Что такое протокол tcp ip. Способы передачи данных

В современном мире информация распространяется за считанные секунды. Вот только что появилась новость, а через секунду она уже доступна на каком-либо сайте в сети интернет. Интернет считается одной из самых полезных разработок человеческого разума. Чтобы пользоваться всеми благами, которые предоставляет интернет, необходимо подключиться к этой сети.

Мало кто знает, что простой процесс посещения веб-страничек подразумевает незаметную для пользователя, сложную систему действий. Каждый переход по ссылке активирует сотни различных вычислительных операций в сердце компьютера. В их числе передачи запросов, прием ответов и многое другое. За каждое действие в сети отвечают так называемые протоколы TCP/IP. Что они собой представляют?

Любой протокол интернета TCP/IP работает на своем уровне. Иными словами, каждый занимается своим делом. Все семейство TCP/IP протоколов одновременно выполняет колоссальную работу. А пользователь в это время видит только яркие картинки и длинные строки текста.

Понятие стека протоколов

Стек протоколов TCP/IP - это организованный набор основных сетевых протоколов, который иерархическим способом разделен на четыре уровня и представляет собой систему транспортного распределения пакетов по компьютерной сети.

TCP/IP - это наиболее известный стек сетевых протоколов, который используется на данный момент. Принципы стека TCP/IP применяются как в локальных, так и в глобальных сетях.

Принципы использования адресов в стеке протоколов

Стек сетевых протоколов TCP/IP описывает пути и направления отправки пакетов. Это основная задача всего стека, выполняющаяся на четырех уровнях, которые взаимодействуют между собой протоколированным алгоритмом. Для правильной отправки пакета и его доставки ровно в ту точку, которая его запросила, была введена и стандартизирована адресация IP. Этому послужило наличие следующих задач:

  • Адреса различного типа, должны быть согласованы. Например преобразование домена сайта в IP адрес сервера и обратно, или преобразование имени узла в адрес и обратно. Таки образом становится возможен доступ к точке не только с помощью IP адреса, но и по интуитивному названию.
  • Адреса должны быть уникальны. Это вызвано тем, что в некоторых частных случаях пакет должен попасть только в одну конкретную точку.
  • Необходимость конфигурирования локальных вычислительных сетей.

В малых сетях, где используется несколько десятков узлов, все эти задачи выполняются элементарно, с помощью простейших решений: составление таблицы с описанием принадлежности машины и соответствующего ей IP адреса, или можно вручную раздать всем сетевым адаптерам IP адреса. Однако для крупных сетей на тысячу или две тысячи машин задача ручной выдачи адресов не кажется такой выполнимой.

Именно поэтому для сетей TCP/IP был изобретен специальный подход, который и стал отличительной чертой стека протоколов. Было введено понятие - масштабируемость.

Уровни стека протоколов TCP/IP

Здесь существует определенная иерархия. Стек протоколов TCP/IP предусматривает четыре уровня, каждый из которых обрабатывает свой набор протоколов:

Прикладной уровень : создан для обеспечения работы пользователя с сетью На этом уровне обрабатывается все то, что видит и делает пользователь. Уровень позволяет пользователю получить доступ к различным сетевым службам, например: доступ к базам данных, возможность прочитать список файлов и открыть их, отправить электронное сообщение или открыть веб-страницу. Вместе с пользовательскими данными и действиям, на этом уровне передается служебная информация.

Транспортный уровень: это механизм передачи пакетов в чистом виде. На этом уровне совершенно не имеет значения ни содержимое пакета, ни его принадлежность к какому бы то ни было действию. На этом уровне имеет значение только адрес узла отправки пакета и адрес узла, на который пакет должен быть доставлен. Как правило, размер фрагментов, передаваемых с использованием разных протоколов, может изменяться, потому на этом уровне блоки информации могут дробиться на выходе и собираться в единое целое в точке назначения. Этим обусловлена возможная потеря данных, если в момент передачи очередного фрагмента произойдет кратковременный разрыв соединения.

Транспортный уровень включает в себя много протоколов, которые делятся на классы, от простейших, которые просто передают данные, до сложных, которые оснащены функционалом подтверждения приема, или повторного запроса недополученного блока данных.

Данный уровень, предоставляет вышестоящему (прикладному) два типа сервиса:

Чтобы обеспечить гарантированную доставку, согласно протоколу TCP устанавливается соединение, которое позволяет выставлять на пакетах нумерацию на выходе и подтверждать их прием на входе. Нумерация пакетов и подтверждение приема - это так называемая служебная информация. Этот протокол поддерживает передачу в режиме "Дуплекс". Кроме того, благодаря продуманному регламенту протокола, он считается очень надежным.

Протокол UDP предназначен для моментов, когда невозможно настроить передачу по протоколу TCP, либо приходится экономить на сегменте сетевой передачи данных. Также протокол UDP может взаимодействовать с протоколами более высокого уровня, для повышения надежности передачи пакетов.

Сетевой уровень или "уровень интернета": базовый уровень для всей модели TCP/IP. Основной функционал этого уровня идентичен одноименному уровню модели OSI и описывает перемещение пакетов в составной сети, состоящей из нескольких, более мелких подсетей. Он связывает соседние уровни протокола TCP/IP.

Сетевой уровень является связующим между вышестоящим транспортным уровнем и нижестоящим уровнем сетевых интерфейсов. Сетевой уровень использует протоколы, которые получают запрос от транспортного уровня, и посредством регламентированной адресации передают обработанный запрос на протокол сетевых интерфейсов, указывая, по какому адресу направить данные.

На этом уровне используются следующие сетевые протоколы TCP/IP: ICMP, IP, RIP, OSPF. Основным, и наиболее популярным на сетевом уровне, конечно же является протокол IP (Internet Protocol). Основной его задачей является передача пакетов от одного роутера к другому до тех пор, пока единица данных не попадет на сетевой интерфейс узла назначения. Протокол IP разворачивается не только на хостах, но и на сетевом оборудовании: маршрутизаторах и управляемых коммутаторах. Протокол IP работает по принципу негарантированной доставки с максимальными усилиями. Т. е., для отправки пакета нет необходимости заранее устанавливать соединение. Такой вариант приводит к экономии трафика и времени на движении лишних служебных пакетов. Пакет направляется в сторону назначения, и вполне возможно, что узел останется недоступным. В таком случае возвращается сообщение об ошибке.

Уровень сетевых интерфейсов: отвечает за то, чтобы подсети с разными технологиями могли взаимодействовать друг с другом и передавать информацию в том же режиме. Реализовано это двумя простыми шагами:

  • Кодирование пакета в единицу данных промежуточной сети.
  • Преобразование информации о месте назначения в стандарты необходимой подсети и отправка единицы данных.

Этот подход позволяет постоянно расширять количество поддерживаемых технологий построения сетей. Как только появляется новая технология, она сразу попадает в стек проколов TCP/IP и позволяет сетям со старыми технологиями передавать данные в сети, построенные с применением более современных стандартов и способов.

Единицы передаваемых данных

За время существования такого явления, как протоколы TCP/IP, установились стандартные термины по части единиц передаваемых данных. Данные при передаче могут дробиться по-разному, в зависимости от технологий, используемых сетью назначения.

Чтобы иметь представление о том, что и в какой момент времени происходит с данными, нужно было придумать следующую терминологию:

  • Поток данных - данные, которые поступают на транспортный уровень от протоколов вышестоящего прикладного уровня.
  • Сегмент - фрагмент данных, на которые дробится поток по стандартам протокола TCP.
  • Датаграмма (особо безграмотные произносят как "Дейтаграмма") - единицы данных, которые получаются путем дробления потока с помощью протоколов, работающих без установления соединения (UDP).
  • Пакет - единица данных, производимая посредством протокола IP.
  • Протоколы TCP/IP упаковывают IP-пакеты в передаваемые по составным сетям блоки данных, которые называются кадрами или фреймами .

Типы адресов стека протоколов TCP/IP

Любой протокол передачи данных TCP/IP для идентификации узлов использует один из следующих типов адресов:

  • Локальные (аппаратные) адреса.
  • Сетевые адреса (IP адреса).
  • Доменные имена.

Локальные адреса (MAC-адреса) - используются в большинстве технологий локальных вычислительных сетей, для идентификации сетевых интерфейсов. Под словом локальный, говоря о TCP/IP, следует понимать интерфейс, который действует не в составной сети, а в пределах отдельно взятой подсети. Например, подсеть интерфейса, подключенного к интернет - будет локальной, а сеть интернет - составной. Локальная сеть может быть построена на любой технологии, и независимо от этого, с точки зрения составной сети машина, находящаяся в отдельно выделенной подсети, будет называться локальной. Таким образом, когда пакет попадает в локальную сеть, дальше его IP адрес ассоциируется с локальным адресом, и пакет направляется уже на MAC-адрес сетевого интерфейса.

Сетевые адреса (IP-адреса). В технологии TCP/IP предусмотрена собственная глобальная адресация узлов, для решения простой задачи - объединения сетей с разной технологией в одну большую структуру передачи данных. IP-адресация совершенно не зависит от технологии, которая используется в локальной сети, однако IP адрес позволяет сетевому интерфейсу представлять машину в составной сети.

В итоге была разработана система, при которой узлам назначается IP адрес и маска подсети. Маска подсети показывает, какое количество бит отводится под номер сети, а какое количество под номер узла. IP адрес состоит из 32 бит, разделенных на блоки по 8 бит.

При передаче пакета ему назначается информация о номере сети и номере узла, в который пакет должен быть направлен. Сначала маршрутизатор направляет пакет в нужную подсеть, а потом выбирается узел, который его ждет. Этот процесс осуществляется протоколом разрешения адресов (ARP).

Доменные адреса в сетях TCP/IP управляются специально разработанной системой доменных имен (DNS). Для этого существуют серверы, которые сопоставляют доменное имя, представленное в виде строки текста, с IP адресом, и отправляет пакет уже в соответствии с глобальной адресацией. Между именем компьютера и IP адресом не предусмотрено соответствий, поэтому, чтобы преобразовать доменное имя в IP адрес, передающему устройству необходимо обратиться к таблице маршрутизации, которая создается на DNS сервере. Например, мы пишем в браузере адрес сайта, DNS сервер сопоставляет его с IP адресом сервера, на котором сайт расположен, и браузер считывает информацию, получая ответ.

Кроме сети интернет, есть возможность выдавать компьютерам доменные имена. Таким образом, упрощается процесс работы в локальной сети. Пропадает необходимость запоминать все IP-адреса. Вместо них можно придумать каждому компьютеру любое имя и использовать его.

IP-адрес. Формат. Составляющие. Маска подсети

IP адрес - 32-битное число, которое в традиционном представлении записывается в виде чисел, от 1 до 255, разделенных между собой точками.

Вид IP адреса в различных форматах записи:

  • Десятичный вид IP адреса: 192.168.0.10.
  • Двоичный вид того же IP адреса: 11000000.10101000.00000000.00001010.
  • Запись адреса в шестнадцатеричной системе счисления: C0.A8.00.0A.

Между ID сети и номером точки в записи нет разделительного знака, но компьютер способен их разделять. Для этого существует три способа:

  1. Фиксированная граница. При этом способе весь адрес условно делится на две части фиксированной длины побайтно. Таким образом, если под номер сети отдать один байт, тогда мы получим 2 8 сетей по 2 24 узлов. Если границу сдвинуть еще на байт вправо, тогда сетей станет больше - 2 16 , а узлов станет меньше - 2 16 . На сегодняшний день подход считается устаревшим и не используется.
  2. Маска подсети. Маска идет в паре с IP адресом. Маска имеет последовательность значений "1" в тех разрядах, которые отведены под номер сети, и определенное количество нулей в тех местах IP адреса, которые отведены на номер узла. Граница между единицами и нулями в маске - это граница между идентификатором сети и ID узла в IP-адресе.
  3. Метод классов адресов. Компромиссный метод. При его использовании размеры сетей не могут быть выбраны пользователем, однако есть пять классов - А, В, С, D, Е. Три класса - А, В и С - предназначены для различных сетей, а D и Е - зарезервированы для сетей специального назначения. В классовой системе каждый класс имеет свою границу номера сети и ID узла.

Классы IP адресов

К классу А относятся сети, в которых сеть идентифицируется по первому байту, а три оставшихся являются номером узла. Все IP адреса, которые имеют в своем диапазоне значение первого байта от 1 до 126 - это сети класса А. Количественно сетей класса А получается совсем мало, зато в каждой из них может быть до 2 24 точек.

Класс В - сети, в которых два высших бита равны 10. В них под номер сети и идентификатор точки отводится по 16 бит. В результате получается, что количество сетей класса В в большую сторону отличается от количества сетей класса А количественно, но они имеют меньшее количество узлов - до 65 536 (2 16) шт.

В сетях класса С - совсем мало узлов - 2 8 в каждой, но количество сетей огромно, благодаря тому, что идентификатор сети в таких структурах занимает целых три байта.

Сети класса D - уже относятся к особым сетям. Он начинается с последовательности 1110 и называется групповым адресом (Multicast adress). Интерфейсы, имеющие адреса класса А, В и С, могут входить в группу и получать вдобавок к индивидуальному еще и групповой адрес.

Адреса класса Е - в резерве на будущее. Такие адреса начинаются с последовательности 11110. Скорее всего, эти адреса будут применяться в качестве групповых, когда наступит нехватка IP адресов в глобальной сети.

Настройка протокола TCP/IP

Настройка протокола TCP/IP доступна на всех операционных системах. Это - Linux, CentOS, Mac OS X, Free BSD, Windows 7. Протокол TCP/IP требует только наличия сетевого адаптера. Разумеется, серверные операционные системы способны на большее. Очень широко, с помощью серверных служб, настраивается протокол TCP/IP. IP адреса в в обычных настольных компьютерах задаются в настройках сетевых подключений. Там настраивается сетевой адрес, шлюз - IP адрес точки, имеющий выход в глобальную сеть, и адреса точек, на которых располагается DNS сервер.

Протокол интернета TCP/IP может настраиваться в ручном режиме. Хотя не всегда в этом есть необходимость. Можно получать параметры протокола TCP/IP с динамически-раздающего адреса сервера в автоматическом режиме. Такой способ используют в больших корпоративных сетях. На DHCP сервер можно сопоставить локальный адрес к сетевому, и как только в сети появится машина с заданным IP адресом, сервер сразу даст ему заранее подготовленный IP адрес. Этот процесс называется резервирование.

TCP/IP Протокол разрешения адресов

Единственный способ установить связь между MAC-адресом и IP адресом - ведение таблицы. При наличии таблицы маршрутизации каждый сетевой интерфейс осведомлен о своих адресах (локальном и сетевом), однако встает вопрос, как правильно организовать обмен пакетами между узлами, применяя протокол TCP/IP 4.

Для чего был придуман протокол разрешения адресов (ARP)? Для того, чтобы связывать семейство TCP/IP протоколов и других систем адресации. На каждом узле создается таблица соответствия ARP, которая заполняется путем опроса всей сети. Происходит это после каждого выключения компьютера.

ARP таблица

Так выглядит пример составленной ARP таблицы.


Протоколы TCP/IP основа работы глобальной сети Интернет. Если быть более точным, то TCP/IP это список или стек протоколов, а по сути, набор правил по которым происходит обмен информации (реализуется модель коммутации пакетов).

В этой статье разберем принципы работы стека протоколов TCP/IP и попробуем понять принципы их работы.

Примечание: Зачастую, обревиатурой TCP/IP называют всю сеть, работающую на основе этих двух протоколов, TCP и IP.

В модель такой сети кроме основных протоколов TCP (транспортный уровень) и IP (протокол сетевого уровня) входят протоколы прикладного и сетевого уровней (смотри фото). Но вернемся непосредственно к протоколам TCP и IP.

Что такое протоколы TCP/IP

TCP — Transfer Control Protocol . Протокол управления передачей. Он служит для обеспечения и установление надежного соединения между двумя устройствами и надежную передачу данных. При этом протокол TCP контролирует оптимальный размер передаваемого пакета данных, осуществляя новую посылку при сбое передачи.

IP — Internet Protocol. Интернет протокол или адресный протокол — основа всей архитектуры передачи данных. Протокол IP служит для доставки сетевого пакета данных по нужному адресу. При этом информация разбивается на пакеты, которые независимо передвигаются по сети до нужного адресата.

Форматы протоколов TCP/IP

Формат IP протокола

Существуют два формата для IP адресов IP протокола.

Формат IPv4. Это 32-битовое двоичное число. Удобная форма записи IP-адреса (IPv4) это запись в виде четырёх групп десятичных чисел (от 0 до 255), разделённых точками. Например: 193.178.0.1.

Формат IPv6. Это 128-битовое двоичное число. Как правило, адреса формата IPv6 записываются в виде уже восьми групп. В каждой группе по четыре шестнадцатеричные цифры разделенные двоеточием. Пример адреса IPv6 2001:0db8:85a3:08d3:1319:8a2e:0370:7889.

Как работают протоколы TCP/IP

Если удобно представьте передаче пакетов данных в сети, как отправку письма по почте.

Если неудобно, представьте два компьютера соединенных сетью. Причем сеть соединения может быть любой как локальной, так и глобальной. Разницы в принципе передачи данных нет. Компьютер в сети также можно считать хостом или узлом.

Протокол IP

Каждый компьютер в сети имеют свой уникальный адрес. В глобальной сети Интернет, компьютер имеет этот адрес, который называется IP-адрес (Internet Protocol Address).

По аналогии с почтой, IP- адрес это номер дома. Но номера дома для получения письма недостаточно.

Передаваемая по сети информация передается не компьютером, как таковым, а приложениями, установленными на него. Такими приложениями являются сервер почты, веб-сервер, FTP и т.п. Для идентификации пакета передаваемой информации, каждое приложение прикрепляется к определенному порту. Например: веб-сервер слушает порт 80, FTP слушает порт 21, почтовый SMTP сервер слушает порт 25, сервер POP3 читает почту почтовых ящиков на порте 110.

Таким образом, в адресном пакете в протоколе TCP/IP, в адресатах появляется еще одна строка: порт. Аналог с почтой — порт это номер квартиры отправителя и адресата.

Пример:

Source address (Адрес отправителя):

IP: 82.146.47.66

Destination address (Адресполучателя):

IP: 195.34.31.236

Стоит запомнить: IP адрес + номер порта — называется «сокет». В примере выше: с сокета 82.146.47.66:2049 пакет отправляется на сокет 195.34.31.236: 53.

Протокол TCP

Протокол TCP это протокол следующего после протокола IP уровня. Предназначен этот протокол для контроля передачи информации и ее целостности.

Например, Передаваемая информация разбивается на отдельные пакеты. Пакеты доставят получателю независимо. В процессе передачи один из пакетов не передался. Протокол TCP обеспечивает повторные передачи, до получения этого пакета получателем.

Транспортный протокол TCP скрывает от протоколов высшего уровня (физического, канального, сетевого IP все проблемы и детали передачи данных).

Для упорядочения обмена данными между компьютерами применяются наборы правил, или протоколы . В настоящее время наиболее широко распространен набор протоколов под общим названием TCP/IP . (Следует помнить, что во многих странах Европы применяется протокол X.25 ). Основные функции семейства протоколов TCP/IP : электронная почта, передача файлов между компьютерами и удаленный вход в систему.

Пользовательская команда mail , пользовательские команды обработки сообщений (MH) и команда сервера sendmail могут применять TCP/IP для передачи сообщений между системами, а основные сетевые утилиты (BNU) могут применять TCP/IP для передачи файлов и команд между системами.

TCP/IP - это набор протоколов, который задает стандарты связи между компьютерами и содержит подробные соглашения о маршрутизации и межсетевом взаимодействии. TCP/IP широко применяется в Internet, поэтому с его помощью могут общаться пользователи из исследовательских институтов, школ, университетов, правительственных учреждений и промышленных предприятий.

TCP/IP обеспечивает связь подключенных к сети компьютеров, обычно называемых хостами. Любую сеть можно подключить к другой сети и организовать связь с ее хостами. Несмотря на то, что существуют различные сетевые технологии, многие из которых основаны на коммутации пакетов и потоковом режиме передачи, набор протокол TCP/IP обладает одним важным преимуществом: он обеспечивает аппаратную независимость.

Так как в протоколах Internet определяется только блок передачи и способ его отправки, TCP/IP не зависит от особенностей сетевого аппаратного обеспечения, позволяя организовать обмен информацией между сетями с различной технологией передачи данных. Система IP-адресов позволяет установить соединение между любыми двумя машинами сети. Кроме того, в TCP/IP также определены стандарты для многих служб связи, предназначенных для конечных пользователей.

TCP/IP обеспечивает средства, позволяющие вашему компьютеру выступать в роли хоста Internet, который может подключиться к сети и установить соединение с любым другим хостом Internet. В TCP/IP предусмотрены команды и средства, которые позволяют выполнять следующие действия:

  • Передавать файлы в другую систему
  • Входить в удаленную систему
  • Выполнять команды в удаленной системе
  • Печатать файлы в удаленной системе
  • Отправлять электронные сообщения удаленным пользователям
  • Вести интерактивный диалог с удаленными пользователями
  • Управлять сетью
Примечание: TCP/IP предусмотрены только основные функции управления сетью. По сравнению с TCP/IP, Простой протокол управления сетью (SNMP) предоставляет более широкий набор команд и функций управления.
  • Терминология TCP/IP
    Ознакомьтесь с основными понятиями Internet, связанными с TCP/IP.
  • Планирование сети TCP/IP
    Стек протоколов TCP/IP - это гибкое средство организации сетевого взаимодействия, поэтому каждый пользователь может настроить его с учетом собственных потребностей. При планировании сети обратите внимание не следующие вопросы. Более подробно эти вопросы обсуждаются в других разделах. Данный список следует рассматривать лишь как общий обзор задач.
  • Установка TCP/IP
    В этом разделе рассмотрена процедура установки TCP/IP .
  • Настройка TCP/IP
    Настройку программного обеспечения TCP/IP можно начинать сразу после его установки в системе.
  • Идентификация и защищенные rcmds
    Теперь у этих команд появились дополнительные способы идентификации.
  • Настройка TCP/IP
    Для настройки TCP/IP создайте файл .netrc .
  • Способы организации взаимодействия с другой системой или пользователем
    Существует несколько способов организации взаимодействия с другой системой или пользователем. В данном разделе описаны два возможных способа. Во-первых, можно установить соединение между локальным и удаленным хостами. Второй способ - это диалог с удаленным пользователем.
  • Передача файлов
    Несмотря на то, что сравнительно небольшие файлы можно передавать с помощью электронной почты, для больших файлов существуют более эффективные способы передачи.
  • Печать на удаленном принтере
    Если к вашему хосту подключен локальный принтер, то с помощью приведенной в этом разделе информации вы сможете печатать на удаленном принтере. Кроме того, если локального принтера нет, то вы сможете печатать на удаленном принтере, отличном от заданного по умолчанию.
  • Печать файлов из удаленной системы
    Вам может понадобиться напечатать файл, который расположен на удаленном хосте. В этом случае расположение напечатанного файла зависит от того, какие удаленные принтеры доступны удаленному хосту.
  • Просмотр сведений о состоянии
    С помощью команд TCP/IP вы можете получить информацию о состоянии, пользователях и хостах сети. Эта информация может потребоваться для связи с другим хостом или пользователем.
  • Протоколы TCP/IP
    Протоколом называется набор правил, задающих форматы сообщений и процедуры, которые позволяют компьютерам и прикладным программам обмениваться информацией. Эти правила соблюдаются каждым компьютером в сети, в результате чего любой хост-получатель может понять отправленное ему сообщение. Набор протоколов TCP/IP можно рассматривать как многоуровневую структуру.
  • Карты сетевых адаптеров локальной сети TCP/IP
    Карта сетевого адаптера - это физическое устройство, которое непосредственно подключается к сетевому кабелю. Она отвечает за прием и передачу данных на физическом уровне.
  • Сетевые интерфейсы TCP/IP
    На уровне сетевого интерфейса TCP/IP создает из IP-дейтаграмм пакеты, которые могут интерпретироваться и передаваться с помощью определенных сетевых технологий.
  • Адресация TCP/IP
    Схема IP-адресации, применяемая в TCP/IP , позволяет пользователям и приложениям однозначно идентифицировать сети и хосты, с которыми устанавливаются соединения.
  • Преобразование имен TCP/IP
    Несмотря на то, что 32-разрядные IP-адреса позволяют однозначно идентифицировать все хосты в сети Internet, пользователям гораздо удобнее работать с осмысленными, легко запоминающимися именами хостов. В Протоколе управления передачей/Протоколе Internet (TCP/IP) предусмотрена система имен, поддерживающая как одноуровневую, так и иерархическую структуру сети.
  • Планирование и настройка преобразования имен LDAP (Схема IBM SecureWay Directory)
    Упрощенный протокол доступа к каталогам (LDAP) - это открытый стандартный протокол, регламентирующий способ получения и изменения информации в каталоге.
  • Планирование и настройка преобразования имен NIS_LDAP (схема RFC 2307)
    В AIX 5.2 реализован новый механизм преобразования имен NIS_LDAP.
  • Присвоение адреса и параметров TCP/IP - протокол динамической настройки хостов
    предназначен для организации связи между компьютерами с определенными адресами. Одной из обязанностей администратора сети является присвоение адресов и задание параметров для всех машин в сети. Обычно администратор информирует пользователей о том, какие адреса выделены их системам, и предоставляет пользователям возможность самим выполнить настройку. Однако ошибки при настройке или неправильное понимание могут вызвать у пользователей вопросы, которые администратор должен будет рассматривать индивидуально. позволяет администратору централизованно настраивать сеть без участия конечных пользователей.
  • Протокол динамической настройки хостов версии 6
    Протокол динамической настройки хостов (DHCP) позволяет работать с сетевыми конфигурациями из централизованного расположения. Этот раздел посвящен DHCPv6 ; под IP-адресами понимаются адреса IPv6, а под DHCP - DHCPv6 (если не сказано обратное).
  • Демон PXE Proxy DHCP
    Сервер PXE Proxy DHCP работает примерно так же, как и сервер DHCP : он просматривает сообщения клиентов DHCP и отвечает на некоторые запросы. Однако, в отличие от сервера DHCP , сервер PXE Proxy DHCP не управляет сетевыми адресами, а всего лишь отвечает на запросы клиентов PXE.
  • Демон согласования загрузочных образов (BINLD)
    Сервер демона согласования загрузочных образов (BINLD) применяется на третьем этапе загрузки клиентов PXE.
  • Демоны TCP/IP
    Демоны (или серверы ) - это процессы, которые работают в фоновом режиме и выполняют запросы других процессов. Протокол управления передачей/Протокол Internet применяет программы-демоны для выполнения определенных функций в операционной системе.
  • Маршрутизация TCP/IP
    Маршрутом называется путь, по которому пакеты пересылаются от отправителя к получателю.
  • Mobile IPv6
    Протокол Mobile IPv6 обеспечивает поддержку переадресации для IPv6 . С его помощью пользователь может применять один и тот же IP-адрес в любой точке земного шара, а приложения, работающие с этим адресом, сохраняют связь и соединения верхнего уровня, независимо от местонахождения пользователя. Поддержка переадресации осуществляется в однородных и разнородных средах.
  • Виртуальный IP-адрес
    Виртуальный IP-адрес устраняет зависимость хоста от отдельных сетевых интерфейсов.
  • Канал EtherChannel и объединение линий IEEE 802.3ad
    Канал EtherChannel и объединение линий IEEE 802.3ad - это технологии объединения сетевых портов, позволяющие объединить несколько адаптеров Ethernet в одно псевдоустройство Ethernet.
  • Протокол IP для InfiniBand (IPoIB)
    Пакеты IP-протокола могут быть отправлены через интерфейс InfiniBand (IB). При этом IP-пакеты заключаются в пакеты IB с помощью сетевого интерфейса.
  • Инициатор ПО iSCSI и целевой объект ПО
    Программный инициатор iSCSI позволяет AIX получать доступ к запоминающим устройствам по сети TCP/IP с использованием адаптеров Ethernet. Целевой объект ПО iSCSI обеспечивает AIX доступ других инициаторов iSCSI к экспортированной локальной памяти с использованием протокола iSCSI, определенного в RFC 3720.

Стек TCP / IP .

Стек TCP/IP – это набор иерархически упорядоченных сетевых протоколов. Название стек получил по двум важнейшим протоколам – TCP (Transmission Control Protocol) и IP (Internet Protocol). Помимо них в стек входят ещё несколько десятков различных протоколов. В настоящее время протоколы TCP/IP являются основными для Интернета, а также для большинства корпоративных и локальных сетей.

В операционной системе Microsoft Windows Server 2003 стек TCP/IP выбран в качестве основного, хотя поддерживаются и другие протоколы (например, стек IPX/SPX, протокол NetBIOS).

Стек протоколов TCP/IP обладает двумя важными свойствами:

    платформонезависимостью, т. е. возможна его реализация на самых разных операционных системах и процессорах;

    открытостью, т. е. стандарты, по которым строится стек TCP/IP, доступны любому желающему.

История создания TCP / IP .

В 1967 году Агентство по перспективным исследовательским проектам министерства обороны США (ARPA – Advanced Research Projects Agency) инициировало разработку компьютерной сети, которая должна была связать ряд университетов и научно-исследовательских центров, выполнявших заказы Агентства. Проект получил название ARPANET. К 1972 году сеть соединяла 30 узлов.

В рамках проекта ARPANET были разработаны и в 1980–1981 годах опубликованы основные протоколы стека TCP/IP – IP, TCP и UDP. Важным фактором распространения TCP/IP стала реализация этого стека в операционной системе UNIX 4.2 BSD (1983).

К концу 80-х годов значительно расширившаяся сеть ARPANET стала называться Интернет (Interconnected networks – связанные сети) и объединяла университеты и научные центры США, Канады и Европы.

В 1992 году появился новый сервис Интернет – WWW (World Wide Web – всемирная паутина), основанный на протоколе HTTP. Во многом благодаря WWW Интернет, а с ним и протоколы TCP/IP, получил в 90-е годы бурное развитие.

В начале XXI века стек TCP/IP приобретает ведущую роль в средствах коммуникации не только глобальных, но и локальных сетей.

Модель OSI .

Модель взаимодействия открытых систем (OSI – Open Systems Interconnection) была разработана Международной организацией по стандартизации (ISO – International Organization for Standardization) для единообразного подхода к построению и объединению сетей. Разработка модели OSI началась в 1977 году и закончилась в 1984 году утверждением стандарта. С тех пор модель является эталонной для разработки, описания и сравнения различных стеков протоколов.

Рассмотрим кратко функции каждого уровня.


Модель OSI включает семь уровней: физический, канальный, сетевой, транспортный, сеансовый, представления и прикладной.

    Физический уровень (physical layer) описывает принципы передачи сигналов, скорость передачи, спецификации каналов связи. Уровень реализуется аппаратными средствами (сетевой адаптер, порт концентратора, сетевой кабель).

    Канальный уровень (data link layer) решает две основные задачи – проверяет доступность среды передачи (среда передачи чаще всего оказывается разделена между несколькими сетевыми узлами), а также обнаруживает и исправляет ошибки, возникающие в процессе передачи. Реализация уровня является программно-аппаратной (например, сетевой адаптер и его драйвер).

    Сетевой уровень (network layer) обеспечивает объединение сетей, работающих по разным протоколам канального и физического уровней, в составную сеть. При этом каждая из сетей, входящих в единую сеть, называется подсетью (subnet). На сетевом уровне приходится решать две основные задачи – маршрутизации (routing, выбор оптимального пути передачи сообщения) и адресации (addressing, каждый узел в составной сети должен иметь уникальное имя). Обычно функции сетевого уровня реализует специальное устройство – маршрутизатор (router) и его программное обеспечение.

    Транспортный уровень (transport layer) решает задачу надежной передачи сообщений в составной сети с помощью подтверждения доставки и повторной отправки пакетов. Этот уровень и все следующие реализуются программно.

    Сеансовый уровень (session layer) позволяет запоминать информацию о текущем состоянии сеанса связи и в случае разрыва соединения возобновлять сеанс с этого состояния.

    Уровень представления (presentation layer) обеспечивает преобразование передаваемой информации из одной кодировки в другую (например, из ASCII в EBCDIC).

    Прикладной уровень (application layer) реализует интерфейс между остальными уровнями модели и пользовательскими приложениями.

Структура TCP / IP . В основе структуры TCP/IP лежит не модель OSI, а собственная модель, называемая DARPA (Defense ARPA – новое название Агентства по перспективным исследовательским проектам) или DoD (Department of Defense – Министерство обороны США). В этой модели всего четыре уровня. Соответствие модели OSI модели DARPA, а также основным протоколам стека TCP/IP показано на рис. 2.2.

Следует заметить, что нижний уровень модели DARPA – уровень сетевых интерфейсов – строго говоря, не выполняет функции канального и физического уровней, а лишь обеспечивает связь (интерфейс) верхних уровней DARPA с технологиями сетей, входящих в составную сеть (например, Ethernet, FDDI, ATM).

Все протоколы, входящие в стек TCP/IP, стандартизованы в документах RFC.

Документы RFC .

Утвержденные официальные стандарты Интернета и TCP/IP публикуются в виде документов RFC (Request for Comments – рабочее предложение). Стандарты разрабатываются всем сообществом ISOC (Internet Society – Сообщество Интернет, международная общественная организация). Любой член ISOC может представить на рассмотрение документ для его публикации в RFC. Далее документ рассматривается техническими экспертами, группами разработчиков и редактором RFC и проходит в соответствии с RFC 2026 следующие этапы, называемые уровнями готовности (maturity levels):

    черновик (Internet Draft) – на этом этапе с документом знакомятся эксперты, вносятся дополнения и изменения;

    предложенный стандарт (Proposed Standard) – документу присваивается номер RFC, эксперты подтвердили жизнеспособность предлагаемых решений, документ считается перспективным, желательно, чтобы он был опробован на практике;

    черновой стандарт (Draft Standard) – документ становится черновым стандартом, если не менее двух независимых разработчиков реализовали и успешно применили предлагаемые спецификации. На этом этапе ещё допускаются незначительные исправления и усовершенствования;

    стандарт Интернета (Internet Standard) – наивысший этап утверждения стандарта, спецификации документа получили широкое распространение и хорошо зарекомендовали себя на практике. Список стандартов Интернета приведен в RFC 3700. Из тысяч RFC только несколько десятков являются документами в статусе «стандарт Интернета».

Кроме стандартов документами RFC могут быть также описания новых сетевых концепций и идей, руководства, результаты экспериментальных исследований, представленных для информации и т. д. Таким документам RFC может быть присвоен один из следующих статусов:

    экспериментальный (Experimental) – документ, содержащий сведения о научных исследованиях и разработках, которые могут заинтересовать членов ISOC;

    информационный (Informational) – документ, опубликованный для предоставления информации и не требующий одобрения сообщества ISOC;

    лучший современный опыт (Best Current Practice) – документ, предназначенный для передачи опыта конкретных разработок, например реализаций протоколов.

Статус указывается в заголовке документа RFC после слова Category (Категория). Для документов в статусе стандартов (Proposed Standard, Draft Standard, Internet Standard) указывается название Standards Track , так как уровень готовности может меняться.

Номера RFC присваиваются последовательно и никогда не выдаются повторно. Первоначальный вариант RFC никогда не обновляется. Обновленная версия публикуется под новым номером. Устаревший и замененный документ RFC получает статус исторический (Historic).

Все существующие на сегодня документы RFC можно посмотреть, например, на сайте www.rfc-editor.org . В августе 2007 года их насчитывалось более 5000. Документы RFC, упоминаемые в этом курсе, приведены в Приложении I.

Обзор основных протоколов.

Протокол IP (Internet Protocol ) – это основной протокол сетевого уровня, отвечающий за адресацию в составных сетях и передачу пакета между сетями. Протокол IP является дейтаграммным протоколом, т. е. не гарантирует доставку пакетов до узла назначения. Обеспечением гарантий занимается протокол транспортного уровня TCP.

Протоколы RIP (Routing Information Protocol протокол маршрутной информации) и OSPF (Open Shortest Path First – « первыми открываются кратчайшие маршруты») – протоколы маршрутизации в IP-сетях.

Протокол ICMP (Internet Control Message Protocol протокол управляющих сообщений в составных сетях) предназначен для обмена информацией об ошибках между маршрутизаторами сети и узлом-источником пакета. С помощью специальных пакетов сообщает о невозможности доставки пакета, о продолжительности сборки пакета из фрагментов, об аномальных величинах параметров, об изменении маршрута пересылки и типа обслуживания, о состоянии системы и т. п.

Протокол ARP (Address Resolution Protocol – протокол преобразования адресов) преобразует IP-адреса в аппаратные адреса локальных сетей. Обратное преобразование осуществляется с помощью протокола RAPR (Reverse ARP).

TCP (Transmission Control Protocol – протокол управления передачей) обеспечивает надежную передачу сообщений между удаленными узлами сети за счет образования логических соединений. TCP позволяет без ошибок доставить сформированный на одном из компьютеров поток байт на любой другой компьютер, входящий в составную сеть. TCP делит поток байт на части – сегменты и передает их сетевому уровню. После того как эти сегменты будут доставлены в пункт назначения, протокол TCP снова соберет их в непрерывный поток байт.

UDP (User Datagram Protocol – протокол дейтаграмм пользователя) обеспечивает передачу данных дейтаграммным способом.

HTTP (HyperText Transfer Protocol – протокол передачи гипертекста) – протокол доставки web-документов, основной протокол службы WWW.

FTP (File Transfer Protocol – протокол передачи файлов) – протокол для пересылки информации, хранящейся в файлах.

POP 3 (Post Office Protocol version 3 – протокол почтового офиса) и SMTP (Simple Mail Transfer Protocol – простой протокол пересылки почты) – протоколы для доставки входящей электронной почты (POP3) и отправки исходящей (SMTP).

Telnet – протокол эмуляции терминала 1 , позволяющий пользователю подключаться к другим удалённым станциям и работать с ними со своей машины, как если бы она была их удалённым терминалом.

SNMP (Simple Network Management Protocol – простой протокол управления сетью) предназначен для диагностики работоспособности различных устройств сети.