Концентратор назначение. Что такое Концентратор? Особенности национального управления

Hub или концентратор - многопортовый повторитель сети с автосегментацией. Все порты концентратора равноправны. Получив сигнал от одной из подключенных к нему станций, концентратор транслирует его на все свои активные порты. При этом, если на каком-либо из портов обнаружена неисправность, то этот порт автоматически отключается (сегментируется), а после ее устранения снова делается активным. Обработка коллизий и текущий контроль за состоянием каналов связи обычно осуществляется самим концентратором. Концентраторы можно использовать как автономные устройства или соединять друг с другом, увеличивая тем самым размер сети и создавая более сложные топологии. Кроме того, возможно их соединение магистральным кабелем в шинную топологию. Автосегментация необходима для повышения надежности сети. Ведь Hub, заставляющий на практике применять звездообразную кабельную топологию, находится в рамках стандарта IEEE 802.3 и тем самым обязан обеспечивать соединение типа МОНОКАНАЛ.

Назначение концентраторов - объединение отдельных рабочих мест в рабочую группу в составе локальной сети. Для рабочей группы характерны следующие признаки: определенная территориальная сосредоточенность; коллектив пользователей рабочей группы решает сходные задачи, использует однотипное программное обеспечение и общие информационные базы; в пределах рабочей группы существуют общие требования по обеспечению безопасности и надежности, происходит одинаковое воздействие внешних источников возмущений (климатических, электромагнитных и т.п.); совместно используются высокопроизводительные периферийные устройства; обычно содержат свои локальные сервера, нередко территориально расположенные на территории рабочей группы.

На настоящий момент использование концентраторов в локальных компьютерных сетях практически прекратилось. На их место пришли более скоростные и "умные" устройства - коммутаторы (Switch).

Что такое Коммутатор?

Когда появились первые устройства, позволяющие разъединять сеть на несколько доменов коллизий (по сути фрагменты ЛВС, построенные на hub-ах), они были двух портовыми и получили название мостов (bridge-ей). По мере развития данного типа оборудования, они стали многопортовыми и получили название коммутаторов (switch -ей). Некоторое время оба понятия существовали одновременно, а поздее вместо термина "мост" стали применять "коммутатор".

Обычно, проектируя сеть, с помощью коммутаторов соединяют несколько доменов коллизий локальной сети между собой. В реальной жизни в качестве доменов коллизий выступают, как правило, этажи здания, в котором создается сеть. Их обычно более 2-х, а в результате обеспечивается гораздо более эффективное управление трафиком чем у прародителя комутатора - моста. По меньшей мере, он может поддерживать резервные связи между узлами сети.

Благодаря тому, что коммутаторы могут управлять трафиком на основе протокола канального уровня (Уровня 2) модели OSI, он в состоянии контролировать МАС адреса подключенных к нему устройств и даже обеспечивать трансляцию пакетов из стандарта в стандарт (например Ethernet в FDDI и обратно). Особенно удачно результаты этой возможности представлены в коммутаторах Уровня 3, т.е. устройствах, возможности которых приближаются к возможностям маршрутизаторов. Коммутатор позволяет пересылать пакеты между несколькими сегментами сети. Он является обучающимся устройством и действует по аналогичной технологии. В отличие от мостов, ряд коммутаторов не помещает все приходящие пакеты в буфер. Это происходит лишь тогда, когда надо согласовать скорости передачи, или адрес назначения не содержится в адресной таблице, или когда порт, куда должен быть направлен пакет, занят, а коммутирует пакеты "на лету". Коммутатор лишь анализирует адрес назначения в заголовке пакета и, сверившись с адресной таблицей, тут же (время задержки около 30-40 микросекунд) направляет этот пакет в соответствующий порт. Таким образом, когда пакет еще целиком не прошел через входной порт, его заголовок уже передается через выходной. К сожалению, типичные коммутаторы работают по алгоритму "устаревания адресов". Это означает, что, если по истечении определенного промежутка времени, не было обращений по этому адресу, то он удаляется из адресной таблицы. Коммутаторы поддерживают при соединении друг с другом режим полного дуплекса. В таком режиме данные передаются и принимаются одновременно, что невозможно в обычных сетях Еthегnеt. При этом скорость передачи данных повышается в два раза, а при соединении нескольких коммутаторов можно добиться и большей пиковой производительности.

Концентратор - центральный узел обмена информацией между несколькими конечными станциями сети. Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются.

Коммутатор - осуществляет передачу пакетов между всеми парами портов по алгоритму моста. В отличие от концентратора, который распространяет трафик от одного подключенного устройства ко всем остальным, коммутатор передаёт данные только непосредственно получателю. Коммутатор работает на канальном уровне модели OSI.

Принцип работы коммутатора: Коммутатор хранит в памяти таблицу, в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя ещё не известен, то кадр будет продублирован на все интерфейсы. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется

Режимы коммутации .

Существует три способа коммутации. Каждый из них - это комбинация таких параметров, как время ожидания и надёжность передачи.

    С промежуточным хранением. Коммутатор читает всю информацию во фрейме, проверяет его на отсутствие ошибок, выбирает порт коммутации и после этого посылает в него фрейм.

    Сквозной. Коммутатор считывает во фрейме только адрес назначения и после выполняет коммутацию. Этот режим уменьшает задержки при передаче, но в нём нет метода обнаружения ошибок.

    Бесфрагментный или гибридный. Этот режим является модификацией сквозного режима. Передача осуществляется после фильтрации фрагментов коллизий.

Особенности технической реализации коммутаторов.

    коммутационная матрица ; Основной и самый быстрый способ взаимодействия процессоров портов. Входные блоки процессоров портов на основании просмотра адресной таблицы коммутатора определяют по адресу назначения номер выходного порта. Эту информацию они добавляют к байтам исходного кадра в виде специального ярлыка - тэга (tag).

    разделяемая память; Входные блоки процессоров портов соединяются с переключаемым входом разделяемой памяти, а выходные блоки этих же процессоров соединяются с переключаемым выходом этой памяти. Переключением входа и выхода разделяемой памяти управляет менеджер очередей выходных портов. В разделяемой памяти менеджер организует несколько очередей данных, по одной для каждого выходного порта. Входные блоки процессоров передают менеджеру портов запросы на запись данных в очередь того порта, который соответствует адресу назначения пакета. Менеджер по очереди подключает вход памяти к одному из входных блоков процессоров и тот переписывает часть данных кадра в очередь определенного выходного порта. По мере заполнения очередей менеджер производит также поочередное подключение выхода разделяемой памяти к выходным блокам процессоров портов, и данные из очереди переписываются в выходной буфер процессора.

    общая шина. Коммутаторы с общей шиной используют для связи процессоров портов высокоскоростную шину, используемую в режиме разделения времени. Входной блок процессора помещает в ячейку, переносимую по шине, тэг, в котором указывает номер порта назначения. Каждый выходной блок процессора порта содержит фильтр тэгов, который выбирает тэги, предназначенные данному порту. Шина, так же как и коммутационная матрица, не может осуществлять промежуточную буферизацию, но так как данные кадра разбиваются на небольшие ячейки, то задержек с начальным ожиданием доступности выходного порта в такой схеме нет.

Конструктивное исполнение коммутаторов.

    автономные коммутаторы с фиксированным количеством портов;

    модульные коммутаторы на основе шасси;

    коммутаторы с фиксированным количеством портов, собираемые в стек.

Управляемые коммутаторы Ethernet . Управление коммутаторами производится на основе протоколов SNMP (Simple Network Management Protocol) и RMON (Remote Monitoring). Протокол SNMP входит в стек протоколов TCP/IP и широко используется для получения от коммутатора информации о его статусе, производительности и других характеристиках, которые хранятся в базе данных коммутатора. Протокол RMON определяет возможность удаленного мониторинга и управления коммутатором.

RMON позволяет управлять и следить за состоянием коммутатора с удаленного компьютера с возможностью передачи требуемых данных по сети. Кроме того, в протокол RMON были добавлены дополнительные счетчики об ошибках, более гибкие средства анализа статистики, средства фильтрации и т.д.

Управляемые коммутаторы обладают также дополнительными функциями, важнейшими из которых являются: 1. фильтрация трафика; 2. приоритетная обработка кадров; 3. поддержка протокола Spanning Tree Protocol (STP); 4. поддержка транкового объединения портов; 5. поддержка виртуальных сетей VLAN.

Фильтрация трафика позволяет создавать пользовательские фильтры, которые ограничивают доступ заданных заранее групп пользователей к определенным службам сети. Фактически фильтрация трафика - это сервис, повышающий уровень сетевой безопасности.

Приоритетная обработка кадров подразумевает возможность обрабатывать входящие кадры не на основе принципа First Input First Output (FIFO), когда каждый кадр обрабатывается в соответствии с очередью его поступления, а в соответствии с указанным приоритетом.

Поддержка протокола Spanning Tree Protocol, то есть алгоритма покрывающего дерева, определяет корректную работу коммутатора в случае, когда между конечными узлами сети существует несколько логических или физических маршрутов, в состав которых входят коммутаторы. Такие дублирующие пути могут возникнуть случайно, при ошибках в монтаже сети, или могут прокладываться специально для повышения отказоустойчивости сети. Суть алгоритма состоит в определении оптимального маршрута и блокировке или резервировании всех остальных

Поддержка транкового объединения портов позволяет создавать высокоскоростные каналы связи, объединяя несколько физических каналов в один логический, что можно использовать для связи коммутаторов друг с другом или коммутатора с сервером.

Поддержка виртуальных сетей (Virtual LAN, VLAN) позволяет с помощью коммутатора создавать изолированные друг от друга локальные сети.

Spanning Tree .

Протокол покрывающего дерева.

Поддерживающие алгоритм STA мосты и коммутаторы автоматически создают активную древовидную конфигурацию связей (то есть связную конфигурацию без петель), находя ее адаптивно с помощью обмена служебными пакетами.

В сети определяется корневой мост (root bridge), от которого строится дерево. Для каждого моста определяется корневой порт (root port) - это порт, который имеет кратчайшее из всех портов данного моста расстояние до корневого моста (точнее, до любого из портов корневого моста).

Расстояние до корня (root path cost) определяется как суммарное условное время на передачу данных от порта данного моста до порта корневого моста. Условное время сегмента (designated cost) рассчитывается как время, затрачиваемое на передачу одного бита информации в 10-наносекундных единицах между непосредственно связанными по сегменту сети портами. Так, для сегмента Ethernet это время равно 10 условным единицам, а для сегмента Token Ring 16 Мб/с - 6.25.

Для каждого логического сегмента сети выбирается так называемый назначенный мост (designated bridge), один из портов которого будет принимать пакеты от сегмента и передавать их в направлении корневого моста через корневой порт данного моста, а также принимать пакеты для данного сегмента, пришедшие на корневой порт со стороны корневого моста. Такой порт называется назначенным портом (designated port). Назначенный порт сегмента имеет наименьшее расстояние до корневого моста, среди всех портов, подключенных к данному сегменту. Назначенный порт у сегмента может быть только один. У корневого моста все порты являются назначенными, а их расстояние до корня полагается равным нулю. Корневого порта у корневого моста нет.

Для того, чтобы мосты могли идентифицировать себя и своих ближних и дальних соседей по сети, каждой мост, поддерживающий STA, имеет уникальный идентификатор. Этот идентификатор состоит из двух частей. Младшую часть составляет MAC-адрес моста, имеющий длину 6 байтов. Старшая часть, имеющая длину 2 байта, является приоритетом данного моста, и его может изменять администратор сети по своему усмотрению.

Идентификатор моста играет определяющую роль при выборе корневого моста. Приоритет имеет преимущественное значение в этом выборе - корневым выбирается мост, имеющий наименьшее значение идентификатора, а так как поле приоритета находится в старших разрядах, то его значение подавляет значение MAC-адреса. Если же администратор назначил всем мостам равный приоритет (то есть не захотел влиять на выбор корневого моста), то корневым будет выбран мост с наименьшим значением MAC-адреса.

Порты внутри каждого моста также имеют свои идентификаторы. Идентификатор порта состоит из 2 байтов, первый из которых (старший) может изменяться администратором и является приоритетом порта, а второй представляет собой порядковый номер порта для данного моста (номера портов начинаются с единицы). Идентификатор порта используется при выборе корневого и назначенного порта моста - если несколько портов имеют одинаковое расстояние до корня, то выбирается тот порт, идентификатор которого меньше. Аналогично случаю с идентификатором моста, приоритет порта может быть задан администратором для того, чтобы данный порт получил преимущество перед другими.

VLAN . Виртуальной сетью (Virtual LAN, VLAN) называется группа узлов сети, трафик которой, в том числе и широковещательный, на канальном уровне полностью изолирован от других узлов сети. Это означает, что передача кадров между разными виртуальными сегментами на основании адреса канального уровня невозможна, независимо от типа адреса - уникального, группового или широковещательного. Назначение технологии виртуальных сетей состоит в облегчении процесса создания независимых сетей, которые затем должны связываться с помощью протоколов сетевого уровня

Типы виртуальных сетей

Существует несколько основных способов построения виртуальных сетей:

    Группировка портов.

    Группировка МАС-адресов.

    Использование меток в дополнительном поле кадра - частные протоколы и спецификации IEEE 802.1 Q.

VLAN на основе группировки портов .

Устройства связываются в виртуальные сети на основе портов коммутатора, к которым они физически подключены. То есть каждой порт коммутатора включается в одну или более виртуальных сетей. К достоинствам данного типа виртуальных сетей можно отнести высокий уровень безопасности и простоту в настройке. К недостаткам можно отнести статичность данного типа виртуальных сетей. То есть при подключении компьютера к другому порту коммутатора необходимо каждый раз изменять настройки VLAN.

VLAN на основе группировки МАС-адресов.

Данный тип виртуальных сетей группирует устройства на основе их MAC-адресов. Для получения доступа в виртуальную сеть, устройство должно иметь MAC-адрес, который содержится в списке адресов данной виртуальной сети. Помимо прочего, отличительной особенностью данного типа виртуальных сетей является то, что они ограничивают только широковещательный трафик. Отсюда вытекает их название – широковещательные домены на базе MAC-адресов. Теоретически один MAC-адрес может являться членом нескольких широковещательных доменов, на практике данная возможность определяется функциональностью конкретной модели коммутатора.

Широковещательные домены на базе MAC-адресов позволяют физически перемещать станцию, позволяя, тем не менее, оставаться ей в одном и том же широковещательном домене без каких-либо изменений в настройках конфигурации.

VLAN на базе маркированных кадров (IEEE 802.1Q).

В отличие от двух предыдущих типов виртуальных сетей VLAN на основе маркированных кадров могут быть реализованы на двух и более коммутаторах. В заголовок каждого кадра Ethernet вставляется маркер, который идентифицирует членство компьютера в определенной VLAN.

Маркеры с номером VLAN в виртуальных сетях 802.1Q могут быть добавлены:

    явно, если сетевые карты поддерживают стандарт IEEE 802.1Q, и на этих картах включены соответствующие опции, то исходящие кадры Ethernet от этих карт будут содержать маркеры идентификации;

    неявно, если сетевые адаптеры, подключенные к этой сети, не поддерживают стандарт IEEE 802.1Q, то добавление маркеров выполняется на коммутаторе на основе группировки по портам.

Тренинг по работе с розничными сетями - какой Тренинг.

Подробности

Принцип работы сетевого концентратора (хаба)

Или сетевой хаб - это устройство для подключения нескольких Ethernet устройств между собой, в дальнейшем устройства работают как один сегмент сети.

Имеет несколько портов ввода/вывода. Сигнал подаётся на один из портов ввода и выводится на все остальные, кроме входного порта. Данное устройство работает на физическом уровне сетевой модели OSI . Сетевой хаб является одним из видов повторителя (repeater), участвующий в обнаружении коллизий (переполнений), возобновляет передачу данных в порт через случайный интервал времени, если выявлено столкновение. В последнее время концентраторы стали менее актуальны, в связи с высокой популярностью сетевых коммутаторов .

Сетевой хаб является простым устройством. В нём нет функции управления трафиком, каждый пакет данных, который приходит в в порт, автоматически ретранслируется во все остальные. Устройство не отслеживает источник передачи и точку назначения. Хотя, при желании можно воспользоваться специальным программным обеспечением, которое контролирует и фиксирует поток переданной информации в своей базе данных. Данную информацию можно просмотреть в текстовом виде, например с помощью Ворда. А скачать Ворд 2003 бесплатно в интрнете можно легко. Данный мониторинг движения данных через сетевой концентратор очень удобен для системных администраторов.

Характеристики сетевого концентратора (хаба)

  • Количество портов: 2-48. Часто используются 4,8,16 портовые.
  • Скорость передачи данных. 10 Мбит/с или 100 Мбит/с.
  • Наличие разных интерфейсов подключения (оптические, коаксиальные)

Преимущества и недостатки сетевого концентратора (хабов)

Преимущества

  • Низкая стоимость устройства

Недостатки

  • При увеличении подключаемых устройств - уменьшается пропускная способность, которая делится на все задействованные устройства.
  • Так как порты в сетевом концентраторе являются не изолированными, то весь сегмент сети работает на скорости, которую поддерживает самый низкоскоростное устройство.
  • Низкая безопасность.

Технология USB, которая изобреталась для соединения компьютерного и телекоммуникационного устройств, сейчас является основным средством для подключения многих гаджетов. Их количество просто удивляет – это клавиатуры, мыши, модемы, кулеры, внешние жесткие диски, принтеры, флешки, даже кофеварки и лампы. И поскольку все эти устройства нужно подключать к компьютеру, то в настоящее время банально не хватает USB-портов.

Решить данную проблему можно двумя способами. Самый простой способ – это подключать только те устройства, которые нужны в данный момент, а неиспользующиеся устройства отсоединять, освобождая тем самым USB-порты. А второй способ – это приобрести оригинальное приспособление, именуемого USB-концентратоом (USB-хаб).

USB-хаб представляет собой небольшое устройство, в котором есть несколько USB-портов. Оно подсоединяется к одному из USB-портов компьютера (занимая тем, самым всего, один USB разъем), и дает возможность использовать несколько USB-устройств. Таким образом, USB-концентратор увеличивает количество USB разъемов на компьютере, снижает их износ, а также облегчает процесс использования многочисленных устройств.

Виды USB-концентраторов

Существует четыре вида USB-концентраторов. Первый – это карта USB PCI, которая подсоединяется в слот PCI на материнской плате. Для этого придется открывать системный блок, и если вы не разбираетесь в этом, то лучше этот вид USB-хаба не использовать.

Второй вид – это не питаемый USB-концентратор. Это простое устройство подсоединяется к одному из внешних USB-портов компьютера. После этого к нему можно будет подключать любые другие устройства. Такие USB-концентраторы очень компактны и отлично подходят как для компьютеров, так и для ноутбуков. Но у них есть небольшой минус. Некоторые USB-устройства (принтер, цифровая камера, сканер и т.д.) нуждаются в электропитании, и данный вид концентратора не сможет обеспечить их нужным количеством электроэнергии, особенно если подключить сразу несколько устройств.

Третий вид – питаемый USB-концентратор. Он также очень компактный и подключается к внешнему USB-разъему компьютера. Кроме того, такой USB-концентратор можно подключить напрямую в розетку. Это дает возможность подсоединять к нему любые виды USB-устройств.

И четвертый вид – это компьютерная карта USB. Если в работе используется ноутбук, а также нужно постоянно перемещаться с ним, то отличной альтернативой USB-хабу будет именно такая карта USB. Она подключается к USB-разъему на боковой стороне ноутбука и дает возможность подключить еще два дополнительных устройства.

Концентраторы

В структурированной кабельной конфигурации все входящие в сеть ПК взаимодействуют с концентратором (или коммутатором).

Hub (хаб; концентратор) - устройство множественного доступа, выполняющее роль центральной точки соединения в топологии "физическая звезда". Наряду с традиционным названием "концентратор" в литературе встречается также термин "хаб".

Соединенные с концентратором ПК образуют один сегмент локальной сети. Такая схема упрощает подключение к сети большого числа пользователей, даже если они часто перемещаются. В основном функция концентратора состоит в объединении пользователей в один сетевой сегмент. Концентраторы бывают разных видов и размеров и обеспечивают соединение разного числа пользователей - от нескольких сотрудников в небольшой фирме до сотен ПК в сети, охватывающей комплекс зданий. Функции данных устройств также различны: от простых концентраторов проводных линий до крупных устройств, выполняющих функции центрального узла сети, поддерживающих функции управления и целый ряд стандартов (Ethernet, Fast Ethernet, Gigabit Ethernet, FDDI и т.д.). Существуют также концентраторы, играющие важную роль в системе защиты сети.

Концентратор начального уровня (базовый концентратор) - это простое, автономное устройство, которое может стать для многих организаций хорошей "отправной точкой".

Наращиваемые (стековые) концентраторы позволяют постепенно увеличивать размер сети. Такие концентраторы соединяются друг с другом гибкими кабелями расширения, ставятся один на другой и функционируют как один концентратор. Благодаря низкой стоимости в расчете на порт наращиваемые концентраторы стали особенно популярны.

При применении концентратора все пользователи делят между собой полосу пропускания сети. Пакет, принимаемый по одному из портов концентратора, рассылается во все другие порты, которые анализируют этот пакет (предназначен он для них или нет). При небольшом числе пользователей такая система превосходно работает. Между тем в случае увеличения числа пользователей начинает сказываться конкуренция за полосу пропускания, что замедляет трафик в локальной сети.

Традиционные концентраторы поддерживают только один сетевой сегмент, предоставляя всем подключаемым к ним пользователям одну и ту же полосу пропускания. Концентраторы с коммутацией портов или сегментируемые концентраторы (такие как концентраторы семейства SuperStack II PS Hub) позволяют свести данную проблему к минимуму, выделив пользователям любой из четырех внутренних сегментов концентратора (каждый из этих сегментов имеет полосу пропускания 10 Мбит/с). Подобная схема дает возможность гибко распределять полосу пропускания между пользователями и балансировать нагрузку сети.

Двухскоростные концентраторы (dual-speed) можно с выгодой использовать для создания современных сетей с совместно используемыми сетевыми сегментами. Они поддерживают существующие каналы Ethernet 10 Мбит/с и новые сети Fast Ethernet 10 Мбит/с, автоматически опознавая скорость соединения, что позволяет не настраивать конфигурацию вручную. Это упрощает модернизацию соединений - переход от сети Ethernet к Fast Ethernet, когда необходима поддержка новых приложений, интенсивно использующих полосу пропускания сети, или сегментов с большим числом пользователей.

Кроме того, концентраторы служат центральной точкой для подключения кабелей, изменения конфигурации, поиска неисправностей и централизованного управления, упрощая выполнение всех этих операций.

Коммутаторы (Switch ).

Switch – многопортовое устройство, обеспечивающее высокоскоростную коммутацию пакетов между портами.

В сети с коммутацией пакетов - устройство, направляющее пакеты, обычно на один из узлов магистральной сети. Такое устройство называется также коммутатором данных (data PABX).

Коммутатор предоставляет каждому устройству (серверу, ПК или концентратору), подключенному к одному из его портов, всю полосу пропускания сети. Это повышает производительность и уменьшает время отклика сети за счет сокращения числа пользователей на сегмент. Как и двухскоростные концентраторы, новейшие коммутаторы часто конструируются для поддержки 10 или 100 Мбит/с, в зависимости от максимальной скорости подключаемого устройства. Если они оснащаются средствами автоматического опознавания скорости передачи, то могут сами настраиваться на оптимальную скорость - изменять конфигурацию вручную не требуется.

В отличие от концентраторов, осуществляющих широковещательную рассылку всех пакетов, принимаемых по любому из портов, коммутаторы передают пакеты только целевому устройству (адресату), так как знают MAC-адрес (Media Access Control) каждого подключенного устройства (аналогично тому, как почтальон по почтовому адресу определяет, куда нужно доставить письмо). В результате уменьшается трафик и повышается общая пропускная способность, а эти два фактора являются критическими с учетом растущих требований к полосе пропускания сети современных сложных бизнес приложений.