Подключение жк дисплея к ардуино. Подключение ЖК экрана к Ардуино по I2C

LCD дисплей – частый гость в проектах ардуино. Но в сложных схемах у нас может возникнуть проблема недостатка портов Arduino из-за необходимости подключить экран, у которого очень очень много контактов. Выходом в этой ситуации может стать I2C /IIC переходник, который подключает практически стандартный для Arduino экран 1602 к платам Uno, Nano или Mega всего лишь при помощи 4 пинов. В этой статье мы посмотрим, как можно подключить LCD экран с интерфейсом I2C, какие можно использовать библиотеки, напишем короткий скетч-пример и разберем типовые ошибки.

Жидкокристаллический дисплей (Liquid Crystal Display) LCD 1602 является хорошим выбором для вывода строк символов в различных проектах. Он стоит недорого, есть различные модификации с разными цветами подсветки, вы можете легко скачать готовые библиотеки для скетчей Ардуино. Но самым главным недостатком этого экрана является тот факт, что дисплей имеет 16 цифровых выводов, из которых обязательными являются минимум 6. Поэтому использование этого LCD экрана без i2c добавляет серьезные ограничения для плат Arduino Uno или Nano. Если контактов не хватает, то вам придется покупать плату Arduino Mega или же сэкономить контакты, в том числе за счет подключения дисплея через i2c.

Краткое описание пинов LCD 1602

Давайте посмотрим на выводы LCD1602 повнимательней:

Каждый из выводов имеет свое назначение:

  1. Земля GND;
  2. Питание 5 В;
  3. Установка контрастности монитора;
  4. Команда, данные;
  5. Записывание и чтение данных;
  6. Enable;

7-14. Линии данных;

  1. Плюс подсветки;
  2. Минус подсветки.

Технические характеристики дисплея:

  • Символьный тип отображения, есть возможность загрузки символов;
  • Светодиодная подсветка;
  • Контроллер HD44780;
  • Напряжение питания 5В;
  • Формат 16х2 символов;
  • Диапазон рабочих температур от -20С до +70С, диапазон температур хранения от -30С до +80 С;
  • Угол обзора 180 градусов.

Схема подключения LCD к плате Ардуино без i2C

Стандартная схема присоединения монитора напрямую к микроконтроллеру Ардуино без I2C выглядит следующим образом.

Из-за большого количества подключаемых контактов может не хватить места для присоединения нужных элементов. Использование I2C уменьшает количество проводов до 4, а занятых пинов до 2.

Где купить i2c 1602 экраны для ардуино

LCD экран 1602 довольно популярен, поэтому вы без проблем сможете найти его как в отечественных интернет-магазинах, так и на зарубежных площадках. Приведем несколько ссылок на наиболее доступные варианты:

  • Вариант обычного дисплея от довольно известного продавца Wavgat по цене ниже 100 рублей.
  • Комплект экрана и i2c адаптера (нужно спаять самим). Цена – ниже 200 рублей
  • Шилд i2c экрана – модуль LCD 1602 с управляющими кнопками и платой расширения .

Описание протокола I2C

Прежде чем обсуждать подключение дисплея к ардуино через i2c-переходник, давайте вкратце поговорим о самом протоколе i2C.

I2C / IIC (Inter-Integrated Circuit) – это протокол, изначально создававшийся для связи интегральных микросхем внутри электронного устройства. Разработка принадлежит фирме Philips. В основе i2c протокола является использование 8-битной шины, которая нужна для связи блоков в управляющей электронике, и системе адресации, благодаря которой можно общаться по одним и тем же проводам с несколькими устройствами. Мы просто передаем данные то одному, то другому устройству, добавляя к пакетам данных идентификатор нужного элемента.

Самая простая схема I2C может содержать одно ведущее устройство (чаще всего это микроконтроллер Ардуино) и несколько ведомых (например, дисплей LCD). Каждое устройство имеет адрес в диапазоне от 7 до 127. Двух устройств с одинаковым адресом в одной схеме быть не должно.

Плата Arduino поддерживает i2c на аппаратном уровне. Вы можете использовать пины A4 и A5 для подключения устройств по данному протоколу.

В работе I2C можно выделить несколько преимуществ:

  • Для работы требуется всего 2 линии – SDA (линия данных) и SCL (линия синхронизации).
  • Подключение большого количества ведущих приборов.
  • Уменьшение времени разработки.
  • Для управления всем набором устройств требуется только один микроконтроллер.
  • Возможное число подключаемых микросхем к одной шине ограничивается только предельной емкостью.
  • Высокая степень сохранности данных из-за специального фильтра подавляющего всплески, встроенного в схемы.
  • Простая процедура диагностики возникающих сбоев, быстрая отладка неисправностей.
  • Шина уже интегрирована в саму Arduino, поэтому не нужно разрабатывать дополнительно шинный интерфейс.

Недостатки:

  • Существует емкостное ограничение на линии – 400 пФ.
  • Трудное программирование контроллера I2C, если на шине имеется несколько различных устройств.
  • При большом количестве устройств возникает трудности локализации сбоя, если одно из них ошибочно устанавливает состояние низкого уровня.

Модуль i2c для LCD 1602 Arduino

Самый быстрый и удобный способ использования i2c дисплея в ардуино – это покупка готового экрана со встроенной поддержкой протокола. Но таких экранов не очень много истоят они не дешево. А вот разнообразных стандартных экранов выпущено уже огромное количество. Поэтому самым доступным и популярным сегодня вариантом является покупка и использование отдельного I2C модуля – переходника, который выглядит вот так:

С одной стороны модуля мы видим выводы i2c – земля, питание и 2 для передачи данных. С другой переходника видим разъемы внешнего питания. И, естественно, на плате есть множество ножек, с помощью которых модуль припаивается к стандартным выводам экрана.


Для подключения к плате ардуино используются i2c выходы. Если нужно, подключаем внешнее питание для подстветки. С помощью встроенного подстроечного резистора мы можем настроить настраиваемые значения контрастности J

На рынке можно встретить LCD 1602 модули с уже припаянными переходниками, их использование максимально упощено. Если вы купили отдельный переходник, нужно будет предварительно припаять его к модулю.

Подключение ЖК экрана к Ардуино по I2C

Для подключения необходимы сама плата Ардуино, дисплей, макетная плата, соединительные провода и потенциометр.

Если вы используете специальный отдельный i2c переходник, то нужно сначала припаять его к модулю экрана. Ошибиться там трудно, можете руководствоваться такой схемой.


Жидкокристаллический монитор с поддержкой i2c подключается к плате при помощи четырех проводов – два провода для данных, два провода для питания.

  • Вывод GND подключается к GND на плате.
  • Вывод VCC – на 5V.
  • SCL подключается к пину A5.
  • SDA подключается к пину A.

И это все! Никаких паутин проводов, в которых очень легко запутаться. При этом всю сложность реализации i2C протокола мы можем просто доверить библиотекам.

Библиотеки для работы с i2c LCD дисплеем

Для взаимодействие Arduino c LCD 1602 по шине I2C вам потребуются как минимум две библиотеки:

  • Библиотека Wire.h для работы с I2C уже имеется в стандартной программе Arduino IDE.
  • Библиотека LiquidCrystal_I2C.h, которая включает в себя большое разнообразие команд для управления монитором по шине I2C и позволяет сделать скетч проще и короче. Нужно дополнительно установить библиотеку После подключения дисплея нужно дополнительно установить библиотеку LiquidCrystal_I2C.h

После подключения к скетчу всех необходимых библиотек мы создаем объект и можем использовать все его функции. Для тестирования давайте загрузим следующий стандартный скетч из примера.

#include #include // Подключение библиотеки //#include // Подключение альтернативной библиотеки LiquidCrystal_I2C lcd(0x27,16,2); // Указываем I2C адрес (наиболее распространенное значение), а также параметры экрана (в случае LCD 1602 - 2 строки по 16 символов в каждой //LiquidCrystal_PCF8574 lcd(0x27); // Вариант для библиотеки PCF8574 void setup() { lcd.init(); // Инициализация дисплея lcd.backlight(); // Подключение подсветки lcd.setCursor(0,0); // Установка курсора в начало первой строки lcd.print("Hello"); // Набор текста на первой строке lcd.setCursor(0,1); // Установка курсора в начало второй строки lcd.print("ArduinoMaster"); // Набор текста на второй строке } void loop() { }

Описание функций и методов библиотеки LiquidCrystal_I2C:

  • home() и clear() – первая функция позволяет вернуть курсор в начало экрана, вторая тоже, но при этом удаляет все, что было на мониторе до этого.
  • write(ch) – позволяет вывести одиночный символ ch на экран.
  • cursor() и noCursor() – показывает/скрывает курсор на экране.
  • blink() и noBlink() – курсор мигает/не мигает (если до этого было включено его отображение).
  • display() и noDisplay() – позволяет подключить/отключить дисплей.
  • scrollDisplayLeft() и scrollDisplayRight() – прокручивает экран на один знак влево/вправо.
  • autoscroll() и noAutoscroll() – позволяет включить/выключить режим автопрокручивания. В этом режиме каждый новый символ записывается в одном и том же месте, вытесняя ранее написанное на экране.
  • leftToRight() и rightToLeft() – Установка направление выводимого текста – слева направо или справа налево.
  • createChar(ch, bitmap) – создает символ с кодом ch (0 – 7), используя массив битовых масок bitmap для создания черных и белых точек.

Альтернативная библиотека для работы с i2c дисплеем

В некоторых случаях при использовании указанной библиотеки с устройствами, оснащенными контроллерами PCF8574 могут возникать ошибки. В этом случае в качестве альтернативы можно предложить библиотеку LiquidCrystal_PCF8574.h. Она расширяет LiquidCrystal_I2C, поэтому проблем с ее использованием быть не должно.

Проблемы подключения i2c lcd дисплея

Если после загрузки скетча у вас не появилось никакой надписи на дисплее, попробуйте выполнить следующие действия.

Во-первых, можно увеличить или уменьшить контрастность монитора. Часто символы просто не видны из-за режима контрастности и подсветки.

Если это не помогло, то проверьте правильность подключения контактов, подключено ли питание подсветки. Если вы использовали отдельный i2c переходник, то проверьте еще раз качество пайки контактов.

Другой часто встречающейся причиной отсутствия текста на экране может стать неправильный i2c адрес. Попробуйте сперва поменять в скетче адрес устройства с 0x27 0x20 или на 0x3F. У разных производителей могут быть зашиты разные адреса по умолчанию. Если и это не помогло, можете запустить скетч i2c сканера, который просматривает все подключенные устройства и определяет их адрес методом перебора. Пример скетча i2c сканера .

Если экран все еще останется нерабочим, попробуйте отпаять переходник и подключить LCD обычным образом.

Заключение

В этой статье мы рассмотрели основные вопросы использования LCD экрана в сложных проектах ардуино, когда нам нужно экономить свободные пины на плате. Простой и недорогой переходник i2c позволит подключить LCD экран 1602, занимая всего 2 аналоговых пина. Во многих ситуациях это может быть очень важным. Плата за удобство – необходимость в использовании дополнительного модуля – конвертера и библиотеки. На наш взгляд, совсем не высокая цена за удобство и мы крайне рекомендуем использовать эту возможность в проектах.

Инструкция

Действие ультразвукового дальномера HC-SR04 основано на принципе эхолокации. Он излучает звуковые импульсы в пространство и принимает отражённый от препятствия сигнал. По времени распространения звуковой волны к препятствию и обратно определяется расстояние до объекта.
Запуск звуковой волны начинается с подачи положительного импульса длительностью не менее 10 микросекунд на ножку TRIG дальномера. Как только импульс заканчивается, дальномер излучает в пространство перед собой пачку звуковых импульсов частотой 40 кГц. В это же время запускается алгоритм определения времени задержки отражённого сигнала, а на ножке ECHO дальномера появляется логическая единица. Как только датчик улавливает отражённый сигнал, на выводе ECHO появляется логический ноль. По длительности этого сигнала ("Задержка эхо" на рисунке) определяется расстояние до объекта.
Диапазон измерения расстояния дальномера HC-SR04 - до 4 метров с разрешением 0,3 см. Угол наблюдения - 30 градусов, эффективный угол - 15 градусов. Ток потребления в режиме ожидания 2 мА, при работе - 15 мА.

Питание ультразвукового дальномера осуществляется напряжением +5 В. Два других вывода подключаются к любым цифровым портам Arduino, мы подключим к 11 и 12.

Теперь напишем скетч, определяющий расстояние до препятствия и выводящий его в последовательный порт. Сначала задаём номера выводов TRIG и ECHO - это 12 и 11 пины. Затем объявляем триггер как выход, а эхо - как вход. Инициализируем последовательный порт на скорости 9600 бод. В каждом повторении цикла loop() считываем дистанцию и выводим в порт.
Функция getEchoTiming() генерирует импульс запуска. Она как раз создаёт ток 10 мксек импульс, который является триггером для начала излучения дальномером звукового пакета в пространство. Далее она запоминает время от начала передачи звуковой волны до прихода эха.
Функция getDistance() рассчитывает дистанцию до объекта. Из школьного курса физики мы помним, что расстояние равно скорость умножить на время: S = V*t. Скорость звука в воздухе 340 м/сек, время в микросекундах мы знаем, это "duratuion". Чтобы получить время в секундах, нужно разделить на 1.000.000. Так как звук проходит двойное расстояние - до объекта и обратно - нужно разделить расстояние пополам. Вот и получается, что расстояние до объекта S = 34000 см/сек * duration / 1.000.000 сек / 2 = 1,7 см/сек / 100, что мы и написали в скетче. Операцию умножения микроконтроллер выполняет быстрее, чем деления, поэтому "/ 100" я заменил на эквивалентное "* 0,01".

Также для работы с ультразвуковым дальномером написано множество библиотек. Например, вот эта: http://robocraft.ru/files/sensors/Ultrasonic/HC-SR04/ultrasonic-HC-SR04.zip. Установка библиотеки происходит стандартно: скачать, разархивировать в директорию libraries , которая находится в папке с Arduino IDE. После этого библиотекой можно пользоваться.
Установив библиотеку, напишем новый скетч. Результат его работы тот же - в мониторе последовательного порта выводится дистанция до объекта в сантиметрах. Если в скетче написать float dist_cm = ultrasonic.Ranging(INC); , то дистанция будет отображаться в дюймах.

Итак, мы с вами подключили к Arduino ультразвуковой дальномер HC-SR04 и получили с него данные двумя разными способами: с использованием специальной библиотеки и без.
Преимущество использования библиотеки в том, что количество кода значительно сокращается и улучшается читаемость программы, вам не приходится вникать в тонкости работы устройства и вы сразу же можете его использовать. Но в этом же кроется и недостаток: вы хуже понимаете, как работает устройство и какие в нём происходят процессы. В любом случае, каким способом пользоваться - решать только вам.

Жидкокристаллический дисплей (Liquid Crystal Display) сокращенно LCD построен на технологии жидких кристаллов. При проектировании электронные устройства, нам нужно недорогое устройство для отображения информации и второй не менее важный фактор наличии готовых библиотек для Arduino. Из всех доступных LCD дисплеев на рынке, наиболее часто используемой является LCD 1602A, который может отображать ASCII символа в 2 строки (16 знаков в 1 строке) каждый символ в виде матрицы 5х7 пикселей. В этой статье рассмотрим основы подключения дисплея к Arduino.

Технические параметры

Напряжение питания: 5 В
Размер дисплея: 2.6 дюйма
Тип дисплея: 2 строки по 16 символов
Цвет подсветки: синий
Цвет символов: белый
Габаритные: 80мм x 35мм x 11мм

Описание дисплея

LCD 1602A представляет собой электронный модуль основанный на драйвере HD44780 от Hitachi. LCD1602 имеет 16 контактов и может работать в 4-битном режиме (с использованием только 4 линии данных) или 8-битном режиме (с использованием всех 8 строк данных), так же можно использовать интерфейс I2C . В этой статье я расскажу о подключении в 4-битном режиме.

Назначение контактов:
VSS: «-» питание модуля
VDD: «+» питание модуля
VO: Вывод управления контрастом
RS: Выбор регистра
RW: Выбор режима записи или чтения (при подключении к земле, устанавливается режим записи)
E: Строб по спаду
DB0-DB3: Биты интерфейса
DB4-DB7: Биты интерфейса
A: «+» питание подсветки
K: «-» питание подсветки

На лицевой части модуля располагается LCD дисплей и группа контактов.

На задней части модуля расположено два чипа в «капельном» исполнении (ST7066U и ST7065S) и электрическая обвязка, рисовать принципиальную схему не вижу смысла, только расскажу о резисторе R8 (100 Ом), который служит ограничительным резистором для светодиодной подсветки, так что можно подключить 5В напрямую к контакту A. Немного попозже напишу статью в которой расскажу как можно менять подсветку LCD дисплея с помощью ШИП и транзистора.

Подключение LCD 1602A к Arduino (4-битном режиме)

Необходимые детали:
Arduino UNO R3 x 1 шт.
LCD-дисплей 1602A (2×16, 5V, Синий) x 1 шт.
Провод DuPont, 2,54 мм, 20 см, F-F (Female - Female) x 1 шт.
Потенциометр 10 кОм x 1 шт.
Разъем PLS-16 x 1 шт.
Макетная плата MB-102 x 1 шт.
Кабель USB 2.0 A-B x 1 шт.

Подключение :
Для подключения будем использовать макетную плату, схема и таблица подключение LCD1602a к Arduino в 4-битном режиме можно посмотреть на рисунке ниже.

Подключение дисплея к макетной плате будет осуществляться через штыревые контакты PLS-16 (их необходимо припаять к дисплею). Установим модуль дисплея в плату breadboard и подключим питание VDD (2-й контакт) к 5В (Arduino) и VSS (1-й контакт) к GND (Arduino), далее RS (4-й контакт) подключаем к цифровому контакту 8 (Arduino). RW (5-й контакт) заземляем, подключив его к GND (Arduino), затем подключить вывод E к контакту 8 (Arduino). Для 4-разрядного подключения необходимо четыре контакта (DB4 до DB7). Подключаем контакты DB4 (11-й контакт), DB5 (12-й контакт), DB6 (13-й контакт) и DB7 (14-й контакт) с цифровыми выводами Arduino 4, 5, 6 и 7. Потенциометр 10K используется для регулировки контрастности дисплея, схема подключения LCD дисплея 1602а, показана ниже

Библиотека уже входит в среду разработки IDE Arduino и нет необходимости ее устанавливать. Скопируйте и вставьте этот пример кода в окно программы IDE Arduino и загрузите в контроллер.

/* Тестирование производилось на Arduino IDE 1.6.11 Дата тестирования 20.09.2016г. */ #include LiquidCrystal lcd(8, 9, 4, 5, 6, 7); void setup() { lcd.begin(16, 2); // Инициализирует LCD 16x2 } void loop() { lcd.setCursor(0,0); // Установить курсор на первыю строку lcd.print("Hello, world"); // Вывести текст lcd.setCursor(0,1); // Установить курсор на вторую строку lcd.print("www.robotchip.ru"); // Вывести текст }

Тестирование производилось на Arduino IDE 1.6.11

Дата тестирования 20.09.2016г.

#include

LiquidCrystal lcd (8 , 9 , 4 , 5 , 6 , 7 ) ;

void setup ()

lcd . begin (16 , 2 ) ; // Инициализирует LCD 16x2

void loop ()

lcd . print ("Hello, world" ) ; // Вывести текст

lcd . print ("www.robotchip.ru" ) ; // Вывести текст

Скачать программу

Немного о программе .
Для облегчения связи между Arduino и LCD дисплеем, используется встроенный в библиотеке в IDE Arduino « LiquidCrystal.h « — которая написана для LCD дисплеев, использующих HD44780 (Hitachi) чипсет (или совместимые микросхемы). Эта библиотека может обрабатывать как 4 — битном режиме и 8 — битном режиме подключение LCD.

Как подружить плату Ардуино с символьным дисплеем? Довольно просто! Все ниже по порядку и с подробностями.

Если есть желание получать информацию от Ардуино без подключения к компьютеру и вывода на серийный порт, можно использовать символьный дисплей. Сделать это не так сложно. Полученное удобство от общения неоценимо.
Для работы я использовал символьный LCD-дисплей J204A на базе чипа HD44780, на eBay часто встречается как LCD2004. 4 строки по 20 символов, инвертированный. Куплен с кучей других на eBay, за сущие копейки, от 60 до 100 рублей за штуку. Русский язык не поддерживается по-умолчанию, но это решаемая проблема, об этом как нибудь в следующий раз. И еще коннекторы на схеме не распаяны, придется поработать паяльником.
Для работы с дисплеями используется библиотека LiquidCrystal.h входящая в дефолтную постаку Arduino IDE.

А вот даташита по дисплею LCD2004 я не нашел, но зато в интернетах полным полно таблиц по дисплею . Но они практически не отличаются друг от друга. По управлению и подключению полностью идентичны. Отличие только в количестве строк/символов на дисплее. Но это абсолютно не повлияет если у вас 1602.

В таблице определены все контакты. Если взять дисплей и повернуть его к себе, то контакты будут расположены слева направо, соответственно в таблице идут по увеличению номера. В колонке контакты в скобках указано обозначение в даташите.

# Контакты Для чего используется Примечание
1 VSS (VSS) GND. Земля. Питание микроконтроллера дисплея. 0V
2 VDD (VCC) Питающее напряжение для микроконтроллера дисплея. +5V
3 V0 (VEE) Контраст символов на дисплее. Подключать лучше через потенциометр. от 0v до +5V
4 RS (RS) Выбор регистра.
5 RW (R/W) Переключение режима чтения/записи. Утянем на землю, нам нужно только передавать информацию на дисплей. 0-запись +5V-чтение
6 E Тактирование
7 D0 (DB0) Данные
8 D1 (DB1) Передача данных. (Не будем использовать) Данные
9 D2 (DB2) Передача данных. (Не будем использовать) Данные
10 D3 (DB3) Передача данных. (Не будем использовать) Данные
11 D4 (DB4) Данные
12 D5 (DB5) Передача данных. (Задействуется) Данные
13 D6 (DB6) Передача данных. (Задействуется) Данные
14 D7 (DB7) Передача данных. (Задействуется) Данные
15 A (LED+) +5V Напряжение, подсветка дисплея, через потенциометр можно регулировать яркость дисплея. +5V
16 K (LED-) GND Земля, подсветка дисплея 0V

v

Передача данных к дисплею возможна в двух вариантах: по 8 и по 4 бит за такт. Т.к. Ардуино имеет мало контактов, мы будем использовать 4 — этого с лихвой хватает, чтоб обновлять информацию на дисплее с запредельной для восприятия скоростью.

Вот так все это дело у меня подключено. Возможно кажется что это хаос, но тут есть система. Можно выделить красные, зеленые, желтые и оранжевые провода. Красные всегда идут на +5V, зеленые — GND, а желтые и оранжевые — это провода для подключения к Ардуино, по которым идут данные.

Самая важная частьфизическое подключение дисплея. По клику открывается в большом разрешении, где все хорошо видно.
R1 — Резистор 200OM. Сопротивление ограничивающее ток, проходящий через подсветку дисплея.
R2 — Потенциометр с сопротивлением до 10kOM. Кутим ручку, подбираем контраст символов.


И крайне простой скетч, для вывода на экран пары строк.

H> // Подключаем библиотеку для работы с дисплеем. /* Командой LiquidCrystal lcd(rs, enable, d4, d5, d6, d7); создаем переменную типа LiquidCrystal И определяем через какие контакты Ардуино рабоает с дисплеем. подробнее про эту команду тут http://arduino.cc/en/Reference/LiquidCrystalConstructor */ LiquidCrystal lcd(6, 7, 8, 9, 10, 11); void setup() { lcd.begin(20, 4); // определяем характеристики дисплея (20 Символов в строке, 4 строки) // Для дисплея 1602 надо указывать lcd.begin(16, 2); lcd.setCursor(1, 1); // Указываем с какой позиции начать выводить текст. строки и символы начинаются с 0!!! // 1 уже отодвинет каретку на одно деление от начала экрана и сдвинет текст на одну строку ниже lcd.print("compblog.vlukyanov"); // выводим текст начиная с указанной позиции. lcd.setCursor(7, 2); // выводим с 8го символа на экране в третьей строке. lcd.print(".com"); // текст для вывода. } void loop() { // в цикле ни чего больше не делаем все уже сделано во время инициализации платы. }

Результат. Если знать, как все это подключается и как написать код, то время на все работы 5 минут.

Также дисплей может выполнять некоторые функции самостоятельно, а еще есть возможность задать некоторые параметры.

Например:

  • Скролить текст;
  • Мигать позицией курсора;
  • Включаться/выключаться.

А теперь бонус!
Подсветка дисплея тратит энергию, которую, при питании от батареи, например, хотелось бы экономить. Я сделал для себя такой вариант — при нажатии на кнопку, включается подсветка дисплея на 5 секунд.

H> // Подключаем библиотеку для работы с дисплеем. int buttonInt = 0; // Номер прерывания, которое будет вызыватся. int screenLed = 4; // Номер пина к которому подключен экран. +5V volatile long x = 5000; // переменная для хранения времени LiquidCrystal lcd(6, 7, 8, 9, 10, 11); void setup() { attachInterrupt(buttonInt, screenon, FALLING); // параметры прерывания lcd.begin(20, 4); pinMode(screenLed, OUTPUT); digitalWrite(screenLed,HIGH); // включаем дисплей lcd.setCursor(0, 0); lcd.print("Start screenon test!"); } // Функция которая будет выполнятся при нажатии на кнопку. void screenon() { x = millis()+5000; // Запоминаем время, когда надо выключить подсветку. Текущее время работы +5 секунд. digitalWrite(screenLed,HIGH); // Подаем напряжение на подсветку дисплея. } void loop() { lcd.setCursor(0, 2); // переходим к третей строке lcd.print(x); // и выводим время когда дисплей выключится lcd.setCursor(0, 3); // переходим к четвертой строке lcd.print(millis()); // печатаем текущее время работы if (x < millis()) // если время работы выключения наступило > { digitalWrite(screenLed,LOW); // то гасим дисплей } }

И результат:

Дисплеи LCD 1602 размера, созданные на базе HD44780 контроллера, в наши дни всё ещё остаются одними из самых доступных, простых и востребованных, чтобы разрабатывать какие бы то ни было электронные устройства. Неудивительно, что их можно увидеть как в простых, собранных буквально на коленке агрегатах, так и в более серьезных промышленных, например автоматах для приготовления кофе. Именно с таким дисплеем и собираются наиболее популярные модули и шилды по тематике Arduino, например LCD I2C модуль и LCD Keypad Shield.

Данная статья подробно с изображениями рассказывает, как подключить LCD к Arduino и отобразить информацию.

Дисплеи 1602 имеют два различных исполнения :

Жёлтая подсветка с чёрными буквами
- либо (это бывает гораздо чаще) синяя подсветка с белыми.

Размерность дисплеев на HD44780 контроллере бывает самой разной, а управляются они одинаково. Наиболее распространённые из размерностей – 16 на 02 (то есть по 16 символов в двух строках) или 20 на 04. Сами же символы имеют разрешение в 5 на 8 точек.

Большая часть дисплеев не поддерживает кириллицу (за исключением дисплеев CTK-маркировки). Но такая проблема частично решаема, и далее статья подробно рассказывает, как это сделать.

На дисплее есть 16-PIN разъём для подключения. Выводы имеют маркировку с тыльной стороны платы , она следующая:

1 (VSS) – питание на минус для контроллера.
2 (VDD) – питание на плюс для контроллера.
3 (VO) – настройки управления контрастом.
4 (RS) – выбор для регистра.
5 (R/W) – чтение и запись, в частности, запись при соединении с землёй.
6 (E) – активация (enable).
7–10 (DB0-DB3) – младшие биты от восьмибитного интерфейса.
11–14 (DB4-DB7) – старшие биты от интерфейса
15 (A) – положительный анод на питание подсветки.
16 (K) – отрицательный катод на питание подсветки.

Шаг 2: Подключаем ЖК-дисплей

Перед тем как подключать дисплей и передавать на него информацию, стоит проверить его работоспособность. Сперва подайте напряжение на VSS и VDD контроллер, запитайте подсветку (A, K), далее настройте контрастность. Для таких настроек подойдёт потенциометр с 10 кОм, форма его не важна. На крайние ноги подают +5V и GND, а ножку по центру соединяют с VO выводом.

Когда на схему подаётся питание, нужно добиться необходимого контраста, если он настраивается неправильно, то и изображение на экране видно не будет. Чтобы настроить контраст, нужно «поиграть» с потенциометром. Когда схема будет собрана правильно и контраст настроен верно, верхняя строка на экране должна заполниться прямоугольниками.

Чтобы дисплей работал, применяется встроенная в Arduino IDE среду специальная библиотека LiquidCrystal.h, о которой я напишу ниже. Он может действовать в 8-битном и в 4-битном режиме. В первом варианте применяют лишь младшие и старшие биты (BB0-DB7), во втором – только младшие (BB4-DB7).

Но применение 8-битного режима в этом дисплее – неправильное решение, преимущества в скорости почти нет, поскольку частота обновления у него всегда меньше 10 раз за секунду. Чтобы выводился текст, надо присоединить выводы DB7, DB6, DB5, DB4, E и RS к выводам контроллера. Присоединять их допустимо к любым пинам Arduino, главное – задание верной последовательности в коде.

Если необходимого символа пока что нет в памяти контроллера, то можно его определить вручную (всего до семи символов). Ячейка в рассматриваемых дисплеях имеет расширение в пять на восемь точек. Задача создания символа в том, чтобы написать битовую маску и расставить единички в местах, где точки должны гореть, а нолики – где не должны.

Рассмотренная выше схема подключения не всегда хороша, т. к. на Arduino занимается минимум шесть цифровых выходов.

Шаг 3: Схема обхода

Изучим вариант, как обойти это и обойтись только двумя. Нужен добавочный модуль-конвертор для LCD в IIC/I2C. Как он припаивается к дисплею и присоединяется к Arduino, можно увидеть на изображениях ниже.

Но такой вариант подключения действует лишь со специальной библиотекой LiquidCrystal_I2C1602V1, которую, впрочем, нетрудно найти в Сети и установить, после чего можно без проблем им пользоваться.

Шаг 4: Библиотека LiquidCrystal.h

Библиотеку LiquidCrystal.h можно скачать с официального ресурса - . Также вы можете скачать ниже по ссылкам:

Скетч

После того, как вы скачали архив замените папку LiquidCrystal в папке с библиотеками вашего каталога установки Arduino.

Вы можете увидеть примерный скетч в Файл -> Примеры -> LiquidCrystal -> HelloWorld_SPI (File -> Examples -> LiquidCrystal -> HelloWorld_SPI).

На этом наш очередной урок завершен. Желаем вам качественных проектов!