Вид модель бывает четырех разных. Модель: виды моделей, понятие и описание

6. Модели и моделирование (11 кл) .

Человек стремится познать объекты окружающего мира, он взаимодействует с существующими объектами и создает новые объекты.

Одним из методов познания объектов окружающего мира является моделирование, состоящее в создании и исследовании «заместителей» реальных объектов. «Объ­ект-заместитель» принято называть моделью , а исходный объект - прототипом или оригиналом.

Модель – это объект, который обладает некоторыми свойствами другого объекта (оригинала ) и используется вместо него.

Например, в разговоре мы замещаем реальные объекты их именами, оформите­ли витрин используют манекен - модель человеческой фигуры, конструкторы стро­ят модели самолетов и автомобилей, а ар­хитекторы - макеты зданий, мостов и парков. Моделью является любое нагляд­ное пособие, используемое на уроках в школе: глобус, муляж, карта, схема, таб­лица и т. п.

Что можно моделировать?

Можно строить модели объектов. Например,

Уменьшенные копии зданий, кораблей, самолетов, …

Модели ядра атома, кристаллических решеток

Чертежи

Можно строить модели процессов. Например,

Изменение экологической обстановки

Экономические модели

Исторические модели

Можно строить модели явлений. Например,

Землетрясение

Солнечное затмение

Модель важна не сама по себе, а как инструмент, облегчающий познание или наглядное представление объекта. Моделирование – это создание и использование моделей для изучения оригиналов.

Когда используют моделирование:

оригинал не существует

Древний Египет

Последствия ядерной войны

исследование оригинала опасно для жизни или дорого:

Испытание нового скафандра для космонавтов

Разработка нового самолета или корабля

оригинал сложно исследовать непосредственно:

Солнечная система, галактика (большие размеры)

Атом, нейтрон (маленькие размеры)

Процессы в двигателе внутреннего сгорания (очень быстрые)

Геологические явления (очень медленные)

интересуют только некоторые свойства оригинала

Проверка краски для фюзеляжа самолета

Цели моделирования

исследование оригинала изучение сущности объекта или явления

анализ («что будет, если …») научиться прогнозировать последствия различных воздействиях на оригинал

синтез («как сделать, чтобы …») научиться управлять оригиналом, оказывая на него воздействия

оптимизация («как сделать лучше») выбор наилучшего решения в заданных условиях

Что общего у всех моделей? Какими свойствами они обладают?

Во-первых, модель не является точной копией объек­та-оригинала: она отражает только часть его свойств, от­ношений и особенностей поведения. Например, на мане­кен можно надеть костюм, но с ним нельзя поговорить. Модель автомобиля может быть без мотора, а макет дома - без электропроводки и водопровода .

Во-вторых, поскольку любая модель всегда отражает только часть признаков оригинала, то можно создавать и использовать разные модели одного и того же объекта. Например: мяч может воспроизвести только одно свойст­во Земли - ее форму; обычный глобус отражает, кроме того, расположение материков; а глобус, входящий в со­став действующей модели Солнечной системы, - еще и траекторию движения Земли вокруг Солнца. Оригиналу может соответствовать несколько разных моделей и наоборот!

Чем больше признаков объекта отражает модель, тем она полнее. Однако отразить в модели все свойства объек­та-оригинала невозможно, а чаще всего и не нужно. Ведь при создании модели человек, как правило, преследует вполне определенную цель и стремится наиболее полно от­разить только те признаки объектов, которые кажутся ему важными, существенными для реализации этой цели. Если, например, модель самолета создается для кол­лекции, то в ней воспроизводится внешний вид самолета, а не его летные характеристики.

От цели моделирования зависят требования к модели: какие именно признаки объекта-оригинала она должна отражать. Тип модели определяется целями моделирования.

Виды моделей

Природа моделей может быть двух видов. Во-первых, материальные (натурные, физические, предметные) модели. Это реальные предметы в уменьшенном или увеличенном виде, воспроизводящие внешний вид, структуру или поведение объекта моделирования. Они копируют, воспроизводят признаки оригинала. Примерами натурных моделей являются муляжи и маке­ты - уменьшенные или увеличенные копии, воспроизво­дящие внешний вид объекта моделирования (глобус), его структуру (модель Солнечной системы) или поведение (ра­диоуправляемая модель автомобиля).

Во-вторых, информационные модели. Они представляют собой описания объекта-оригинала на языках кодирования информации (словес­ное описание, формула, схема или чертеж). Именно информационные модели можно строить на компьютере, поэтому они и рассматриваются наукой информатикой.

Объектом информационного моделирования может быть всё что угод­но: отдельные предметы (дерево, стол); физические, химические, биоло­гические процессы (течение воды в трубе, получение серной кислоты, фо­тосинтез в листьях растений); метеорологические явления (гроза, смерч); экономические и социальные процессы (динамика цен акций на бирже, миграция населения). Можно сказать, что информационным моделированием занимается любая наука, поскольку задача науки состоит в получении знаний, а наши знания о действительности всегда носят приближенный, т. е. мо­дельный, характер. С развитием науки эти знания уточняются, углубля­ются, но все равно остаются приближенными. Старые модели заменяются на новые, более точные, и этот процесс бесконечен.

Физика создает модели физических объектов, химия - химических, экономика и социология -- социально-экономических и т. д. Информатика занимается общими методами и средствами созда­ния и использования информационных моделей.

Виды информационных моделей.

вербальные – словесные, сказанные устно

образные – фотографии, рисунки…

графические - рисунки, схемы, карты, …

табличные – организованные в виде таблиц

знаковые – выраженные с помощью формального языка

q математические - построенные с помощью математических понятий и формул

q специальные - запись нотами, химическими формулами,..

q логические - различные варианты выбора действий на основе анализа условий.

Существует много различных классификаций моделей. Между видами моделей достаточно тонкая грань. Например, глобус считается материальной моделью Земли, но на нём есть рисунок – графическое изображение, оно содержит специальные значки, числа и надписи. А это уже элементы информационной модели.

Модели по области применения бывают учебные (в т. ч. тренажеры), опытные – при создании новых технических средств, научно-технические.

Модели по фактору времени бывают

статичные – описывают оригинал в заданный момент времени

q силы, действующие на тело в состоянии покоя

q результаты осмотра врача

q фотография

динамичные

q модель движения тела

q явления природы (молния, землетрясение, цунами)

Модели по характеру связей

детерминированные

Связи между входными и выходными величинами жестко заданы

При одинаковых входных данных каждый раз получаются одинаковые результаты

q движение тела без учета ветра

q расчеты по известным формулам

вероятностные (стохастические)

Учитывают случайность событий в реальном мире

При одинаковых входных данных каждый раз получаются немного разные результаты

q движение тела с учетом ветра

q броуновское движение частиц

q модель движения судна на волнении

q модели поведения человека

Специальные виды моделей

имитационные

Нельзя заранее вычислить или предсказать поведение системы, но можно имитировать её реакцию на внешние воздействия;

Максимальный учет всех факторов;

Только численные результаты;

q испытания лекарств на мышах, обезьянах, …

q математическое моделирование биологических систем

q модели бизнеса и управления

q модели процесса обучения

Задача – найти лучшее решение методом проб и ошибок (многократные эксперименты)!

игровые – учитывающие действия противника

q модели экономических ситуаций

q модели военных действий

q спортивные игры

q тренинги персонала

Задача – найти лучший вариант действий в самом худшем случае!

Модели по структуре бывают

табличные модели (пары соответствия)

иерархические (многоуровневые) модели

сетевые модели (графы)

Модели используются человеком для:

Представления материальных предметов (макет за­стройки жилого района в мастерской архитектора);

Объяснения известных фактов (макет скелета челове­ка в кабинете биологии);

Проверки гипотез и получения новых знаний об иссле­дуемых объектах (модель полета самолета новой кон­струкции в аэродинамической трубе);

Прогнозирования (сделанные из космоса фотоснимки движения воздушных масс);

управления (расписание движения поездов) и т. д.

Компьютерная информационная модель.

Основным инструментом со­временной информатики является компьютер. Поэтому информационное моделирование в информатике - это компьютерное моделирование, при­менимое к объектам различных предметных областей. Компьютер позво­лил ученым работать с такими информационными моделями, исследова­ние которых было невозможно или затруднено в докомпьютерные време­на. Например, метеорологи могли и 100 лет назад написать уравнения для расчета прогноза погоды на завтра. Но на решение их «ручным способом» потребовалось бы много лет. И лишь с помощью компьютера появилась возможность рассчитать прогноз погоды прежде, чем наступит завтраш­ний день.

Чаще всего информационное моделирование используется для прогно­зирования поведения объекта моделирования, для принятия управляю­щих решений. Характерной особенностью компьютерных информацион­ных моделей является возможность их использования в режиме реально­го времени, т. е. с соблюдением временных ограничений на получение результата. В самом деле, какой смысл имеет получение через неделю про­гноза на завтра или расчет управляющего решения через час, если его при­нятие требуется через пять минут? Высокое быстродействие современных компьютеров снимает эти проблемы.

Адекватность модели

Адекватность – совпадение существенных свойств модели и оригинала. Адекватность обязательна для верного использования модели. Ведь неадекватная модель даст неверный результат при исследовании, эксперименте. Поэтому результаты моделирования согласуются с выводами теории (законы сохранения и т. п.), подтверждаются экспериментом. Адекватность модели можно доказать только экспериментом!

Модель всегда отличается от оригинала. Важно учитывать, что любая модель бывает адекватна своему оригиналу только при определенных условиях.

Этапы моделирования .

Построение информационной модели начина­ется с системного анализа объекта моделирования. Представим себе быст­ро растущую фирму, руководство которой столкнулось с проблемой сни­жения эффективности работы фирмы по мере ее роста (что является обыч­ной ситуацией) и решило упорядочить управленческую деятельность. Первое, что будет сделано на этом пути, - системный анализ деятельнос­ти фирмы, т. е. анализ объекта моделирования как системы в соответ­ствии с системным подходом.

Системный аналитик, пригла­шенный в фирму, должен изучить ее деятельность, выделить участников процесса управления и их деловые взаимоотношения .

Далее полученное теоретическое описание моделируемой системы пре­образуется в компьютерную модель. Для этого используется либо готовое программное обеспечение , либо привлекаются программисты для его раз­работки. В конечном итоге получается компьютерная информационная модель, которая будет использоваться по своему назначению.

Для нашего примера с фирмой компьютерная информационная модель поможет найти оптимальный вариант управления, при котором будет до­стигнута наивысшая эффективность работы фирмы согласно заложенно­му в модель критерию (например, это может быть максимум прибыли на единицу вложенных средств). Информационная модель базируется на данных, т. е. на информации об объекте моделирования. Любой реальный объект обладает бесконечным множеством различных свойств. Для создания его информационной модели требуется выделить лишь те свойства, которые необходимы с точ­ки зрения цели моделирования; четко сформулировать эту цель необходи­мо до начала моделирования. Например, если вы хотите создать модель учебного процесса в вашем классе, то вам потребуются данные об изучае­мых предметах, расписании занятий , оценках учеников, преподавателях. А если вы захотите смоделировать процесс летнего отдыха (например, коллективной поездки на юг), то вам потребуются совсем другие данные: сроки поездки, маршрут поезда, стоимость билетов, стоимость расходов на питание и пр. Возможно, что единственными общими данными для этих двух моделей будет список учеников класса.

Этапы разработки компьютерной информационной модели

Вопросы и задания

1. Что такое модель?

2. Что такое моделирование?

3. Что можно моделировать? Ваши примеры.

4. Когда используют моделирование? Ваши примеры.

5. Каковы цели моделирования?

6. Сколько моделей можно построить для одного оригинала?

7. Скольким оригиналам может соответствовать одна модель?

8. От чего зависит тип создаваемой модели?

9. Все ли свойства оригинала отражает модель? Если нет, то какие отраджает?

10. Какие модели называют натурными? Приведите 2-3 примера натурных моделей.

11. Какие модели называют информационными?

12. Какие вам известны виды информационных моделей? Приве­дите по 2 собственных примера информационных моделей на каждый вид.

13. Какова роль информатики в информационном моделировании?

14. Что такое адекватность модели и зачем она нужна?

15. Каковы основные этапы компьютерного моделирования?

16. В какой ситуации искусственные цветы и муляжи фруктов могут использоваться в качестве моделей-«заместителей» настоящих цветов и фруктов? Какие свойства и отношения объектов отражают эти модели, а какие - нет?

17. Приведите пример информационной модели:

a. ученика вашего класса;

b. квартиры жилого дома;

c. книги в библиотеке;

d. кассеты (диска) со звукозаписью (видеозаписью);

По способу отображения действительности различают три ос­новных вида моделей - эвристические, физические и матема­тиче­ские.

Эвристические модели , как правило, представляют собой об­разы, рисуемые в воображении человека. Их описание ве­дется словами естественного языка и, обычно, неоднозначно и субъек­тивно. Эти модели неформализуемы, т. е. не описыва­ются фор­мально-логическими и математическими выраже­ниями, хотя и рождаются на основе представления реальных процессов и явле­ний. Эвристическое моделирование - основное средство вырвать­ся за рамки обыденного и устоявшегося. Но способность к такому моделированию зависит, прежде всего, от богатства фантазии че­ловека, его опыта и эрудиции. Эвристиче­ские модели используют­ся на начальных этапах проектирова­ния (или других видов дея­тельности), когда сведения о разраба­тываемом объекте еще скуд­ны. На последующих этапах проек­тирования эти модели заменя­ются на более конкретные и точ­ные.

Физические модели - материальны, но могут отличаться от реального объекта или его части размерами, числом и материа­лом элементов. Выбор размеров ведется с соблюдениемтеории подобия. К физическим моделям относятся реальные изделия, образцы, экспериментальные и натурные модели.

Физические модели подразделяются на объемные (модели и ма­кеты) и плоские (тремплеты).

Под моделью понимают изделие, являющееся упрощенным по­добием исследуемого объекта.

Под тремплетом понимают изделие, являющееся плоским мас­штабным отображением объекта в виде упрощенной ортого­нальной проекции или его контурным очертанием. Тремплеты вырезают из пленки, картона и т. п. и применяют при исследова­нии и проектировании зданий, установок, сооружений.

Под макетом понимают изделие, собранное из моделей или тремплетов.

Физическое моделирование - основа наших знаний и средство проверки наших гипотез и результатов расчетов. Такая модель позволяет охватить явление или процесс во всемих многообра­зии, наиболее адекватна и точна, но достаточно дорога, трудо­емка и менее универсальна. В том или ином виде с физическими моделя­ми работают на всех этапах проектирования.

Математические модели - формализуемые, т. е. представля­ют собой совокупность взаимосвязанных математических и фор­мально-логических выражений, как правило, отображающих ре­альные процессы и явления (физические, психические, социаль­ные и т. д.). Модели по форме представления могут быть:

Аналитические, их решения ищутся в замкнутом виде, в виде функциональных зависимостей. Удобны, при анализе сущности описываемого явления или процесса, но отыскание их решений бывает весьма затруднено;

Численные, их решения - дискретный ряд чисел (таблицы). Модели универсальны, удобны для решения сложных задач, но не наглядны и трудоемки при анализе и установлении взаимо­связей между параметрами. В настоящее время такие модели реализуют в виде программных комплексов - пакетов программ для расчета на компьютере. Программные ком­плексы бывают прикладные, привязанные к предметной об­ласти и конкретной системе, явлению, процессу, и общие, реализующие универ­сальные математические соотношения (например, расчет сис­темы алгебраических уравнений).

Построение математических моделей возможно следующими способами:

Аналитическим путем, т. е. выводом из физических законов, математических аксиом или теорем;

Экспериментальным путем, т. е. посредством обработки ре­зультатов эксперимента и подбора аппроксимирующих (при­ближенно совпадающих) зависимостей.

Математические модели более универсальны, дешевы, позво­ляют поставить "чистый" эксперимент (т. е. в пределах точности модели исследовать влияние какого-то отдельного фактора при постоянстве других), прогнозировать развитие явления или про­цесса. Математические модели - основа построения компьютер­ных моделей и применения вычислительной техники. Резуль­таты математического моделирования нуждаются в обязатель­ном со­поставлении с данными физического моделирования - с целью проверки полученных данных и для уточнения самой мо­дели.

К промежуточным между эвристическими и математическими моделями можно отнести графические модели , представляю­щие различные изображения - схемы, графики, чертежи. Так, эскизу (упрощенному изображению) некоторого объекта в зна­чительной степени присущи эвристические черты, а в чертеже уже конкрети­зируются внутренние и внешние связи моделируе­мого объекта.

Промежуточными также являются и аналоговые модели . Они позволяют исследовать одни физические явления или математи­че­ские выражения посредством изучения других физических явле­ний, имеющих аналогичные математические модели.

Выбор типа модели зависит от объема и характера исходной информации о рассматриваемом объекте и возможностей проек­тировщика, исследователя. По возрастанию степени соответст­вия реальности модели можно расположить в следующий ряд: эври­стические (образные) - математические - физические (экс­пери­ментальные).

Технические системы различаются по назначению, устрой­ст­ву и условиям функционирования. Следовательно, можно и нужно вносить соответствующие различия и в их модели.

В зависимости от целей исследования выделяют следующие модели:

Функциональные, предназначенные для изучения функцио­нального назначения элементов системы, внутренних связей и связей с другими системами;

Функционально-физические, предназначенные для изучения сущности и назначения физических явлений, используемых в системе, их взаимосвязей;

Модели процессов и явлений, таких как кинематические, проч­ностные, динамические и другие, предназначенные для иссле­дования тех или иных характеристик системы, обеспечиваю­щих ее эффективное функционирование.

Модели также подразделяют на простые и сложные, однород­ные и неоднородные, открытые и закрытые, статические и дина­мические, вероятностные и детерминированные.

Часто говорят о технической системе как простой или слож­ной, закрытой или открытой и т. п. В действительности же под­ра­зумевается не сама система, а возможный вид ее модели, ак­центи­руется особенность ее устройства или условий работы.

Четкого правила разделения систем на сложные ипростые не существует. Обычно признаком сложных систем служит много­об­разие выполняемых функций, большое число составных час­тей, разветвленный характер связей, тесная взаимосвязь с внеш­ней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определя­ется необходимыми для ее исследования затратами времени и средств, потребным уровнем квалификации, т. е. за­висит от кон­кретного случая и конкретного специалиста.

Подразделение систем на однородные и неоднородные произ­водится в соответствии с заранее выбранным призна­ком: исполь­зуемые физические явления, материалы, формы и т. д. При этом одна и та же система при разных подходах может быть и однород­ной, и неоднородной. Так, велосипед - однородная механическая система, поскольку использует механические способы передачи движения, но неоднородная по типам материалов, из которых из­готовлены отдельные части (резиновая шина, стальная рама, ко­жаное седло).

Все системы взаимодействуют с внешней средой, обменива­ются с нею сигналами, энергией, веществом. Системы относят к открытым , если их влиянием на окружающую среду или воз­дей­ствием внешних условий на их состояние и качество функ­циони­рования пренебречь нельзя. В противном случае системы рассмат­ривают какзакрытые , изолированные.

Динамические системы , в отличие отстатических , нахо­дятся в постоянном развитии, их состояние и характеристики изменяют­ся в процессе работы и с течением времени.

Характеристики вероятностных (иными словами,стохас­ти­ческих) систем случайным образом распределяются в про­странст­ве или меняются во времени. Это является следствием как случай­но, о распределения свойств материалов, геометриче­ских размеров и форм объекта, так и случайного характера воз­действия на него внешних нагрузок и условий. Характеристикидетерминирован­ных систем заранее известны и точно предска­зуемы.

Знание этих особенностей облегчает процесс моделирова­ния, так как позволяет выбрать вид модели, наилучшим образом соот­ветствующей заданным условиям.

Выбор модели того или иного вида основывается на выделе­нии в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или пред­ше­ствующим опытом. Наиболее часто в процессе моделирова­ния ориентируются на создание простой модели, поскольку это позво­ляет сэкономить время и средства на ее разработку. Од­нако повы­шение точности модели, как правило, связано с рос­том ее сложно­сти, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и по­требной точности и ука­зывает на предпочтительный вид мо­дели.

Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи. Ниже приведена классификация и дана характеристика наиболее общих видов моделей.

Требования к моделям

Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

  • адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадии проектирования , когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например, метод последовательных приближений;
  • точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;
  • универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;
  • целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;
  • и др.
  • аналитическим путем, то есть выводом из физических законов, математических аксиом или теорем;
  • экспериментальным путем, то есть посредством обработки результатов эксперимента и подбора аппроксимирующих (приближенно совпадающих) зависимостей.

Математические модели более универсальны и дешевы, позволяют поставить «чистый» эксперимент (то есть в пределах точности модели исследовать влияние какого-то отдельного параметра при постоянстве других), прогнозировать развитие явления или процесса, отыскать способы управления ими. Математические модели - основа построения компьютерных моделей и применения вычислительной техники.

Результаты математического моделирования нуждаются в обязательном сопоставлении с данными физического моделирования - с целью проверки получаемых данных и для уточнения самой модели. С другой стороны, любая формула - это разновидность модели и, следовательно, не является абсолютной истиной , а всего лишь этап на пути её познания.

Промежуточные виды моделей

К промежуточным видам моделей можно отнести:

Трёхмерная компьютерная модель

  • графические модели . Занимают промежуточное место между эвристическими и математическими моделями. Представляют собой различные изображения:
    • эскизы . Этому упрощенному изображению некоторого устройства в значительной степени присущи эвристические черты;
    • чертежи . Здесь уже конкретизированы внутренние и внешние связи моделируемого (проектируемого) устройства, его размеры;
    • полигональная модель в компьютерной графике как образ объекта, «сшитый» из множества многоугольников.
  • аналоговые модели . Позволяют исследовать одни физические явления или математические выражения посредством изучения других физических явлений, имеющих аналогичные математические модели;
  • и др.

Существует и другие виды «пограничных» моделей, например, экономико-математическая и т. д.

Модель принципа действия

Модель принципа действия (принципиальная модель , концептуальная модель ) характеризует самые существенные (принципиальные) связи и свойства реальной системы. Это - основополагающие физические, биологические, химические, социальные и т. п. явления, обеспечивающие функционирование системы, или любые другие принципиальные положения, на которых базируется планируемая деятельность или исследуемый процесс. Стремятся к тому, чтобы количество учитываемых свойств и характеризующих их параметров было небольшим (оставляют наиболее важные), а обозримость модели - максимальной, так чтобы трудоемкость работы с моделью не отвлекала внимание от сущности исследуемых явлений. Как правило, описывающие подобные модели параметры - функциональные, а также физические характеристики процессов и явлений. Принципиальные исходные положения (методы, способы, направления и т. д.) лежат в основе любой деятельности или работы.

Так, принцип действия технической системы - это последовательность выполнения определенных действий, базирующихся на определенных физических явлениях (эффектах), которые обеспечивают требуемое функционирование этой системы. Примеры моделей принципа действия: фундаментальные и прикладные науки (например, принцип построения модели, исходные принципы решения задачи), общественная жизнь (например, принципы отбора кандидатов, оказания помощи), экономика (например, принципы налогообложения, исчисления прибыли), культура (например, художественные принципы).

Работа с моделями принципа действия позволяет определить перспективные направления разработки (например, механика или электротехника) и требования к возможным материалам (твердые или жидкие, металлические или неметаллические, магнитные или немагнитные и т. д.).

Правильный выбор принципиальных основ функционирования предопределяет жизнеспособность и эффективность разрабатываемого решения. Так, сколько бы ни совершенствовали конструкцию самолета с винтомоторным двигателем, он никогда не разовьет сверхзвуковую скорость, не говоря уже о полетах на больших высотах. Только использование другого физического принципа, например, реактивного движения и созданного на его основе реактивного двигателя , позволит преодолеть звуковой барьер.

Графическим представлением моделей принципа действия служат блок-схема , функциональная схема , принципиальная схема .

Например, для технических моделей эти схемы отражают процесс преобразования вещества, как материальной основы устройства, посредством определенных энергетических воздействий с целью реализации потребных функций (функционально-физическая схема ). На схеме виды и направления воздействия, например, изображаются стрелками, а объекты воздействия - прямоугольниками.

Структурная модель

Четкого определения структурной модели не существует. Так, под структурной моделью устройства могут подразумевать:

  • структурную схему , которая представляет собой упрощенное графическое изображение устройства, дающее общее представление о форме, расположении и числе наиболее важных его частей и их взаимных связях;
  • топологическую модель , которая отражает взаимные связи между объектами, не зависящие от их геометрических свойств.

Под структурной моделью процесса обычно подразумевают характеризующую его последовательность и состав стадий и этапов работы, совокупность процедур и привлекаемых технических средств, взаимодействие участников процесса.

Например, - это могут быть упрощенное изображение звеньев механизма в виде стержней, плоских фигур (механика), прямоугольники с линиями со стрелками (теория автоматического управления , блок-схемы алгоритмов), план литературного произведения или законопроекта и т. д. Степень упрощения зависит от полноты исходных данных об исследуемом устройстве и потребной точности результатов. На практике виды структурных схем могут варьироваться от несложных небольших схем (минимальное число частей, простота форм их поверхностей) до близких к чертежу изображений (высокая степень подробности описания, сложность используемых форм поверхностей).

Возможно изображение структурной схемы в масштабе. Такую модель относят к структурно-параметрической . Её примером служит кинематическая схема механизма, на которой размеры упрощенно изображенных звеньев (длины линий-стержней, радиусы колес-окружностей и т. д.) нанесены в масштабе, что позволяет дать численную оценку некоторым исследуемым характеристикам.

Для повышения полноты восприятия на структурных схемах в символьном (буквенном, условными знаками) виде могут указывать параметры, характеризующие свойства отображаемых систем. Исследование таких схем позволяет установить соотношения (функциональные, геометрические и т. п.) между этими параметрами, то есть представить их взаимосвязь в виде равенств f (x 1 , х 2 , …) = 0, неравенств f (x 1 , х 2 , …) > 0 и в иных выражениях.

Параметрическая модель

Под параметрической моделью понимается математическая модель, позволяющая установить количественную связь между функциональными и вспомогательными параметрами системы. Графической интерпретацией такой модели в технике служит чертеж устройства или его частей с указанием численных значений параметров.

Классификация моделей

По целям исследований

В зависимости от целей исследования выделяют следующие модели:

  • функциональные . Предназначены для изучения особенностей работы (функционирования) системы, её назначения во взаимосвязи с внутренними и внешними элементами;
  • функционально-физические . Предназначены для изучения физических (реальных) явлений, используемых для реализации заложенных в систему функций;
  • модели процессов и явлений , такие как кинематические, прочностные, динамические и другие. Предназначены для исследования тех или иных свойств и характеристик системы, обеспечивающих её эффективное функционирование.

По особенностям представления

С целью подчеркнуть отличительную особенность модели их подразделяют на простые и сложные, однородные и неоднородные, открытые и закрытые, статические и динамические, вероятностные и детерминированные и т. д. Стоит отметить, что когда говорят, например, о техническом устройстве как простом или сложном, закрытом или открытом и т. п., в действительности подразумевают не само устройство, а возможный вид его модели, таким образом подчеркивая особенность состава или условий работы.

  • Четкого правила разделения моделей на сложные и простые не существует. Обычно признаком сложных моделей служит многообразие выполняемых функций, большое число составных частей, разветвленный характер связей, тесная взаимосвязь с внешней средой, наличие элементов случайности, изменчивость во времени и другие. Понятие сложности системы - субъективно и определяется необходимыми для его исследования затратами времени и средств, потребным уровнем квалификации, то есть зависит от конкретного случая и конкретного специалиста.
  • Разделение систем на однородные и неоднородные проводится в соответствии с заранее выбранным признаком: используемые физические явления, материалы, формы и т. д. При этом одна и та же модель при разных подходах может быть и однородной, и неоднородной. Так, велосипед - однородное механическое устройство, поскольку использует механические способы передачи движения, но неоднородное по типам материалов, из которых изготовлены отдельные части (резиновая шина, стальная рама, пластиковое седло).
  • Все устройства взаимодействуют с внешней средой, обмениваются с нею сигналами, энергией, веществом. Модели относят к открытым , если их влиянием на окружающую среду или воздействием внешних условий на их состояние и качество функционирования пренебречь нельзя. В противном случае системы рассматривают как закрытые , изолированные.
  • Динамические модели, в отличие от статических , находятся в постоянном развитии, их состояние и характеристики изменяются в процессе работы и с течением времени.
  • Характеристики вероятностных (иными словами, стохастических ) моделей случайным образом распределяются в пространстве или меняются во времени. Это является следствием как случайного распределения свойств материалов, геометрических размеров и форм объекта, так и случайного характера воздействия внешних нагрузок и условий. Характеристики детерминированных моделей заранее известны и точно предсказуемы.

Знание этих особенностей облегчает процесс моделирования, так как позволяет выбрать вид модели, наилучшим образом соответствующей заданным условиям. Этот выбор основывается на выделении в системе существенных и отбрасывании второстепенных факторов и должен подтверждаться исследованиями или предшествующим опытом. Наиболее часто в процессе моделирования ориентируются на создание простой модели, что позволяет сэкономить время и средства на её разработку. Однако повышение точности модели, как правило, связано с ростом её сложности, так как необходимо учитывать большое число факторов и связей. Разумное сочетание простоты и потребной точности и указывает на предпочтительный вид модели.

Ссылки

Литература

  • Хорошев А.Н. Введение в управление проектированием механических систем: Учебное пособие. - Белгород, 1999. - 372 с. -

По мере развития человечества происходит структуризация и оптимизация наличных у нас данных и возможностей их использования. При этом ключевой является информационная модель. На сегодняшний день она является существенно недооценённым инструментов планирования. Чтобы сломать эту тенденцию, необходимо рассказывать аудитории о её возможностях, чем и займётся автор этой статьи.

Что называют информационной моделью? Описание и структура

Так называют модель объекта. Она представлена в виде информации, что описывает существенные для конкретного случая параметры и переменные, связи между ними, а также входы и выходы для данных, при подаче на которые можно влиять на получаемый результат. Их нельзя увидеть или потрогать. В целом они не имеют материального воплощения, поскольку строятся на использовании одной информации. Сюда относятся данные, что характеризуют состояния объекта, существенные свойства, процессы и явления, а также связь с внешней средой. Это процесс называется описанием информационной модели. Это самый первый шаг проработки. Полноценной информационной моделью является обычно сложная разработка, которая может иметь много структур, что в рамках статьи сведены в три основных типа:

  1. Описательная. Сюда относятся модели, которые создаются на естественных языках. Они могут иметь любую произвольную структуру, которая удовлетворит составляющего их человека.
  2. Формальная. Сюда относят модели, которые создаются на формальных языках (научных, профессиональных или специализированных). В качестве примеров можно привести такое: все виды таблиц, формул, граф, карт, схемы и прочих подобных структурных формаций.
  3. Хроматические. Сюда относят модели, которые были созданы с применением естественного языка семантики цветовых концептов, а также их онтологических предикатов. Под последними понимают возможность распознавания значений цветовых канонов и смыслов. В качестве примера хроматических моделей можно навести те, что были построены с использованием соответствующей теоретической базы и методологии.

Как видим, основной составляющей являются данные, их структура и процедура обработки. Развивая мысль, можно дополнить, что информационная модель является схемой, в которой описана суть определённого объекта, а также все необходимые для его исследования процедуры. Для более полного описания характеристик используют переменные. Они замещают атрибут цели, которая прорабатывается. И здесь имеет значительную важность структура информационной модели.

Давайте приведём пример. Описание веника и инструкция по его использованию является информационной моделью для уборщика. Но это не всё. Описание и технологический процесс изготовления веника, изложений в соответствующей документации, является информационной моделью и алгоритмом, по которому его делает производитель. Как видите, отражаются наиболее важные свойства объекта. В действительности, конечно, информационная модель – это лишь приближенное описание. В результате можно сказать, что эти данные, с помощью которых осуществляется познание реальности, являются относительно истинными.

Общая классификация

Какие информационные модели существуют? Классификация сформирована на основе самого определения:

  1. Зависимо от количества значений переменных они делятся на динамические и статистические.
  2. По способу описания бывают знаковыми, натурными, формализованными.
  3. Зависимо от особенностей конструирования переменных делятся на графовые, графические, идеографические, текстовые, алгоритмические, табличные.

Виды информационных моделей

Исследованию поддаётся как физический, так и идеальный объект анализа. Это приводит к тому, что существование одинаковых информационных моделей, к которым можно подойти с тем же самых набором инструментариев, нет. Поэтому приходится использовать отдельные подходы и что-то особенное, что позволит изучить или исследовать предметную область. На основании таких суждений принято выделять три виды информационных моделей:

  1. Математические. Благодаря им изучают явления и процессы, что являются представленными в виде наиболее общих математических закономерностей или абстрактных объектов, которых достаточно, чтобы выразить законы природы или внутренние свойства наблюдаемого. Также применяются для подтверждения правила логических рассуждений.
  2. Компьютерные. Используется для описания совокупности переменных, что представлены абстрактными типами данных и поданы в соответствии с выдвигаемыми требованиями среды обработки ЭОМ.
  3. Материальные. Так называют предметное отражение объекта, сохраняющее геометрические и физические свойства (глобус, игрушки, манекены). Также к материальным моделям относят химические опыты.

Типы информационных моделей

Поскольку они являются совокупностью информации, то часто характеризуют состояние и свойства объекта, явления, процесса и их взаимодействие с окружающим их миром. Зависимо от того, как они представлены и выражены, выделяют два типы информационных моделей:

  1. Вербальные. Они создаются как результат умственной деятельности человека и представляются в словесной форме или при помощи жестикуляции.
  2. Знаковые. Для их выражения используются рисунки, схемы, графики, формулы.

Что необходимо для их создания?

Информация, причём как можно более точная. Чем больше предоставленные данные отвечают реальным показателем, тем эффективней применяется модель на практике. Чтобы разработать модель, сначала проводится сбор всей возможной информации. Она отсеивается и остаётся та, что предоставляет наибольшую ценность для исследователя. Проводится анализ предоставляющей интерес информации, на основании которого она структурируется. И зависимо от целей исследователь из отдельных блоков данных строит необходимую модель. Потом проводится поиск ошибок и ликвидация противоречий. Когда этот шаг закончен, то разработка информационной модели тоже считается завершённой.

Где применяются информационные модели?

Везде. Только такое обозначение не всегда применяется на практике из-за его излишней научности. Инструкции для компьютеров, телевизоров, телефонов, использованных бутылей воды, автомобильных аккумуляторов – вот лишь отдельные примеры. Информационной моделью является и технология производства комбайнов, тракторов, самолётов, грузовиков, прицепов, строений. Как видите, для неё есть применение и в быту, и в промышленности. Но сам термин «информационная модель» больше применяется в последней сфере из-за того, что здесь протекают более сложные процессы с участием большого количества людей.

Пример создания

Давайте попробуем детально проанализировать, что такое информационная модель. Это не так сложно, как может показаться. В качестве примера возьмём клавиатуру. Можно определить два направления относительно пользователя: описание и вопросы настройки. Во-первых, производительно пишет в аннотации, какой это хороший продукт, что он может, как с ним удобно работать. Анализирует передовые технологии, применённые при её создании, экологические преимущества и прочие подобные вещи. Главное – понравиться. Но лгать всё же не надо, поскольку это будет иметь нежелательные последствия.

Во-вторых, прорабатываются вопросы настройки. Можно ответить на них с помощью картинок на листке-вкладыше, где будет изображено, куда вставить разъём клавиатуры в компьютер. Также может прилагаться небольшой ремонтный комплект, инструкция по его использованию, особенности построение устройства, как его следует разбирать в случае возникновения определённых проблем – и ряд других вопросов, которые можно только продумать и дать ответ пользователям на них.

Особенности

Чем больше данных, тем описание информационной модели будет сложнее. Это две стороны медали: следует выбирать между точностью и функциональностью. Чтобы не перегибать палку или избежать слабой проработки вопроса следует заранее очертить задачи для проработки и глубину их разбора. Следует позаботиться обо всех имеющихся моментах, поскольку любая проблема, допущенная на этом этапе, в будущем только добавит работы и необходимость затраты денежных средств на устранение конфликта.

Изучение аспектов информационного моделирования

С научной точки зрения этим вопросом занимается кибернетика. Поэтому, если у вас есть желание углубить свои познания в этой области, запаситесь несколькими недавно вышедшими книгами и внимательно изучите их. Хотя можно и по-другому осведомиться, что такое простейшие информационные модели. Информатика может дать необходимый базис, но для получения всей полноты знаний нужна именно кибернетика. В её рамках можно будет ознакомиться не только с детализированными принципами моделирования, но и узнать про существующие разработки, а также возможности их применения.

Заключение

Информационная модель – это важный и полезный инструмент, если правильно его использоваться. При создании сложных систем (например, программного обеспечения) он позволяет проработать основные технические вопросы и устранить возможные не состыковки. В рамках статьи были размещены знания про то, какие информационные модели есть, как они создаются и другая полезная информация, что пригодится на практике.

Модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Модель - создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающий свойства, характеристики и связи объекта – оригинала произвольной природы, существенные для задачи, решаемой субъектом.

Моделирование – процесс создания и использования модели.

Цели моделирования

  • Познание действительности
  • Проведение экспериментов
  • Проектирование и управление
  • Прогнозирование поведения объектов
  • Тренировка и обучения специалистов
  • Обработка информации

Классификация по форме представления

  1. Материальные - воспроизводят геометрические и физические свойства оригинала и всегда имеют реальное воплощение (детские игрушки, наглядные учебные пособия, макеты, модели автомобилей и самолетов и прочее).
    • a) геометрически подобные масштабные, воспроизводящие пространственно- геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);
    • b) основанные на теории подобия субстратно подобные, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);
    • c) аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).
  2. Информационные - совокупность информации, характеризующая свойства и состояния объекта, процесса, явления, а также их взаимосвязь с внешним миром).
    • 2.1. Вербальные - словесное описание на естественном языке).
    • 2.2. Знаковые - информационная модель, выраженная специальными знаками (средствами любого формального языка).
      • 2.2.1. Математические - математическое описание соотношений между количественными характеристиками объекта моделирования.
      • 2.2.2. Графические - карты, чертежи, схемы, графики, диаграммы, графы систем.
      • 2.2.3. Табличные - таблицы: объект-свойство, объект-объект, двоичные матрицы и так далее.
  3. Идеальные – материальная точка, абсолютно твердое тело, математический маятник, идеальный газ, бесконечность, геометрическая точка и прочее...
    • 3.1. Неформализованные модели - системы представлений об объекте оригинале, сложившиеся в человеческом мозгу.
    • 3.2. Частично формализованные .
      • 3.2.1. Вербальные - описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента).
      • 3.2.2. Графические иконические - черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты).
      • 3.2.3. Графические условные - данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем.
    • 3.3. Вполне формализованные (математические) модели.

Свойства моделей

  • Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • Упрощенность : модель отображает только существенные стороны объекта;
  • Приблизительность : действительность отображается моделью грубо или приблизительно;
  • Адекватность : насколько успешно модель описывает моделируемую систему;
  • Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;
  • Потенциальность : предсказуемость модели и её свойств;
  • Сложность : удобство её использования;
  • Полнота : учтены все необходимые свойства;
  • Адаптивность .
Так же необходимо отметить:
  1. Модель представляет собой «четырехместную конструкцию», компонентами которой являются субъект; задача, решаемая субъектом; объект-оригинал и язык описания или способ воспроизведения модели. Особую роль в структуре обобщенной модели играет решаемая субъектом задача. Вне контекста задачи или класса задач понятие модели не имеет смысла.
  2. Каждому материальному объекту, вообще говоря, соответствует бесчисленное множество в равной мере адекватных, но различных по существу моделей, связанных с разными задачами.
  3. Паре задача-объект тоже соответствует множество моделей, содержащих в принципе одну и ту же информацию, но различающихся формами ее представления или воспроизведения.
  4. Модель по определению всегда является лишь относительным, приближенным подобием объекта-оригинала и в информационном отношении принципиально беднее последнего. Это ее фундаментальное свойство.
  5. Произвольная природа объекта-оригинала, фигурирующая в принятом определении, означает, что этот объект может быть материально-вещественным, может носить чисто информационный характер и, наконец, может представлять собой комплекс разнородных материальных и информационных компонентов. Однако независимо от природы объекта, характера решаемой задачи и способа реализации модель представляет собой информационное образование.
  6. Частным, но весьма важным для развитых в теоретическом отношении научных и технических дисциплин является случай, когда роль объекта-моделирования в исследовательской или прикладной задаче играет не фрагмент реального мира, рассматриваемый непосредственно, а некий идеальный конструкт, т.е. по сути дела другая модель, созданная ранее и практически достоверная. Подобное вторичное, а в общем случае n-кратное моделирование может осуществляться теоретическими методами с последующей проверкой получаемых результатов по экспериментальным данным, что характерно для фундаментальных естественных наук. В менее развитых в теоретическом отношении областях знания (биология, некоторые технические дисциплины) вторичная модель обычно включает в себя эмпирическую информацию, которую не охватывают существующие теории.