Кольцевые сети. Логическая кольцевая локальная вычислительная сеть

Кольцо (топология компьютерной сети)

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии «шина », максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда , шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями

Достоинства

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

Применение

Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI , Token ring .

Ссылки

  • Топология компьютерных сетей: шина, звезда, кольцо, активное дерево, пассивное дерево



Wikimedia Foundation . 2010 .

Смотреть что такое "Кольцо (топология компьютерной сети)" в других словарях:

    Двойное кольцо это топология, построенная на двух кольцах. Первое кольцо основной путь для передачи данных. Второе резервный путь, дублирующий основной. При нормальном функционировании первого кольца, данные передаются только по … Википедия

    У этого термина существуют и другие значения, см. Звезда (значения). Звезда базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети. Подобный… … Википедия

    У этого термина существуют и другие значения, см. Шина (значения). Топология типа общая шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы,… … Википедия

    Топология типа общая Древовидная топология, представляет собой топологию ЗВЕЗДА. Если представить как растут ветки у дерева то мы получим топологию Звезда, изначально топология называлась именно древовидная, с течением времени начали в скобках… … Википедия

    Решётка понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решетку. При этом каждое ребро решетки параллельно ее оси и соединяет два смежных узла вдоль этой оси. Одномерная «решётка»… … Википедия

    У этого термина существуют и другие значения, см. Решётка. Решётка понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и… … Википедия

    - (от древнерусск. «коло» круг) круглый объект с отверстием внутри (пример: тор или полноторие). В Викисловаре есть статья «ко … Википедия

    Ячеистая топология базовая полносвязная топология компьютерной сети, в которой каждая рабочая станция … Википедия

    Топология типа шина, представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала. Содержание 1 Работа в сети … Википедия

    Компьютерная сеть (вычислительная сеть, сеть передачи данных) система связи двух или более компьютеров и/или компьютерного оборудования (серверы, маршрутизаторы и другое оборудование). Для передачи информации могут быть использованы различные… … Википедия

Водопроводная сеть представляет собой совокупность трубопроводов, по которым вода транспортируется потребителям. Основное назначение водо­проводной сети - подавать потребителям воду в требуемом количестве, хоро­шего качества и с необходимым напором. Обычно водопроводная система на­ряду с подачей воды для хозяйственных нужд обеспечивает ещё и нужды по­жаротушения. Проектируют водопроводную сеть с учётом совместной работы насосных станций, водонапорной башни и других элементов системы водо­снабжения.

Трассировка водопроводной сети заключается в придании ей опреде­лённого геометрического начертания. Она зависит от: конфигурации населён­ного пункта, расположения улиц, кварталов, общественных и производствен­ных зданий, расположения источника водоснабжения и многих других факто­ров.

Н.С. - насосная станция

Б - водонапорная башня

Рисунок - Схема начертания кольцевой водопроводной сети

Кольцевую сеть применяют в населённых пунктах близ­ких по очертанию к квадрату или прямоугольнику. В этих сетях трубопрово­ды образуют один или несколько замкнутых контуров - колец. Благодаря кольцеванию каждый участок получает питание от двух или нескольких ли­ний, что значительно повышает надёжность работы сети и создаёт ряд других преимуществ. Кольцевые сети обеспечивают бесперебойную подачу воды да­же при авариях на отдельных участках: при выключении аварийного участка подача воды к другим линиям сети не прекращается. Они меньше подвержены авариям, т.к. в них не возникает сильных гидравлических ударов. При быст­ром закрытии какого-либо трубопровода поступавшая к нему вода устремля­ется в другие линии сети и действие гидравлического удара уменьшается. Во­да в сети не замерзает, т.к. даже при небольшом водоразборе она циркулирует по всем линиям, неся с собой тепло. Кольцевые сети обычно несколько длин­нее тупиковых, но устроены из труб меньшего диаметра. Стоимость кольце­вых сетей немного выше тупиковых. Благодаря высокой надёжности они на­ходят широкое применение в водоснабжении. Они полностью отвечают требованиям противопожарного водоснабжения. После того, как выполнен расчёт водопотребления населённого пункта, производится трассировка кольцевой разводящей сети. С этой целью на территории объекта водоснабжения (плане посёлка) вычерчивают трубопроводы, соединяют их концы и начала, образовывая замкнутые контуры-кольца, и подводят воду к крупным объектам. Далее на кольцевой сети намечаются узлы и участки. Каждый участок сети анализируется и замеряется. Все результаты сводятся в таблицу. Следует заметить, что особенностью кольцевых сетей является то, что раздача воды водопотребителям происходит практически на всех её участках, а это значит, что все они являются участками с путевыми расходами. Исклю­чение составляют лишь те участки, где явно нецелесообразно разбирать воду. Это могут быть участки, подводящие воду к крупным водопотребителям (на­пример, бане, больнице, МТФ и пр.).

Оперативная взаимосвязь между компьютерами по локальной сети осуществляется с помощью линий связи. Вся система, в зависимости от физического подключения узлов, а также, самого геометрического расположения узлов сети, называют сетевой топологией . Учитывая разнообразные варианты существующих подключений, различают следующие виды сетевых структур : шинная, звездная, кольцевая, иерархическая и произвольная.

Существуют логическая и физическая топологии , которые независимы между собой. Физическая топология осуществляет в сети геометрию построения, а логическая устанавливает в сети для всех потоков данных их направление и способ передачи.

В локальных сетях наиболее всего востребованы физические топологии, такие как:

  • «шина» (bus);
  • “звезда” (star);
  • “кольцо” (ring);
  • а также, логическое «кольцо» (или Token Ring ).

Сеть с наличием шинной топологии . Здесь для передачи данных используется коаксикальный кабель (моноканал), на концах его устанавливаются терминаторы, или оконечные сопротивления. Подключение каждого компьютера к кабелю происходит через Т-разъема (Т-коннектор). Через передающий узел сети данные по шине передаются в обе стороны, при этом отражаются от терминаторов. Иными словами, терминаторы гасят сигналы, которые достигают до конца каналов передачи данных. Таким образом, передаваемая информация проходит через все узлы, но принимается и фиксируется только одним, которому и предназначалась. Логическая шинная топология обеспечивает в сети совместную и одновременную передачу информации ко всем ПК, и наоборот, все данные от ПК во все направления передаются по сети. Такой вид передачи сигналов называют еще широковещательным.

Эту топологию применяют в локальных сетях, где используется архитектура Ethernet (класса 10Base-5 или 10Base-2 соответственно для тонких и толстых коаксиальных кабелей).

Сети шинной топологии имеют и свои преимущества:

  • легко настраивается и конфигурируется;
  • устойчивость данной сети к отдельным неисправностях в узлах;
  • если один из узлов выходит из строя, это никак не влияет на работоспособность всей сети.

Но имеются и недостатки:

  • ограничения в количестве рабочих станций и длине кабеля;
  • может остановиться вся работа сети в случае разрыва кабеля;
  • сложно определять дефекты в соединениях.

Топология сети — “звезда”

В данной сети каждая отдельная рабочая станция кабелем (витой парой) присоединена к хабу или концентратору, что обеспечивает для всех ПК параллельное соединение (все компьютеры сети могут друг с другом общаться).
Данные, которые отправляются от одной передающей станции, через хаб и все линии идут на все ПК. Другими словами, информация может поступать на любую рабочую станцию, но принимать ее могут лишь те станции, которым она предназначена. Поскольку передача сигналов данной типологии физическая «звезда» и она широковещательная, то логическая топология в такой локальной сети будет логической шиной. В основном применяется для локальных сетей, имеющих архитектуру 10Base-TEthernet.

Преимущества данной топологии звезда:

  • легкое подключение нового ПК;
  • централизованное управление;
  • устойчивость сетей к неисправностям ПК;
  • устойчивость к разрывам в отдельных соединения ПК.

×

Недостатки топологии звезда:

  • неэкономный расход кабеля;
  • если нарушается работа хаба, это влияет на всю сеть.

Топология сети “кольцо”

Неразрывное кольцо, с помощью которого передается информация между ПК, в топологии сети обеспечивается соединением всех узлов каналами связи. Благодаря этому, вся информация движется по кругу в одном направлении.

Рабочая станция, принимающая сигналы, распознает данные и получает только те сообщения, которые ей адресованы. В данной топологической сети применяется маркерный доступ, предоставляющий право на определенный порядок использования кольца. Логическая топология в данном случае — логическое кольцо.

Такая сеть легко создается и настраивается. Единственный недостаток сети топологии кольцо — если хоть в одном месте повреждена линия связи или вышел из строя, нарушается работоспособность всей сети.

Из-за некоторой ненадежности, в чистом виде данный вид топологии редко применяется. На практике в основном применяют модификации различных кольцевых топологий.

Прочитайте по теме следующие материалы:

Топология сети — Token Ring.

Такая топология основывается на топологии сети «физическое кольцо с применением типа звезда» . Такая топология предусматривает подключение всех рабочих станций к центральному концентратору (или Token Ring), так же как при топологии «физическая звезда» . Таким образом, центральный концентратор с помощью перемычек осуществляет последовательное соединения выходов с одних станций с входами других станций.

Концентратор обеспечивает соединение каждой станции только с двумя соседними станциями — предыдущей и следующей. Рабочие станции связаны между собой петлей кабеля, которая обеспечивает передачу данных между станциями, то есть отдельная станция ретранслирует информацию дальше. Для обеспечения этого, каждая рабочая станция оборудована специальными приемо-передающими устройствами, позволяющими управление прохождения данных в сети.

Концентратор образует основное первичное и резервное кольца. При обрыве в основном кольце, его можно обойти, используя для этого резервные кольца. Для этого применяется четырёхжильный кабель. В случае нарушения работы станции или при обрые линии связи сеть продолжает работать, поскольку концентратор исключает неисправную станцию, таким образом замыкает кольцо передачи данных.

Система Token Ring сделана таким образом, что маркер передаётся по логическому кольцу между узлами. Передача маркера имеет фиксированное направление. Если станция обладает маркером, она передает информацию на следующую станцию.

Но для такой передачи данных рабочая станция сначала должны дождаться появления свободного маркера. Полученный маркер содержит все адреса станции, которая направила данный маркер, в том числе и станции, для которого он предназначался. Следующая станция передает маркер дальше по сети, для следующей станции, и так далее по кругу.

Главный узел сети (в основном это файл-сервер) маркер создает, далее этот маркер отправляется в сеть по кольцу. В данном случае, такой узел является активным монитором и строго следит за движением маркера, который не должен потеряться или разрушиться.

К преимуществам такой топологии Token Ring можно отнести:

  • одинаковый доступ до рабочих станций;
  • надежность системы;
  • устойчивость к неисправностям некоторых станций или при разрывах соединений.

Недостатки Token Ring — это очень большой расход материалов на подключение, а соответственно, самая дорогостоящая разводка для линий связи.

Топология (конфигурация) – это способ соединения компьютеров в сеть. Тип топологии определяет стоимость, защищенность, производительность и надежность эксплуатации рабочих станций, для которых имеет значение время обращения к файловому серверу.

Понятие топологии широко используется при создании сетей. Одним из подходов к классификации топологий ЛВС является выделение двух основных классов топологий: широковещательные и последовательные.

В широковещательных топологиях ПК передает сигналы, которые могут быть восприняты остальными ПК. К таким топологиям относятся топологии: общая шина, дерево, звезда.

В последовательных топологиях информация передается только одному ПК. Примерами таких топологий являются: произвольная (произвольное соединение ПК), кольцо, цепочка.

При выборе оптимальной топологии преследуются три основных цели:

Обеспечение альтернативной маршрутизации и максимальной надежности передачи данных;

Выбор оптимального маршрута передачи блоков данных;

Предоставление приемлемого времени ответа и нужной пропускной способности.

При выборе конкретного типа сети важно учитывать ее топологию. Основными сетевыми топологиями являются: шинная (линейная) топология, звездообразная, кольцевая и древовидная.

Например, в конфигурации сети ArcNet используется одновременно и линейная, и звездообразная топология. Сети Token Ring физически выглядят как звезда, но логически их пакеты передаются по кольцу. Передача данных в сети Ethernet происходит по линейной шине, так что все станции видят сигнал одновременно.

Виды топологий

Существуют пять основных топологий (рис. 3.1): общая шина (Bus); кольцо (Ring); звезда (Star); древовидная (Tree); ячеистая (Mesh).

Рис. 3.1. Типы топологий

Общая шина

Общая шина – это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом. Топология общая шина (рис. 3.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети.

В случае топологии Общая шина кабель используется всеми станциями по очереди:

Рис. 3.2. Топология Общая шина

1. При передаче пакетов данных каждый компьютер адресует его конкретному компьютеру ЛВС, передавая его по сетевому кабелю в виде электрических сигналов.

2. Пакет в виде электрических сигналов передается по «шине» в обоих направлениях всем компьютерам сети.

3. Однако информацию принимает только тот адрес, который соответствует адресу получателя, указанному в заголовке пакета. Так как в каждый момент времени в сети может вести передачу только одна PC, то производительности ЛВС зависит от количества PC, подключенных к шине. Чем их больше, тем больше ожидающих передачи данных, тем ниже производительности сети. Однако нельзя указать прямую зависимость пропускной способности сети от количества PC, так как на нее также влияют:

· характеристики аппаратного обеспечения PC сети;

· частота, с которой передают сообщения PC;

· тип работающих сетевых приложений;

· тип кабеля и расстояние между PC в сети.

«Шина» – пассивная топология. Это значит, что компьютеры только «слушают» передаваемые по сети данные, но не перемещают их от отправителя к получателю. Поэтому, если один из компьютеров выйдет из строя, это не скажется на работе всей сети.

4. Данные в виде электрических сигналов распространяются по всей сети от одного конца кабеля к другому, и, достигая конца кабеля, будут отражаться и занимать «шину», что не позволит другим компьютерам осуществлять передачу.

5. Чтобы предотвратить отражение электрических сигналов, на каждом конце кабеля устанавливаются терминаторы (Т), поглощающие сигналы, прошедшие по «шине»,

6. При значительном расстоянии между PC (например, 180 м для тонкого коаксиального кабеля) в сегменте «шины» может наблюдаться ослабление электрического сигнала, что может привести к искажению или потере передаваемого пакета данных. В этом случае исходный сегмент следует разделить на два, установив между ними дополнительное устройство – репитер (повторитель), который усиливает принятый сигнал перед тем, как послать его дальше.

Правильно размещенные на длине сети повторители позволяют увеличить длину обслуживаемой сети и расстояние между соседними компьютерами. Следует помнить, что все концы сетевого кабеля должны быть к чему-либо подключены: к PC, терминатору или повторителю.

Разрыв сетевого кабеля или отсоединение одного из его концов приводит к прекращению функционирования сети. Сеть «падает». Сами PC сети остаются полностью работоспособными, но не могут взаимодействовать друг с другом. Если ЛВС на основе сервера, где большая часть программных и информационных ресурсов хранится на сервере, то PC, хотя и остаются работоспособными, но для практической работы малопригодны.

Шинная топология используется в сетях Ethernet, однако в последнее время встречается редко.

Примерами использования топологии общая шина является сеть 10Base-5 (соединение ПК толстым коаксиальным кабелем) и 10Base-2 (соединение ПК тонким коаксиальным кабелем).

Кольцо

Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис. 3.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.

Рис. 3.3. Топология Кольцо

Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо.

Звезда

Звезда – это топология ЛВС (рис. 3.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.

Рис. 3.4. Топология Звезда

В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).

Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.

Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.

Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте.

Сравнительные характеристики базовых сетевых топологий представлены в табл. 3.1.

Таблица 3.1. Сравнительные характеристики базовых сетевых топологий

Топология

Преимущества

Недостатки

Экономный расход кабеля;

Недорогая и несложная в использовании среда передачи;

Простота и надежность;

Легкая расширяемость

При значительных объемах трафика уменьшается пропускная способность;

Трудная локализация проблем;

Выход из строя любого сегмента кабеля остановит работу всей сети

«Кольцо»

Все PC имеют равный доступ;

Количество пользователей не сказывается на производительности

Выход из строя одной PC выводит из строя всю сеть;

Трудно локализовать проблемы;

Изменение конфигурации сети требует остановки всей сети

«Звезда»

Легко производить монтаж сети или модифицировать сеть, добавляя новые PC;

Централизованный контроль и управление;

Выход из строя одного PC или одного сегмента кабеля не влияет на работу всей сети

Выход из строя или отключение питания концентратора (коммутатора) выводит из строя всю сеть; большой расход кабеля

Кольцевая сеть — это сеть которая состоит из двух или более сетевых устройств, которые соединены друг с другом физически или логически, так что они образуют цепочку устройств, причем последнее устройство в цепи подключается к первому устройству. Кольцевая сеть типично спроектирована как топологии одиночного-кольца или двойного-кольца. В разработке также находятся технологии с несколькими кольцами, включающими два или более параллельных кольца.
Сети обычно характеризуются двумя способами: физически и логически. Термин “физическая топология” описывает способ устройства быть физически подключенными вместе, поэтому физическая топология сети кольцо и физические устройства соединены вместе, чтобы сформировать кольцо. Логическое представление топологии связано с потоками информации. В логической перспективе, кольцевая топология сети может иметь устройства физически подключенными вместе, как топология сети звезда, сеть для передачи данных или древовидная сеть, но информация течет от устройства к устройству, как если бы они были связаны в физическом кольце. Например, сеть может быть физически организована как сеть звезда, но информация может передаваться от устройства к устройству, как если бы это была кольцевая сеть.

Одним из основных недостатков одиночной кольцевой сети является то, что разрыв в любом месте кольца может привести к полному сбою потока информации. Для того чтобы помочь предотвратить нарушения этой природы, создают второе параллельное counter-rotating кольцо которое можно добавить и которое посылает информацию в противоположном направлении. Этот тип избыточной сети называется двойной кольцевой сетью. Если одно из колец в двойной кольцевой сети страдает от повреждением, информация всё ещё может достигнуть всех устройств с помощью неповрежденного альтернативного пути.

Второй недостаток кольцевых сетей заключается в том, что информация перемещается медленнее, потому что данные должны проходить через каждое устройство, когда она пробивается через сеть. Несмотря на это ограничение, кольцевая топология всё ещё существует в волоконно-оптических сетях, таких как волоконно распределенном интерфейсе данных (сети fddi) сетей, синхронных оптических сетях (сонет) и сетях синхронной цифровой иерархии (СЦИ). Когда эти высокоскоростные сети включают физическую двойную кольцевую топологию, они тем самым извлекают выгоду от резервирования, обеспеченного этим типом топологии.

Ring networks впервые стала популярной в 1980-х годах, когда топологии логической кольцевой сети были использованы в технологии token ring. Ограничения, присущие кольцевой сети, наряду с проблемами совместимости между маркерным кольцом и другими протоколами, в значительной степени были заменены новыми транспортными методами передачи данных, такими как локальные сети. Несмотря на то, что Ethernet всё чаще продолжает вытеснять протоколы, используемые в волоконно-оптических кольцевых сетях, использование кольцевой сети и разработка для высокоскоростной передачи данных продолжаются.