 728 бит.

Время = объем / скорость. 73728: 36864 = 2 с

Пропускная способность выступает универсальной характеристикой, описывающей максимальное количество единиц объектов, проходящих канал, узел, сечение. Характеристика широко используется связистами, транспортниками, гидравликами, оптиками, акустиками, машиностроением. Каждый даёт собственное определение. Обычно подводят черту, применяя единицы времени, явно увязывая физический смысл на скорость прохождения процесса. Канал связи передаёт информацию. Поэтому характеристикой пропускной способности выступает битрейт (бит/с, бод).

Единица измерения

Стандартный бит/с чаще дополняют приставками:

  1. Кило: кбит/с = 1000 бит/с.
  2. Мега: Мбит/с = 1000000 бит/с.
  3. Гига: Гбит/с = 1 млрд. бит/с.
  4. Тера: Тбит/с = 1 трлн. бит/с.
  5. Пета: Пбит/с = 1 квадриллион бит/с.

Реже применяются размерности байтов (1Б = 8 бит). Величина обычно касается физического слоя иерархии OSI. Часть ёмкости канала отбирают условности протокола: заголовки, стартовые биты… Бодами принято измерять модулированную скорость, показывающую число символов в единицу времени. Для двоичной системы (0, 1) оба понятия эквиваленты. Кодирование уровней, например, псевдо-шумовыми последовательностями изменяет расстановку сил. Бодов становится меньше при том же битрейте, разницу определяет база наложенного сигнала. Теоретически достижимая верхняя граница модулированной скорости связана с шириной спектра канала законом Найквиста:

бод ≤ 2 x ширина (Гц).

Практически порог достигается одновременным выполнением двух условий:

  • Однополосная модуляция.
  • Линейное (физическое) кодирование.

Коммерческие каналы демонстрируют пропускную способность вдвое ниже. Реальная сеть передаёт также фреймовые биты, избыточную информацию исправления ошибок. Последнее касается вдвойне беспроводных протоколов, сверхскоростных медных линий. Заголовки каждого последующего уровня OSI последовательно снижают реальную пропускную способность канала.

Отдельно эксперты оговаривают пиковые значения – числа полученные с применением идеальных условий. Реальная скорость соединения устанавливается специализированным оборудованием, реже программным обеспечением. Онлайн-измерители показывают зачастую нереальные значения, описывающие состояние одной-единственной ветки мировой паутины. Путаницы добавляет отсутствие стандартизации. Иногда битрейт подразумевает физическую скорость, реже – сетевую (вычитающую объем служебной информации). Величины соотносятся следующим образом:

сетевая скорость = физическая скорость х кодовая скорость.

Последняя величина учитывает наличие возможности корректировать ошибки, всегда меньше единицы. Сетевая скорость однозначно ниже физической. Пример:

  1. Сетевая скорость протокола IEEE 802.11a составляет 6..54 Мбит/с. Чистый битрейт – 12..72 Мбит/с.
  2. Реальная скорость передачи 100Base-TX Ethernet равна 125 Мбит/с, благодаря принятой системе кодирования 4B5B. Однако применяемая методика линейной модуляции NRZI позволяет указать символьную скорость 125 Мбод.
  3. Ethernet 10Base-T лишён кода коррекции ошибок, сетевая скорость равна физической (10 Мбит/с). Однако применяемый манчестерский код обусловливает присвоение итоговой символьной – значения 20 Мбод.
  4. Общеизвестна асимметрия скорости восходящего (48 кбит/с), нисходящего (56 кбит/с) каналов голосового модема V.92. Аналогично работают сети многих поколений сотовой связи.

Ёмкость канала получила имя Шеннона – теоретический верхний предел сетевого битрейта в отсутствии ошибок.

Теория повышения пропускной способности

Теорию информацию развивал Клод Шеннон, наблюдая ужасы Второй мировой войны, ввёл понятие ёмкости канала, разработал математические модели. Имитация связной линии включает три блока:

  1. Передатчик.
  2. Зашумлённый канал (наличие источника помех).
  3. Приёмник.

Переданная, принятая информация представлены условными функциями распределения. Ёмкостную модель Шеннона описывают графами. Пример Википедии даёт обзор среды, характеризующейся пятью дискретными уровнями полезного сигнала. Шум выбирают из интервала (-1..+1). Тогда пропускная способность канала равна сумме полезного сигнала, помех по модулю 5. Полученное значение часто оказывается дробным. Поэтому сложно определить размер изначально переданной информации (округлять в верхнюю или нижнюю сторону).

Величины, отстоящие дальше (например, 1; 3), невозможно перепутать. Каждый набор, сформированный тремя и более различимыми сообщениями, дополнен одним нечётким. Хотя номинальная ёмкость канала позволяет передать одновременно 5 значений, эффективной оказывается пара, позволяющая кодировать послания, избегая ошибок. Чтобы увеличить объем, используют комбинации: 11, 23, 54, 42. Кодовое расстояние последовательностей всегда больше двух. Поэтому помехи бессильны помешать правильному распознаванию комбинации. Становится возможным мультиплексирование, повышающее значительно пропускную способность канала связи.

Пять дискретных значений тоже объединяют равносторонним графом. Концы рёбер указывают пары значений, которые приёмник может перепутать, благодаря наличию шума. Тогда число комбинаций представлено независимым множеством составленного графа. Графически набор собран комбинациями, исключающими присутствие обеих точек одного ребра. Модель Шеннона для пятиуровневого сигнала составлена исключительно парами значений (см. выше). Внимание, вопрос!

  • Какое отношение сложные теоретические выкладки имеют к обсуждаемой теме ёмкости канала?

Самое непосредственное. Первая цифровая система передачи кодированной информации Зелёный шмель (Вторая мировая война) применяла 6-уровневый сигнал. Теоретические выкладки учёных снабдили союзников надёжной зашифрованной связью, позволив провести свыше 3000 конференций. Вычислительная сложность графов Шеннона остаётся неизвестной. Значение пытались получить окольными путями, продолжая ряды по мере усложнения случая. Число Ловаса считаем красочным примером сказанного.

Битрейт

Пропускная способность реального канала вычисляется согласно теории. Строится модель шума, например, аддитивная Гауссова, получают выражение теоремы Шеннона-Хартли:

С = В log2 (1 + S/N),

В – полоса пропускания (Гц); S/N – отношение сигнал/шум. Логарифм по основанию 2 позволяет посчитать битрейт (бит/с). Величины сигнала, шума записываются квадратами вольта, либо ваттами. Подстановка децибелов даёт неправильный результат. Формула пиринговых беспроводных сетей немного отличается. Берут спектральную плотность шума, помноженную на ширину полосы пропускания. Выведены отдельные выражения каналов с быстрыми и медленными замираниями.

Мультимедийные файлы

Применительно к развлекательным приложениям битрейт показывает количество информации, сохраняемой, воспроизводимой ежесекундно:

  1. Частота сэмплирования данных различна.
  2. Выборки разного размера (бит).
  3. Иногда проводится шифрование.
  4. Специализированные алгоритмы сжимают информацию.

Выбирается золотая середина, способствующая минимизации битрейта, обеспечивающая приемлемое качество. Иногда сжатие необратимо искажает исходный материал помехами компрессии. Часто скорость показывает число битов в единице воспроизводимого времени аудио, видео (отображается плеером). Иногда величину вычисляют делением размера файла на общую длительность. Поскольку размерность задана байтами, вводят множитель 8. Часто мультимедийный битрейт скачет. Скоростью энтропии называют минимальную, обеспечивающую полное сохранение исходного материала.

Компакт-диски

Стандарт audio CD предписывает передавать поток частотой выборки 44,1 кГц (глубина 16 бит). Типичная музыка формата стерео составлена двумя каналами (левая, правая колонка). Битрейт удваивается к моно. Пропускаемая способность канала кодово-импульсной модуляции определена выражением:

  • битрейт = частота выборки х глубина х число каналов.

Стандарт audio CD даёт итоговую цифру 1,4112 Мбит/с. Нехитрый подсчёт показывает: 80 минут записи занимают 847 МБ без учёта заголовков. Большим размером файла определяется потребность содержимое сжимать. Приведём цифры формата MP3:

  • 32 кбит/с – приемлемо для членораздельной речи.
  • 96 кбит/с – низкокачественная запись.
  • .160 кбит/с – слабый уровень.
  • 192 кбит/с – нечто среднее.
  • 256 кбит/с – типичное значение большинства треков.
  • 320 кбит/с – качество премиум.

Эффект налицо. Снижение скорости с одновременным ростом качества воспроизведения. Простейшие телефонные кодеки занимают 8 кбит/с, Opus – 6 кбит/с. Видео более требовательное. 10-битный несжатый поток Full HD (24 кадра) занимает 1,4 Гбит/с. Становится понятной необходимость провайдерам постоянно превосходить ранее установленные рекорды. Элементарный семейный воскресный просмотр измеряется общими впечатлениями зрителей. Близким сложно объяснить, что такое погрешность оцифровывания изображения.

Реальные каналы строят, обеспечивая солидный запас. Аналогичными причинами обусловлен прогресс стандартов цифровых носителей. Dolby Digital (1994) предусматривал однозначно потерю информации. Первый показ Бэтмен возвращается (1992) проигрывали с 35-мм плёнки, несущей сжатый звук (320 кбит в секунду). Кадры видео переносил CCD сканер, попутно оборудование распаковывало звуковое сопровождение. Оснащённый системой 5.1 Digital Surround зал требовал дальнейшей цифровой обработки потока.

Реальные системы чаще образованы набором каналов. Сегодня былой шик вытесняется Dolby Surround 7.1, растёт популярность Atmos. Одинаковые технологи могут реализоваться практически самобытно. Приведём примеры восьмиканального (7.1) звукового сопровождения:

  • Dolby Digital Plus (3/1,7 Мбит/с).
  • Dolby TrueHD (18 Мбит/с).

Заданная пропускная способность различна.

Примеры пропускной способности каналов

Рассмотрим эволюцию технологий цифровой передачи информации.

Модемы

  1. Акустическая пара (1972) – 300 бод.
  2. Модем Вадик&Белл 212А (1977) – 1200 бод.
  3. Канал ISDN (1986) – 2 канала 64 кбит/с (итоговая скорость – 144 кбит/с).
  4. 32bis (1990) – до 19,2 кбит/с.
  5. 34 (1994) – 28,8 кбит/с.
  6. 90 (1995) – 56 кбит/с нисходящий поток, 33,6 кбит/с – восходящий.
  7. 92 (1999) – 56/48 кбит/с нисходящий/восходящий потоки.
  8. ADSL (1998) – до 10 Мбит/с.
  9. ADSL2 (2003) – до 12 Мбит/с.
  10. ADSL2+ (2005) – до 26 Мбит/с.
  11. VDSL2 (2005) – 200 Мбит/с.
  12. fast (2014) – 1 Гбит/с.

Локальная сеть Ethernet

  1. Экспериментальная версия (1975) – 2,94 Мбит/с.
  2. 10BASES (1981, коаксиальный кабель) – 10 Мбит/с.
  3. 10BASE-T (1990, витая пара) – 10 Мбит/с.
  4. Fast Ethernet (1995) – 100 Мбит/с.
  5. Gigabit Ethernet (1999) – 1 Гбит/с.
  6. 10 Gigabit Ethernet (2003) – 10 Гбит/с.
  7. 100 Gigabit Ethernet (2010) – 100 Гбит/с.

Wi-Fi

  1. IEEE 802.11 (1997) – 2 Мбит/с.
  2. IEEE 802.11b (1999) – 11 Мбит/с.
  3. IEEE 802.11a (1999) – 54 Мбит/с.
  4. IEEE 802.11g (2003) – 54 Мбит/с.
  5. IEEE 802.11n (2007) – 600 Мбит/с.
  6. IEEE 802.11ac (2012) – 1000 Мбит/с.

Сотовая связь

  1. Первое поколение:
    1. NMT (1981) – 1,2 кбит/с.
  2. 2G:
    1. GSM CSD, D-AMPS (1991) – 14,4 кбит/с.
    2. EDGE (2003) – 296/118,4 кбит/с.
  3. 3G:
    1. UMTS-FDD (2001) – 384 кбит/с.
    2. UMTS HSDPA (2007) – 14,4 Мбит/с.
    3. UMTS HSPA (2008) – 14,4/5,76 Мбит/с.
    4. HSPA+ (2009) – 28/22 Мбит/с.
    5. CDMA2000 EV-DO Rev. B (2010) – 14,7 Мбит/с.
    6. HSPA+ MIMO (2011) – 42 Мбит/с.
  4. 3G+:
    1. IEEE 802.16e (2007) – 144/35 Мбит/с.
    2. LTE (2009) – 100/50 Мбит/с.
  5. 4G:
    1. LTE-A (2012) – 115 Мбит/с.
    2. WiMAX 2 (2011-2013, IEEE 802.16m) – 1 Гбит/с (максимум, обеспечиваемый неподвижными объектами).

Япония сегодня внедряет пятое поколение мобильной связи, увеличивая возможности передачи цифровых пакетов.

С течением технического прогресса расширились и возможности интернета. Однако для того, чтобы пользователь мог ими воспользоваться в полной мере, необходимо стабильное и высокоскоростное соединение. В первую очередь оно зависит от пропускной способности каналов связи. Поэтому необходимо выяснить, как измерить скорость передачи данных и какие факторы на нее влияют.

Что такое пропускная способность каналов связи?

Для того чтобы ознакомиться и понять новый термин, нужно знать, что представляет собой канал связи. Если говорить простым языком, каналы связи - это устройства и средства, благодаря которым осуществляется передача на расстоянии. К примеру, связь между компьютерами осуществляется благодаря оптоволоконным и кабельным сетям. Кроме того, распространен способ связи по радиоканалу (компьютер, подключенный к модему или же сети Wi-Fi).

Пропускной же способностью называют максимальную скорость передачи информации за одну определенную единицу времени.

Обычно для обозначения пропускной способности используют следующие единицы:

Измерение пропускной способности

Измерение пропускной способности - достаточно важная операция. Она осуществляется для того, чтобы узнать точную скорость интернет-соединения. Измерение можно осуществить с помощью следующих действий:

  • Наиболее простое - загрузка объемного файла и отправление его на другой конец. Недостатком является то, что невозможно определить точность измерения.
  • Кроме того, можно воспользоваться ресурсом speedtest.net. Сервис позволяет измерить ширину интернет-канала, «ведущего» к серверу. Однако для целостного измерения этот способ также не подходит, сервис дает данные обо всей линии до сервера, а не о конкретном канале связи. Кроме того, подвергаемый измерению объект не имеет выхода в глобальную сеть Интернет.
  • Оптимальным решением для измерения станет клиент-серверная утилита Iperf. Она позволяет измерить время, количество переданных данных. После завершения операции программа предоставляет пользователю отчет.

Благодаря вышеперечисленным способам, можно без особых проблем измерить реальную скорость интернет-соединения. Если показания не удовлетворяют текущие потребности, то, возможно, нужно задуматься о смене провайдера.

Расчет пропускной способности

Для того чтобы найти и рассчитать пропускную способность линии связи, необходимо воспользоваться теоремой Шеннона-Хартли. Она гласит: найти пропускную способность канала (линии) связи можно, рассчитав взаимную связь между потенциальной пропускной способностью, а также полосой пропускания линии связи. Формула для расчета пропускной способности выглядит следующим образом:

I=Glog 2 (1+A s /A n).

В данной формуле каждый элемент имеет свое значение:

  • I - обозначает параметр максимальной пропускной способности.
  • G - параметр ширины полосы, предназначенной для пропускания сигнала.
  • A s / A n - соотношение шума и сигнала.

Теорема Шеннона-Хартли позволяет сказать, что для уменьшения внешних шумов или же увеличения силы сигнала лучше всего использовать широкий кабель для передачи данных.

Способы передачи сигнала

На сегодняшний день существует три основных способа передачи сигнала между компьютерами:

  • Передача по радиосетям.
  • Передача данных по кабелю.
  • Передача данных через оптоволоконные соединения.

Каждый из этих способов имеет индивидуальные характеристики каналов связи, речь о которых пойдет ниже.

К преимуществам передачи информации через радиоканалы можно отнести: универсальность использования, простоту монтажа и настройки такого оборудования. Как правило, для получения и способом используется радиопередатчик. Он может представлять собой модем для компьютера или же Wi-Fi адаптер.

Недостатками такого способа передачи можно назвать нестабильную и сравнительно низкую скорость, большую зависимость от наличия радиовышек, а также дороговизну использования (мобильный интернет практически в два раза дороже «стационарного»).

Плюсами передачи данных по кабелю являются: надежность, простота эксплуатации и обслуживания. Информация передается посредством электрического тока. Условно говоря, ток под определенным напряжением перемещается из пункта А в пункт Б. А позже преобразуется в информацию. Провода отлично выдерживают перепады температур, сгибания и механическое воздействие. К минусам можно отнести нестабильную скорость, а также ухудшение соединения из-за дождя или грозы.

Пожалуй, самой совершенной на данный момент технологией по передаче данных является использование оптоволоконного кабеля. В конструкции каналов связи сети каналов связи применяются миллионы мельчайших стеклянных трубок. А сигнал, передаваемый по ним, представляет собой световой импульс. Так как скорость света в несколько раз выше скорости тока, данная технология позволила в несколько сотен раз ускорить интернет-соединение.

К недостаткам же можно отнести хрупкость оптоволоконных кабелей. Во-первых, они не выдерживают механические повреждения: разбившиеся трубки не могут пропускать через себя световой сигнал, также резкие перепады температур приводят к их растрескиванию. Ну а повышенный радиационный фон делает трубки мутными - из-за этого сигнал может ухудшаться. Кроме того, оптоволоконный кабель тяжело восстановить в случае разрыва, поэтому приходится полностью его менять.

Вышесказанное наводит на мысль о том, что с течением времени каналы связи и сети каналов связи совершенствуются, что приводит к увеличению скорости передачи данных.

Средняя пропускная способность линий связи

Из вышесказанного можно сделать вывод о том, что каналы связи различны по своим свойствам, которые влияют на скорость передачи информации. Как говорилось ранее, каналы связи могут быть проводными, беспроводными и основанными на использовании оптоволоконных кабелей. Последний тип создания сетей передачи данных наиболее эффективен. И его средняя пропускная способность канала связи - 100 мбит/c.

Что такое бит? Как измеряется скорость в битах?

Битовая скорость - показатель измерения скорости соединения. Рассчитывается в битах, мельчайших единицах хранения информации, на 1 секунду. Она была присуща каналам связи в эпоху «раннего развития» интернета: на тот момент в глобальной паутине в основном передавались текстовые файлы.

Сейчас базовой единицей измерения признается 1 байт. Он, в свою очередь, равен 8 битам. Начинающие пользователи очень часто совершают грубую ошибку: путают килобиты и килобайты. Отсюда возникает и недоумение, когда канал с пропускной способностью 512 кбит/с не оправдывает ожиданий и выдает скорость всего лишь 64 КБ/с. Чтобы не путать, нужно запомнить, что если для обозначения скорости используются биты, то запись будет сделана без сокращений: бит/с, кбит/с, kbit/s или kbps.

Факторы, влияющие на скорость интернета

Как известно, от пропускной способности канала связи зависит и конечная скорость интернета. Также на скорость передачи информации влияют:

  • Способы соединения.

Радиоволны, кабели и оптоволоконные кабели. О свойствах, преимуществах и недостатках этих способов соединения говорилось выше.

  • Загруженность серверов.

Чем больше загружен сервер, тем медленнее он принимает или передает файлы и сигналы.

  • Внешние помехи.

Наиболее сильно помехи оказывают влияние на соединение, созданное с помощью радиоволн. Это вызвано сотовыми телефонами, радиоприемниками и прочими приемниками и передатчиками радиосигнала.

Безусловно, способы соединения, состояние серверов и наличие помех играют важную роль в обеспечении скоростного интернета. Однако даже если вышеперечисленные показатели в норме, а интернет имеет низкую скорость, то дело скрывается в сетевом оборудовании компьютера. Современные сетевые карты способны поддерживать интернет-соединение со скоростью до 100 Мбит в секунду. Раньше карты могли максимально обеспечивать пропускную способность в 30 и 50 Мбит в секунду соответственно.

Как увеличить скорость интернета?

Как было сказано ранее, пропускная способность канала связи зависит от многих факторов: способа соединения, работоспособности сервера, наличия шумов и помех, а также состояния сетевого оборудования. Для увеличения скорости соединения в бытовых условиях можно заменить сетевое оборудование на более совершенное, а также перейти на другой способ соединения (с радиоволн на кабель или оптоволокно).

В заключение

В качестве подведения итогов стоит сказать о том, что пропускная способность канала связи и скорость интернета - это не одно и то же. Для расчета первой величины необходимо воспользоваться законом Шеннона-Хартли. Согласно ему, шумы можно уменьшить, а также увеличить силу сигнала посредством замены канала передачи на более широкий.

Увеличение скорости интернет-соединения тоже возможно. Но оно осуществляется путем смены провайдера, замены способа подключения, усовершенствования сетевого оборудования, а также ограждения устройств для передачи и приема информации от источников, вызывающих помехи.

Пропускная способность систем передачи информации

Одной из основных характеристик любой системы передачи информации, кроме перечисленных выше, является ее пропускная способность.

Пропускная способность – максимально возможное количество полезной информации, передаваемое в единицу времени:

c = max{Imax} / TC ,

c = [бит/с].

Иногда скорость передачи информации определяют как максимальное количество полезной информации в одно элементарном сигнале:

s = max{Imax} / n,

s = [бит/элемент].

Рассмотренные характеристики зависят только от канала связи и его характеристик и не зависят от источника.

Пропускная способность дискретного канала связи без помех. В канале связи без помех информацию можно передавать неизбыточным сигналом. При этом число n = m, а энтропия элементарного сигнала HCmax = logK.

max{IC} = nHCmax= mHCmax .

Длительность элементарного сигнала , где – длительность элементарного сигнала.

где FC – спектр сигнала.

Пропускная способность канала связи без помех

Введем понятие скорости генерации элементарного сигнала источником информации:

Тогда, используя новое понятие, можно преобразовать формулу для скорости передачи информации:

Полученная формула определяет максимально возможную скорость передачи информации в дискретном канале связи без помех. Это следует из предположения о том, что энтропия сигнала максимальна.

Если HC < HCmax, то c = BHC и не является максимально возможной для данного канала связи.

Пропускная способность дискретного канала связи с помехами. В дискретном канале связи с помехами наблюдается ситуация, изображенная на рис. 6.

Учитывая свойство аддитивности, а также формулы Шеннона для определения количества информации, рассмотренные выше, можно записать

IC = TC FC log(AK PC),

IПОМ = TП FП log(APП).

Для получателя источник полезной информации и источник помехи равноценны, поэтому нельзя на приемной стороне выделить составляющую помехи в сигнале с результирующей информацией

IРЕЗ = TC FC log(AK (PП + PC)), если TC = TП, FC = FП.

Приемник может быть узкополосным, а помеха находиться в других интервалах частот. В этом случае она не будет влиять на сигнал.

Будем определять результирующий сигнал для наиболее “неприятного” случая, когда параметры сигнала и помехи близки друг к другу или совпадают. Полезная информация определяется выражением

Эта формула получена Шенноном. Она определяет скорость передачи информации по каналу связи в случае, если сигнал имеет мощность PC, а помеха – мощность PП. Все сообщения при такой скорости передадутся с абсолютной достоверностью. Формула не содержит ответа на вопрос о способе достижения такой скорости, но дает максимально возможное значение с в канале связи с помехами, то есть такое значение скорости передачи, при которой полученная информация будет абсолютно достоверной. На практике экономичнее допустить определенную долю ошибочности сообщения, хотя скорость передачи при этом увеличится.

Рассмотрим случай PC >> PП. Если ввести понятие отношения сигнал/шум

PC >> PП означает, что . Тогда

Полученная формула отражает предельную скорость мощного сигнала в канале связи. Если PC << PП, то с стремится к нулю. То есть сигнал принимается на фоне помех. В таком канале в единицу времени сигнал получить не удается. В реальных ситуациях полностью помеху отфильтровать нельзя. Поэтому приемник получает полезную информацию с некоторым набором ошибочных символов. Канал связи для такой ситуации можно представить в виде, изображенном на рис. 7, приняв источник информации за множество передаваемых символов {X}, а приемник – за множество получаемых символов {Y}.

Рис.7 Граф переходных вероятностей K- ичного канала связи

Между существует определенное однозначное соответствие. Если помех нет, то вероятность однозначного соответствия равна единице, в противном случае она меньше единицы.

Если qi – вероятность принятия yi за xi, a pij = p{yi / xi} – вероятность ошибки, то

.

Граф переходных вероятностей отражает конечный результат влияния помехи на сигнал. Как правило, он получается экспериментально.

Полезная информация может быть оценена как IПОЛ = nH(X · Y), где n – количество элементарных символов в сигнале; H(X · Y) – взаимная энтропия источника X и источника Y.

В данном случае источником X является источник полезной информации, а источником Y является приемник. Соотношение, определяющее полезную информацию, можно получить исходя из смысла взаимной энтропии: заштрихованный участок диаграммы определяет сообщения, переданные источником Xи полученные приемником Y; незаштрихованные участки отображают сигналы источника X, не дошедшие до приемника и полученные приемником посторонние сигналы, не передаваемые источником.

B – скорость генерации элементарных символов на выходе источника.

Для получения max нужно по возможности увеличить H(Y) и уменьшить H(Y/X). Графически эта ситуация может быть представлена совмещением кругов на диаграмме (Рис. 2г).

Если же круги вообще не пересекаются, X и Y существуют независимо друг от друга. В дальнейшем будет показано, как можно использовать общее выражение для максимальной скорости передачи при анализе конкретных каналов связи.

Характеризуя дискретный канал, используют два понятия скорости: техническая и информационная.

Под технической скоростью передачи RT, называемой также скоростью манипуляции, подразумевают число символов (элементарных сигналов), передаваемых по каналу в единицу времени. Она зависит от свойств линии связи и быстродействия аппаратуры канала.

С учетом различий в длительности символов техническая скорость определяется как

где - среднее время длительности символа.

Единицей измерения служит »бод» - это скорость, при которой за одну секунду передается один символ.

Информационная скорость или скорость передачи информации определяется средним количеством информации, которое передается по каналу за единицу времени. Она зависит как от характеристик конкретного канала (таких как объем алфавита используемых символов, технической скорости их передачи, статистического свойства помех в линии), так и от вероятностей поступающих на вход символов и их статистической взаимосвязи.

При известной скорости манипуляции скорость передачи информации по каналу задается соотношением:

,

где – среднее количество информации, переносимое одним символом.



Для практики важно выяснить, до какого предела и каким путем можно повысить скорость передачи информации по конкретному каналу. Предельные возможности канала по передаче информации характеризуются его пропускной способностью.

Пропускная способность канала с заданными переходными вероятностями равна максимуму передаваемой информации по всем входным распределениям символов источника X:

С математической точки зрения поиск пропускной способности дискретного канала без памяти сводится к поиску распределения вероятностей входных символов источника Х, обеспечивающего максимум переданной информации . При этом, на вероятности входных символов накладывается ограничение: , .

В общем случае, определение максимума при заданных ограничениях возможно с помощью мультипликативного метода Лагранжа. Однако такое решение требует чрезмерно больших затрат.

В частном случае для дискретных симметричных каналов без памяти пропускная способность (максимум , достигается при равномерном распределении входных символов источника X.

Тогда для ДСК без памяти, считая заданной вероятность ошибки ε и для равновероятных входных символов = = = =1/2, можно получить пропускную способность такого канала по известному выражению для :

где = – энтропия двоичного симметричного канала при заданной вероятности ошибки ε.

Интерес представляют граничные случаи:

1. Передача информации по бесшумному каналу (без помех):

, [бит/символ].

При фиксированных основных технических характеристиках канала (например, полосе частот, средней и пиковой мощности передатчика), которые определяют значение технической скорости, пропускная способность канала без помех будет равна [бит/сек].

В любой системе связи через канал передается информация. Скорость передачи информации была определена в § 2.9. Эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации. Попытаемся найти способ оценки способности канала передавать информацию. Рассмотрим вначале дискретный канал, через который передаются в единицу времени символов из алфавита объемом При передаче каждого символа в среднем по каналу проходит следующее количество информации [см. (2.135) и (2.140)]:

где случайные символы на входе и выходе канала. Из четырех фигурирующих здесь энтропий -собственная информация передаваемого символа - определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Представим себе, что на вход канала можно подавать символы от разных источников, характеризуемых различными распределениями вероятностей (но, конечно, при тех же значениях . Для каждого такого источника количество информации, переданной по каналу, принимает свое значение. Максимальное количество переданной информации, взятое по всевозможным

источникам входного сигнала, характеризует сам канал и называется пропускной способностью канала. В расчете на один символ

где максимизация производится по всем многомерным распределениям вероятностей Можно также определить пропускную способность С канала в расчете на единицу времени (секунду):

Последнее равенство следует из аддитивности энтропии. В дальнейшем везде, где это особо не оговорено, будем под пропускной способностью понимать пропускную способность в расчете на секунду.

В качестве примера вычислим пропускную способность симметричного канала без памяти, для которого переходные вероятности заданы формулой (3.36). Согласно (3.52) и (3.53)

Величина в данном случае легко вычисляется, поскольку условная переходная вероятность принимает только два значения: , если еслн Первое из этих значений возникает с вероятностью а второе с вероятностью К тому же, поскольку рассматривается канал без памяти, результаты приема отдельных символов независимы друг от друга. Поэтому

Следовательно, не зависит от распределения вероятности В, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Подставив (3.56) в (3.55), получим

Поскольку в правой части только член зависит от распределения вероятностей то максимизировать необходимо его. Максимальное значение согласно (2.123) равно и реализуется оно тогда, когда все принятые символы равновероятны и независимы друг от друга. Легко убедиться, что это условие удовлетворяется, еслн входные символы равновероятны и независимы, поскольку

При этом и

Отсюда пропускная способность в расчете на секунду

Для двоичного симметричного канала пропускная способность в двоичных единицах в секунду

Зависимость от согласно (3.59) показана на рис. 3.9.

При пропускная способность двоичного канала поскольку при такой вероятности ошибки последовательность выходных двоичных символов можно получить, совсем не передавая сигналы по каналу, а выбирая их наугад (например, по результатам бросания монеты), т. е. при последовательности на выходе и входе канала независимы. Случай называют обрывом канала. То, что пропускная способность при в двоичном канале такая же, как при (канал без шумов), объясняется тем, что при достаточно все выходные символы инвертировать (т. е. заменить 0 на 1 и 1 на 0), чтобы правильно восстановить входной сигнал.

Рис. 3.9. Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приема символа

Пропускная способность непрерывного канала вычисляется аналогично. Пусть, например, канал имеет ограниченную полосу пропускания шириной Тогда сигналы на входе и выходе канала по теореме Котельникова определяются своими отсчетами, взятыми через интервал и поэтому информация, проходящая по каналу за некоторое время равна сумме количеств информации, переданных за каждый такой отсчет. Пропускная способность канала на один такой отсчет

Здесь случайные величины - сечения процессов на входе и выходе канала и максимум берется по всем допустимым входным сигналам, т. е. по всем распределениям .

Пропускная способность С определяется как сумма значений Сотсч» взятая по всем отсчетам за секунду. При этом, разумеется, дифференциальные энтропии в (3.60) должны вычисляться с учетом вероятностных связей между отсчетами.

Вычислим, например, пропускную способность непрерывного канала без памяти с аддитивным белым гауссовским шумом, имеющим полосу пропускания шириной если средняя мощность сигнала (дисперсия не превышает заданной величины Мощность (дисперсию) шума в полосе обозначим Отсчеты входного и выходного сигналов, а также шума связаны равенством

н так как имеет нормальное распределение с нулевым математическим ожиданием, то и условная плотность вероятности при фиксированном и будет также нормальной - с математическим ожиданием и и дисперсией Найдем пропускную способность на один отсчет:

Согласно (2.152) дифференциальная энтропия нормального распределения не зависит от математического ожидания и равна Поэтому для нахождения нужно найти такую плотность распределения при которой максимизируется Из (3.61), учитывая, что независимые случайные величины, имеем

Таким образом, дисперсия фиксирована, так как заданы. Согласно (2.153), при фиксированной дисперсии максимальная дифференциальная энтропия обеспечивается нормальным распределением. Из (3.61) видно, что при нормальном одномерном распределении распределение будет также нормальным и, следовательно,

Переходя к пропускной способности С в расчете на секунду, заметим, что информация, переданная за несколько отсчетов, максимальна в том случае, когда отсчеты сигналов независимы. Этого можно достичь, если сигнал выбрать так, чтобы его спектральная плотность была равномерной в полосе Как было показано в отсчеты, разделенные интервалами, кратными взаимно некоррелированны, а для гауссовских величин некоррелированность означает независимость.

Поэтому пропускную способность С (за секунду) можно найти, сложив пропускные способности (3.63) для независимых отсчетов:

Она реализуется, если гауссовский процесс с равномерной спектральной плотностью в полосе частот (квазибелый шум).

Из формулы (3.64) видно, что если бы мощность сигнала не была ограничена, то пропускная способность была бы бесконечной. Пропускная способность равна нулю, если отношение сигнал/шум в канале равно нулю. С ростом этого отношения пропускная способность увеличивается неограниченно, однако медленно, вследствие логарифмической зависимости.

Соотношение (3.64) часто называют формулой Шеннона. Эта формула имеет важное значение в теории информации, так как определяет зависимость пропускной способности рассматриваемого непрерывного канала от таких его технических характеристик, как ширина полосы пропускания и отношение сигна/шум. Формула Шеннона указывает на возможность обмена полосы пропускания на мощность сигнала и наоборот. Однако поскольку С зависит от линейно, а от по логарифмическому закону, компенсировать возможное сокращение полосы пропускания увеличением мощности сигнала, как правило, нецелесообразно. Более эффективным является обратный обмен мощности сигнала на полосу пропускания.