Ионный канал. Биологические мембраны и ионные каналы

Ионные каналы - особые образования в мембране клетки, представляющие собой олигомерные (состоящие из нескольких субъединиц) белки. Центральным образованием канала является молекула белка, которая пронизывает мембрану таким образом, что в ее гидрофильном центре формируется канал-пора, через которую в клетку способны проникать соединения, диаметр которых не превышает диаметра поры (обычно- это ионы).

Вокруг главной субъединицы канала располагается система из нескольких субъединиц, которые формируют участки для взаимодействия с мембранными регуляторными белками, различными медиаторами, а также фармакологически активными веществами.

Классификация ионных каналов по их функциям:

1) по количеству ионов, для которых канал проницаем, каналы делят на селективные (проницаемы только для одного вида ионов) и неселективные (проницаемы для нескольких видов ионов);

2) по характеру ионов, которые они пропускают на Na + , Ca ++ , Cl - , K + -каналы;

3) по способу регуляции делятся на потенциалзависимые и потенциалнезависимые. Потенциалзависимые каналы реагируют на изменение потенциала мембраны клетки, и при достижении потенциалом определенной величины, канал переходит в активное состояние, начиная пропускать ионы по их градиенту концентрации. Так, натриевые и быстрые кальциевые каналы являются потенциалзависимыми, их активация происходит при снижении мембранного потенциала до -50-60 мВ, при этом ток ионов Na + и Ca ++ в клетку вызывает падение потенциала покоя и генерацию ПД. Калиевые потенциалзависимые каналы активируются при развитии ПД и, обеспечивая ток ионов К + из клетки, вызывают реполяризацию мембраны.

Потенциалнезависимые каналы реагируют не на изменение мембранного потенциала, а на взаимодействие рецепторов, с которыми они взаимосвязаны, и их лигандов. Так, Cl - -каналы связаны с рецепторами g-аминомасляной кислоты и при взаимодействии этих рецепторов с ней они активируются и обеспечивают ток ионов хлора в клетку, вызывая ее гиперполяризацию и снижение возбудимости.

3. Мембранный потенциал покоя и его происхождение.

Термином «мембранный потенциал покоя» принято называть трансмембранную разность потенциалов, существующую между цитоплазмой и окружающим клетку наружным раствором. Когда клетка (волокно) находится в состоянии физиологического покоя, ее внутренний заряд отрицателен по отношению к наружному, условно принимаемому за нуль. У разных тканей мембранный потенциал характеризуется разной величиной: самый большой у мышечной ткани -80 -90 мВ, у нервной -70 мВ, у соединительной -35 -40 мВ, у эпителиальной -20мВ.

Образование МПП зависит от концентрации ионов К + , Nа + , Са 2+ , Сl - , и от особенностей строение мембраны клетки. В частности, ионные каналы, имеющиеся в мембране, обладают свойствами:


1. Селективностью (избирательной проницаемостью)

2. Электровозбудимостью.

В состоянии покоя натриевые каналы все закрыты, а большинство калиевых – открыты. Каналы могут открываться и закрываться. В мембране существуют каналы утечки (неспецифические), которые проницаемы для всех элементов, но более проницаемы для калия. Калиевые каналы всегда открыты, и ионы движутся через эти каналы по концентрационному и электрохимическому градиенту.

Согласно мембранно-ионной теории наличие МПП обусловлено:

Ø непрерывным движением ионов по ионным каналам мембраны,

Ø постоянно существующей разностью концентраций катионов по обе стороны мембраны,

Ø непрерывной работой натрий-калиевого насоса.

Ø различной проницаемостью каналов для этих ионов.

Ионов К + много в клетке, снаружи его мало, Nа + - наоборот, много вне клетки и мало в клетке. Ионов Сl - чуть больше снаружи клетки, чем внутри. Внутри клетки много органических анионов, которые в основном и обеспечивают отрицательный заряд внутренней поверхности мембраны.

В состоянии покоя мембрана клетки проницаема только для ионов К + . Ионы калия в состоянии покоя постоянно выходят в окружающую среду, где высокая концентрация Nа + . Поэтому, в состоянии покоя, наружная поверхность мембраны заряжена положительно. Высокомолекулярные органические анионы (белки) концентрируются у внутренней поверхности мембраны и определяют ее отрицательный заряд. Они же электростатически удерживают ионы К + с другой стороны мембраны. Основную роль в образовании МПП принадлежит ионам К + .

Несмотря на потоки ионов через каналы утечки разность концентрации ионов не выравнивается, т.е. сохраняется всегда постоянной. Этого не происходит потому, что в мембранах существуют Nа + - К + - насосы. Они непрерывно откачивают Nа + из клетки и против градиента концентрации вводят в цитоплазму К + . На 3 иона Nа + , которые выводятся из клетки, внутрь вводится 2 иона К + . Перенос ионов против градиента концентрации осуществляется активным транспортом (с затратой энергии). В случае отсутствия энергии АТФ клетка погибает.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Когда внутренний заряд мембраны становится менее отрицательным наступает деполяризация мембраны и начинает развиваться потенциал действия.

4.Потенциал действия и механизм его происхождения.

Соотношение фаз возбудимости с фазами потенциала действия.

Потенциалом действия называют быстрое колебание мембранного потенциала, возникающее при возбуждении нервных, мышечных и секреторных клеток. В его основе лежат изменения ионной проницаемости мембраны. Амплитуда и характер изменений потенциала действия мало зависят от силы вызывающего его раздражителя, важно лишь, чтобы эта сила была не меньше некоторой критической величины, которая называется порогом раздражения.

Порог раздражения – эта минимальная сила, при которой возникает минимальная ответная реакция. Для характеристики порога раздражения используется понятие реобаза (рео – ток, база – основной).

Кроме пороговых различают подпороговые раздражители, которые не могут вызвать ответной реакции, но вызывают сдвиг обмена веществ в клетке. Также существуют надрпороговые раздражители.

Возникнув, ПД распространяется вдоль мембраны, не изменяя своей амплитуды. В нем различают фазы:

1) Деполяризации:

а) медленная деполяризация;

б) быстрая деполяризация.

2) Реполяризация:

а) быстрая реполяризация;

б) медленная реполяризация (отрицательный следовой потенциал)

3) Гиперполяризация (положительный следовой потенциал)

Ионы Na+, K+, Са2+, Сl - проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (диаметр 0,5-0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.

Функцию ионных каналов изучают различными способами. Наиболее распространенным является метод фиксации напряжения, или «voltage-clamp». Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный потенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соответствии с законом Ома величина тока пропорциональна проводимости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т.е. возникает ионный ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембранная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.

В настоящее время установлены многие типы каналов для различных ионов. Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.

Изучение функции отдельных каналов возможно методом локальной фиксации потенциала «path-clamp»; Стеклянный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разрежение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регистрируют активность одиночного канала. Система раздражения и регистрации активности канала мало отличается от системы фиксации напряжения.

Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов. Длительность пребывания канала в открытом состоянии имеет вероятностный характер, но зависит от величины мембранного потенциала. Суммарный ионный ток определяется вероятностью нахождения в открытом состоянии в каждый конкретный период времени определенного числа каналов.

Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудности. П.Г. Костюком был разработан метод внутриклеточного диализа, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Оказалось, что часть ионного канала, открытая во внеклеточное пространство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.

Именно ионные каналы обеспечивают два важных свойства мембраны: селективность и проводимость.

Селективность, или избирательность, канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т.е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так называемые воротные механизмы).

Рассмотрим принцип работы ионных каналов на примере натриевого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+ внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие п-ворот, расположенных у выхода натриевых каналов (инактивация). Инактивация развивается в клеточной мембране очень быстро и степень инактивации зависит от величины и времени действия деполяризующего стимула.

Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представляет собой сумму тысяч одиночных токов.

При генерации одиночного потенциала действия в толстом нервном волокне изменение концентрации ионов Na+ во внутренней среде составляет всего 1/100000 от внутреннего содержания ионов Na гигантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.

Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+, Са2+, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).

Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.

Свойство проводимости различных каналов неодинаково. В частности, для калиевых каналов процесс инактивации, как для натриевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.

Особый интерес представляют кальциевые каналы.

Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обеспечивается деполяризацией клеточной мембраны, например входящим натриевым током.

Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации свободного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существенную роль в клетках сердца. Электрогенез кардиомиоцитов рассматривается в главе 7. Электрофизиологические характеристики клеточных мембран исследуют с помощью специальных методов.

Ионные каналы

Ионные каналы представлены интегральными белками мембраны. Эти белки способны, при определенных воздействиях, изменять свою конформацию (форму и свойства) таким образом, что пора, через которую может пройти какой-либо ион открывается или закрывается. Известны натриевые, калиевые, кальциевые, хлорные каналы, иногда канал может пропускать два иона, например известны натрий – кальциевые каналы. Через ионные каналы осуществляется только пассивный транспорт ионов. Это значит, что для перемещения иона необходим не только открытый канал, но и градиент концентрации для этого иона. В этом случае, будет движение иона по градиенту концентрации – из области с большей концентрацией в область с меньшей концентрацией. Необходимо помнить, что мы говорим об ионах – заряженных частицах, транспорт которых обусловлен еще и зарядом. Возможны ситуации, когда движение по градиенту концентрации может быть направлено в одну сторону, а существующие заряды противодействуют этому переносу.

Ионные каналы обладают двумя важнейшими свойствами: 1) избирательностью (селективностью) по отношению к определенным ионам и 2) способностью открываться (активироваться) и закрываться . При активации канал открывается и пропускает ионы (рис. 8). Таким образом, в комплекс интегральных белков, формирующих канал, должны обязательно входить два элемента: структуры, распознающие «свой» ион и способные его пропустить, и структуры, которые позволяют узнать – когда пропускать этот ион. Селективность канала определяется теми белками, которые его образуют, «свой» ион распознается по размерам и заряду.

Активация каналов возможна несколькими путями. Во-первых, каналы могут открываться и закрываться при изменении потенциала мембраны. Изменение заряда приводит к изменению конформации белковых молекул, и канал становится проницаемым для иона. Для изменения свойств канала достаточно ничтожного колебания потенциала мембраны. Такие каналы называются потенциал-зависимые (или электроуправляемые). Во-вторых, каналы могут быть частью сложного белкового комплекса, который называется мембранный рецептор. В этом случае изменение свойств канала обусловлено конформационнй перестройкой белков, которая происходит в результате взаимодействия рецептора с биологически активным веществом (гормоном, медиатором). Такие каналы называются хемозависимые (или рецептор-управляемые) . Кроме того, каналы могут открываться при механическом воздействии – давлении, растяжении (рис.9). Механизм, который обеспечивает активацию, называется воротами канала. По скорости, с которой открываются и закрываются каналы их можно разделить на быстрые и медленные.

Большинство каналов (калиевые, кальциевые, хлорные) могут находиться в двух состояниях: открытом и закрытом. В работе натриевых каналов есть некоторые особенности. Этим каналам, как и калиевым, кальциевым, хлорным свойственно находиться или в открытом, или в закрытом состоянии, однако, натриевый канал может быть и инактивирован, этот состояние, в котором канал закрыт и не может быть открыт никаким воздействием (рис.10).

Рисунок 8. Состояния ионных каналов


Рисунок 9. Пример работы рецептор-управляемого канала. АЦХ – ацетилхолин. Взаимодействие молекулы АЦХ с мембранным рецептором изменяет конформацию воротного белка таким образом, что канал начинает пропускать ионы .


Рисунок 10 Пример потенциал-зависимого канала

В потенциал-зависимом натриевом канале имеются активационные и инактивационные ворота (заслонки). Активационные и инактивационные заслонки меняют конформацию при различном мембранном потенциале.

При рассмотрении механизмов возбуждения нас будет интересовать в основном работа натриевых и калиевых каналов, однако, остановимся коротко на особенностях кальциевых каналов, они нам понадобятся в дальнейшем. Натриевые и кальциевые каналы отличаются по своим свойствам. Натриевые каналы бывают быстрые и медленные, а кальциевые – только медленные. Активация натриевых каналов приводит только к деполяризации и возникновению или ЛО, или ПД, активация кальциевых может дополнительно вызвать метаболические изменения в клетке. Эти изменения обусловлены тем, что кальций связывается со специальными, чувствительными к этому иону белками. Связанный с кальцием белок изменяет свойства таким образом, что становится способен изменить свойства других белков, например, активировать ферменты, запустить сокращение мышцы, выделение медиаторов.

    селективные (проницаемы только для одного вида ионов). По характеру ионов, которые они пропускают на Na+, Ca++, Cl-, K+-каналы;

    неселективные (проницаемы для нескольких видов ионов);

2) По способу регуляции делятся на:

    потенциалзависимые (электровозбудимые, потенциалуправляемые)

    Потенциалнезависимые (хемовозбудимые, (лиганд-рецептор -зависимые), хемоуправляемые)

    Механовозбудимые (механоуправляемые).

Потенциал покоя и действия. Мембранно-ионная теория происхождения потенциала покоя и действия. Местное и распространяющееся возбуждение.

Установлено, что мембрана любой живой клетки поляризована, внутренняя поверхность элетроотрицательна по отношению к наружной. Мембранный потенциал равен - (минус) 70 - (90) мв. При возбуждении происходит снижение величины исходного потенциала покоя с перезарядкой мембраны. Формирование и сохранение потенциала покоя обусловлено непрерывным движением ионов по ионным каналам мембраны, постоянно существующей разностью концентраций катионов по обе стороны мембраны, непрерывной работой натрий-калиевого насоса. За счет постоянного удаления из клетки иона натрия и активного переноса в клетку иона калия сохраняется разность концентраций ионов и поляризация мембраны. Концентрация иона калия в клетке превышает внеклеточную концентрацию в 30 - 40 раз, внеклеточная концентрация натрия примерно на порядок выше внутриклеточной. Электроотрицательность внутренней поверхности мембраны обусловлена наличием в клетке избытка анионов органических соединений, абсолютная величина потенциала покоя (мембранный потенциал, трансмембранный потенциал, равновесный калиевый потенциал) обусловлена главным образом соотношением внутри- и внеклеточной концентраций ионов калия и удовлетворительно описывается уравнением Нернста : (1)

Современная теория учитывает так же:

1) разницу концентраций ионов натрия, хлора, кальция;

2) проницаемость (Р) мембраны для каждого иона в текущий момент времени.

Наличие потенциала покоя позволяет клетке практически мгновенно после действия раздражителя перейти из состояния функционального покоя в состояние возбуждения.

Возникновение потенциала действия (деполяризация)

I – мембранный потенциал

1 - потенциал покоя, 2-- медленная деполяризация, 3 - быстрая деполяризация, 4 - быстрая реполяризация, 5 – медленная реполяризация, 6- гиперполяризация

II - возбудимость

а – нормальная, б – повышенная, в –абсолютная рефрактерность,

г – относительная рефрактерность, д – супернормальность,

е -субнормальность

Потенциал действия (ПД) развивается при наличии исходной поляризации мембраны (потенциала покоя) благодаря изменению проницаемости ионных каналов (натриевых и калиевых). После действия раздражителя потенциал покоя уменьшается, активация каналов повышает их проницаемость для ионов натрия , который входит в клетку и обеспечивает процесс деполяризации. Поступление в клетку иона натрия уменьшает электроотрицательность внутренней поверхности мембраны, что способствует активации новых ионных натриевых каналов и дальнейшему поступлению в клетку иона натрия. Действуют силы:

а) электростатическое притяжение внутриклеточных анионных группировок;

б) концентрационный градиент ионов натрия, направленный внутрь клетки.

Пик потенциала действия обусловлен равновесием поступления в клетку ионов натрия и равным их удалением под влиянием сил отталкивания одноимённо заряженных ионов.

Ионные каналы (ИК) - это мембранные молекулярные структуры, образованные интегральными (трансмембранными) белками, пронизывающими клеточную мембрану поперёк в виде нескольких петель и образующими в мембране сквозной канал (пору). Канальные белки состоят из субъединиц, образующих структуру со сложной пространственной конфигурацией, в которой кроме поры обычно имеются дополнительные молекулярные системы: открытия, закрытия, избирательности, инактивации, рецепции и регуляции. ИК могут иметь не один, а несколько участков (сайтов) для связывания с управляющими веществами (лигандами).

ИК состоят из белков сложной структуры (белков-каналоформеров).

Белки ИК имеют определённую конформацию, образующую трансмембранную пору, и "вшиты" в липидный слой мембраны. Канальный белковый комплекс может состоять либо из одной белковой молекулы, либо из нескольких белковых субъединиц, одинаковых или разных по строению. Эти субъединицы могут кодироваться разными генами, синтезироваться на рибосомах по-отдельности и затем собираться в виде целостного канала. В другом случае канал может представлять собой единый полипептид, который в виде петель прошивает мембрану несколько раз. На начало XXI века известно более 400 белков-каналоформеров, для биосинтеза которых используется 1-2% генома человека.

Домены - это отдельные компактно оформленные части канального белка или субъединиц. Сегменты - это части белкка-каналоформера, свёрнутые спирально и прошивающие мембрану. Концевые домены белка-каналоформера (N- и С-терминальные домены) могут торчать из мембраны как наружу, так и внутрь клетки.

Практически все ИК имеют в составе своих субъединиц регуляторные домены , способные связываться с различными управляющими веществами (регуляторными молекулами) и за счёт этого менять состояние или свойства канала. В потенциал-активируемых ИК один из трансмембранных сегментов содержит специальный набор аминокислот с положительными зарядами и работает как сенсор электрического потенциала мембраны. При изменении потенциала такой сенсор меняет состояние канала с открытого на закрытое или наоборот. Таким образом, ИК могут управляться определёнными воздействиями извне, это важное их свойство.

ИК в своём составе могут иметь также вспомогательные субъединицы , выполняющие модуляторные, структурные или стабилизирующие функции. Один класс таких субъединиц - внутриклеточные, расположенные полностью в цитоплазме, а второй - мембранные, т.к. они имеют трансмембранные домены, прошивающие мембрану.

Классификация ионных каналов:

По типу активации
-Потенциалзависимые
-Лигандзависимые

Механоактивируемые

По селективности
-Селективные (Na, K, Ca, Cl)
-Неселективные

По кинетике
-Быстрые
-Медленные

Смешанные

Натриевый канал

Является потенциалзависимым ионным каналом, который обеспечивает быстрое увеличение натриевой проводимости, ответственное за фазу деполяризации при развитии потенциала действия в нервных и мышечных клетках. Каналы, выделенные из тканей млекопитающих, имеют молекулярную массу ~335000. Na+ -каналы взаимодействуют с различными токсинами, в частности с тетродотоксином, сакситоксином и α-токсином скорпиона, которые очень прочно связываются с канальными белками и могут использоваться при количественных биохимических измерениях.

Калиевый канал

Потенциалзависимые К-каналы расположенны как в плазматической мембране, так и в саркоплазматическом ретикулуме. Общим свойством этих каналов является чувствительность к ингибирующему действию тетраэтиламмония, 4-аминопиридина и Cs , хотя эффективность действия этих ингибиторов на разные подтипы каналов существенно различна. Эти каналы активируются при деполяризации и осуществляют реполяризацию мембраны во время потенциала действия. Скорость их инактивации низка - от 100 мс до нескольких секунд.

5. Понятие о возбудимости. Параметры возбудимости нервно-мышечной системы: порог раздражения (реобаза), полезное время (хронаксия). Зависимость силы раздражения от времени его действия (кривая Гоорвега-Вейса). Рефрактерность.

Возбудимость – это способность (свойство) некоторых физиологических систем отвечать на внешнее или внутреннее воздействие специализированной ответной реакцией – генерацией потенциала действия.

Клетки, способные к возбуждению (в организме человека), - мышечные, нервные, секреторные - называют возбудимыми. Все прочие клетки являются раздражимыми. Из этого следует, что раздражимость более общее свойство живых систем, тогда как возбудимость является частным и специализированным проявлением раздражимости.

Для любой возбудимой системы существует своя минимальная сила стимула, вызывающая возбуждение. Она получила название порог или реобаза.

Любой раздражитель должен действовать не меньше определенного времени, чтобы вызвать реакцию возбуждения это время именуют латентное или полезное время.

Хронаксия - это частный случай полезного времени действия стимула величиной в 2 порога (2 реобазы).

Лабильность – мера возбудимости или максимальный ритм импульсации, который способна воспроизвести возбудимая система в единицу времени. Величина лабильности обратно пропорциональна длительности фазы абсолютной рефрактерности, т.е. 1/АРФ (сек).

Закон длительности раздражений . Ответная реакция ткани зависит от длительности раздражения, но осуществляется в определенных пределах и носит прямо пропорциональный характер. Существует зависимость между силой раздражения и временем его действия. Эта зависимость выражается в виде кривой силы и времени. Эта кривая называется кривой Гоорвега-Вейса-Лапика. Кривая показывает, что каким бы сильным ни был бы раздражитель, он должен действовать определенный период времени. Если временной отрезок маленький, то ответная реакция не возникает. Если раздражитель слабый, то бы как длительно он ни действовал, ответная реакция не возникает. Сила раздражителя постепенно увеличивается, и в определенный момент возникает ответная реакция ткани. Эта сила достигает пороговой величины и называется реобазой (минимальной силой раздражения, которая вызывает первичную ответную реакцию). Время, в течение которого действует ток, равный реобазе, называется полезным временем.

График зависимости «сила-время/длительность» (кривая Гоорвега-Вейса-Лапика)

Рефрактерность – (физиологическое свойство возбудимых тканей) временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель);

6. Ионные насосы (АТФ-азы): К+-Na+-евая, Са2+-евая (плазмолеммы и саркоплазматического ретикулума). Н+-К+-лбменник.