Лазерные системы связи. Лазерная связь - еще один способ беспроводной связи


Радиоволны - не единственное средство связи с внеземными цивилизациями. Есть и другие способы, например световые сигналы. Поскольку световому сигналу придется преодолеть огромное расстояние, он должен обладать необходимыми свойствами: иметь достаточную для преодоления этого пути энергию. Легко убедиться, что для посылки таких световых сигналов оптические прожекторы непригодны. Они создают расходящиеся лучи света. Поэтому чем дальше от прожектора, тем ширина такого пучка становится больше. На огромных расстояниях она также очень большая. Это значит, что энергия, приходящаяся на единицу площади, очень малая.

Если использовать самый современный оптический прожектор, который создает пучок света (луч) шириной всего полградуса, то уже на расстоянии 50 километров световое пятно, создаваемое прожектором, составит 450 метров. Такой прожектор, установленный на Земле, будет создавать на Луне светлое пятно диаметром 3000 километров! Ясно, что при этом световая энергия рассеивается на большой площади и освещенность поверхности становится намного меньше, чем если бы это пятно составляло всего 10 или 100 метров. Образованное земным прожектором на поверхности Луны пятно обнаружить невозможно. Но Луна находится рядом с нами. Что же останется от плотности энергии на удалениях в сотни световых лет? Практически ничего. Поэтому рассматривать далее такой тривиальный источник световых сигналов нет смысла. Но необходимые оптические сигналы могут быть созданы с помощью лазеров, которые явились воплощением идей Алексея Толстого (гиперболоид инженера Гарина) и Г. Уэллса (тепловой луч марсиан).

Что касается лазерного излучения как средства связи с инопланетянами, то здесь важны два его свойства. Первое - возможность излучать практически не расходящийся пучок света (луч), что, как мы видели, нельзя сделать с помощью обычных прожекторов. Второе - возможность создавать мощные световые сигналы, которые способны достигнуть звезд, находящихся на удалениях в сотни и тысячи световых лет.

Важным свойством лазерного излучения является его монохроматичность (буквально «одноцветность»). Физически это означает, что излучение имеет строго неизменную длину волны, а значит, и цвет. В то же время имеются лазеры, которые излучают одну строго определенную длину волны, величина которой определяется «рабочим веществом» лазера. Такое вещество может быть газообразным, жидким или твердым. Вначале использовали главным образом синтетический рубиновый кристалл. При использовании стекла, активированного неодимом, длина волны излучения равна 1,06 мкм. В качестве рабочего вещества применяют, в частности, углекислый газ CO2 и многие другие вещества. Жидкостные лазеры позволяют излучать на разных длинах волн (в данном диапазоне). Излучение происходит попеременно, в каждый момент времени излучается одна строго определенная длина волны.

Важно и то, что лазерные установки позволяют излучать очень короткие импульсы света. Для передачи информации (последовательностями импульсов) это очень важно. Длина импульса может быть столь мала, что за время в одну секунду можно «уложить» до тысячи миллиардов импульсов. При излучении импульсы следуют друг за другом с определенной задержкой. Современные лазеры позволяют получать импульсы большой мощности. Так, даже столь короткие импульсы, как приведенные выше, могут иметь энергиюбольше 10 джо-улей! Чем больше длина импульса, тем больше содержащаяся в нем энергия. В режиме» свободной генерации», когда лазер сам регулирует длину излучаемых импульсов и она составляет порядка тысячной доли секунды, энергия каждого импульса может достигать нескольких тысяч джоулей. Лазеры позволяют излучать не только короткие импульсы света, но и непре-рывно. Например, газовые лазеры, работающие на углекислом газе, могут работать в режиме непрерывной генерации. В этом случае излучение характеризуется не энергией каждо-го импульса (т. к. отдельных импульсов нет), а энергией в единицу времени или, другими словами, мощностью. Так, мощность лазеров, работающих на углекислом газе, доходит до нескольких десятков киловатт.

Излучение лазера также рассеивается, но несравненно меньше, чем у прожекторов. Это определяется размерами рабочего вещества. Излучение с поверхности рабочего вещества происходит строго с одинаковой фазой (синфазно) по всей его поверхности. Поэтому ширина посылаемого лазером пучка зависит от размера блока «рабочего вещества», то есть чем больше поверхность, тем эже пучок излучаемого света. Зависимость ширины пучка от длины волны прямая: чем меньше длина волны, тем шире посылаемый лазером пучок. Но даже у рядовых лазеров, у которых размеры рабочего вещества составляют порядка 1 сантиметра, угол раствора светового пучка в 200 раз меньше, чем у прожектора. Он составляет 10 угловых секунд. Имеются, конечно, лазеры и со значительно меньшими углами светового излучения.

Чтобы избавиться от расхождения лучей, необходимо использовать оптическую систему типа телескопа, направляющую ход лучей. Если пучок лазерного излучения пропустить через линзу, у которой фокусное расстояние равно ее диаметру, то действительное изображение пучка в фокальной плоскости будет иметь размеры, равные длине волны. Далее, в том месте, где получено это действительное изображение пучка, поместим фокус другой линзы (или зеркала), диаметр которой намного больше, чем первой. Для второй линзы фокусное расстояние может быть больше ее диаметра, но может быть и равно ему (как и у первой линзы). Такая комбинация двух линз приводит к тому, что из второй большой линзы (зеркала) будет выходить пучок, у которого угол расхождения уменьшится (по сравнению с первоначальным, входящим в телескоп) во столько раз, во сколько раз диаметр второй линзы (зеркала) больше длины излучаемой волны. Таким образом, вполне реально сколь угодно уменьшить угол расходимости лазерного пучка.

Для связи с инопланетянами могут использоваться как связные системы, построенные на одном лазере, так и построенные на целой системе (батарее) лазеров. Если использовать непрерывно излучающий лазер мощностью 10 киловатт и дополнительное большое зеркало диаметром 5 метров, то можно сузить угол раствора пучка до 0,02 с дуги.

Можно использовать не одно большое зеркало, а определенное количество зеркал с малым диаметром (скажем, 10 сантиметров). Тогда система должна содержать столько же лазеров, сколько имеется зеркал. Вся она должна быть очень жестко ориентирована. Если взять 25 лазеров, то можно достичь угла раствора пучка, равного одной дуговой секунде.

Преимущество лазерных систем (батарей) для космической связи состоит в том, что при ее работе можно исключить влияние земной атмосферы. Если же работать с одним лазером, то из-за неспокойствия атмосферы угол раствора пучка становится значительно больше, чем при отсутствии такого влияния. Это влияние можно обойти, если лазерную систему поместить так, чтобы лазерный луч не проходил через атмосферу, то есть расположить ее на искусственном спутнике-платформе. Применять батарею лазерных установок в этом случае необходимости нет.

Впервые возможность связи с внеземными цивилизациями с помощью лазерного луча была научно проанализирована в 1961 году лауреатом Нобелевской премии Ч.Х. Таун-сом и Р.И. Шварцем. С тех пор лазерная техника в мире усовершенствовалась и условия для осуществления лазерной связи стали более благоприятными. Главное, что должна обеспечить эта техника, это достаточная мощность излучения и возможность отделить лазерное излучение, посланное нам инопланетянами, от излучения звезд. Как отделить свет лазера от света звезды? Этот вопрос отнюдь не простой, и решать его можно только благодаря особому свойству лазерного излучения - его высокой монохроматичности. Звезда (например, Солнце) излучает свет с различными длинами волн. Лазер же излучает только на строго определенной длине волны, скажем 0,5 мкм. На этой длине волны Солнце излучает наибольшую энергию. Тем не менее излучение лазера в 25 раз больше, чем у Солнца или у другой такой же звезды. Конечно, это относится только к данной конкретной длине волны. На других длинах волн (например, в ультрафиолетовой и инфракрасной областях спектра) это отношение было бы еще больше, поскольку на этих длинах волн Солнце излучает меньше, чем около зеленого света (0,5 мкм).

Таким образом, даже современная лазерная техника позволяет создать излучение, интенсивность которого на данной длине волны достаточна для того, чтобы его выделить из всего излучения звезд. Чтобы добиться еще лучшего выделения лазерного излучения, надо «работать» вблизи линий поглощения Солнца (или другой звезды), то есть в том диапазоне, где часть излучения Солнца поглощается и оно меньше мешает выделению лазерного излучения. Если лазер работает на длине волны 0,15 мкм, то его спектральная интенсивность может в десятки тысяч раз превосходить интенсивность солнечного излучения на этой длине волны, поскольку она находится в области поглощения солнечного излучения. Конечно, такая лазерная установка должна быть расположена за пределами земной атмосферы, иначе лазерное излучение будет поглощено атмосферным газом. Таким образом, регистрируя и анализируя свет от удаленных звезд, мы должны иметь в виду, что лазерное излучение, посланное внеземными цивилизациями, может быть обнаружено на фоне этого излучения. Оно проявится как узкая линия. Но для этого необходимо анализировать излучение звезд с помощью высококачественных спектрографов. Можно использовать также очень узкополосные фильтры. Конечно, указанные оптические устройства должны быть очень высококачественными: разрешающая способность спектрографа должна быть 0,03 А, для того чтобы получить 10 %-ную контрастность линии лазера над фоном. Современная оптическая техника позволяет это сделать. Поэтому уже сейчас мы можем на самых сильных телескопах начать вылавливание линий излучения, принадлежащих лазерным устройствам внеземных цивилизаций.

Мы неоднократно обсуждали различные аспекты действия эффекта Доплера на излучение движущегося источника. В данном случае этот эффект также необходимо учитывать, так как за счет движения приемников излучения в направлении самого излучения должно происходить смещение (доплеровский сдвиг) частоты излучения в ту или иную сторону. Чтобы регистрировать это излучение со смещенной частотой, надо располагать спектрографами с соответствующей разрешающей способностью.

Таким образом, даже современный уровень лазерной техники позволяет принимать лазерные сигналы от ближайших звезд и посылать их обратно. Но остается еще один, возможно самый главный, вопрос: куда посылать сигналы и откуда их принимать? В том и другом случае мы должны куда-то направлять наши телескопы, причем с очень большой точностью. То же самое требуется и от наших корреспондентов в космосе. Если они находятся на ближайших звездах (их планетах), то земную орбиту они будут наблюдать под углом в одну угловую секунду. Для того чтобы их лазерный луч попал на Землю, они должны направить его с угловым разрешением 0,02 секунды дуги. Нашим астрономам сейчас такая точность доступна. Поэтому мы полагаем, что она достижима и для внеземных цивилизаций, ищущих связи с нами.

Логично представить себе, что инопланетяне в поисках связи с нами будут «шарить» лазерным лучом в пределах Солнечной системы. Если они сделают ширину лазерного луча (пучка) больше, то при этом он будет все время освещать Землю и может относительно легко регистрироваться. Но чем шире луч, тем больше необходимо излучать энергии, чтобы ее хватило на всю освещаемую им поверхность, для того чтобы она могла быть зарегистрирована. Но можно думать, что эта трудность для инопланетян не будет неразрешимой. По крайней мере, в земных лабораториях увеличение мощности лазерного излучения происходит очень быстро.

Особенно эффективно лазерная связь может использоваться в пределах Солнечной системы. С помощью лазерного луча можно создать пятно на Марсе диаметром 5–7 километров, которое будет светиться примерно в 10 раз ярче, чем Венера при наблюдении с Земли. Лазерный луч может нести на себе любую информацию: его интенсивность можно изменять во времени по любому закону (другими словами, лазерное излучение можно модулировать соответствующим образом). Поверхность Луны была освещена лазерным лучом. На не освещенной Солнцем стороне Луны получается светящееся пятно диаметром 40 метров. Оно освещено в 100 раз меньше, чем в случае прямого падения солнечных лучей.

4 октября 2012 в 15:54

С борта МКС впервые по лазерному каналу была передана широкополосная информация на наземный пункт

  • Беспроводные технологии ,
  • Стандарты связи

2 октября 2012 года с Российского сегмента Международной космической станции впервые по лазерному каналу была передана широкополосная информация на наземный пункт

В рамках космического эксперимента (СЛС) по отработке аппаратуры и демонстрации российской технологии создания космических лазерных систем передачи информации, проводимого ОАО «НПК «СПП» совместно с ОАО «РКК «Энергия», осуществлен сеанс передачи информации с терминала связи, установленного на борту РС МКС, на лазерный терминал наземного пункта станции оптических наблюдений «Архыз» на Северном Кавказе (филиал ОАО «НПК «СПП»).
Была передана информация общим объемом 2,8 Гигабайт со скоростью 125 Мбит/с.
Этот шаг открывает дорогу к широкому внедрению в космическую технику России лазерных линий связи, которые при меньших массогабаритных параметрах бортовой аппаратуры потенциально могут обеспечивать исключительно высокую скорость информационного потока (до десятков гигабит в секунду).

Новости Федерального космического агентства

Интернет на МКС

Хм, подумал я, там же (на МКС) совершенно точно уже есть интернет. Вебкамеры работают, можно дома не телеке смотреть во время ужина. Зачем же нужна лазерная система? Ведь она требует точной наводки, да и погодка у нас тут, на Земле, не всегда радует. Да и когда радует нас, человеков, лазерам-то радости все равно не много. Полез искать.

Интернет таки да, действительно есть на МКС. Им могут пользоваться космонавты, он там на борту даже по вай-фай раздается. Но он там, оказывается, не так давно. Всего с 2010 года . И на диал-апных скоростях . Проблема, говорят, не с плохим линком, а с огромной относительной скоростью движения станции. Данные не успевают. Картинки с котиками прилетают в космос, а космонавтов и след уже простыл.

«Позвонить с борта МКС можно по спутниковому телефону в любую точку Земли. Главное - наличие свободного времени и спутниковой связи. К сожалению не все время есть такая возможность. Также по этому каналу связи (KU-band) мы можем работать с интернетом. Скорость небольшая, но новости просмотреть можно. Для удобства на борту есть еще почтовая программа. Перед стартом мы подаем списки электронных адресов, почту от которых мы будем получать во время полета на специальный адрес NASA. Списки могут быть откорректированы во время миссии. Эту почту нам забрасывают во время так называемой синхронизации, где-то 3-4 раза в день», - отметил Шкаплеров.
www.ria.ru 20/02/2012

Радиосвязь

Неужели все так плохо с радиосвязью?
Информация с «Вояджера» на Землю передает жестко скрепленная с корпусом параболическая антенна диаметром 3,65 метра, которая должна быть сориентирована точно на родную планету. Через нее на частотах 2295 МГц и 8418 МГц шлют сигналы два радиопередатчика мощностью по 23 ватта. Для надежности каждый из них дублирован. Большая часть данных транслируется на Землю со скоростью 160 бит/с - это всего раза в три-четыре быстрее, чем скорость набора текста профессиональной машинисткой и в 300 раз медленнее телефонного модема. Для приема сигнала на Земле используется 34-метровые антенны сети дальней космической связи NASA, но в некоторых случаях задействуются самые большие 70-метровые антенны, и тогда скорость удается поднять до 600 и даже 1400 бит/с. По мере удаления станции ее сигнал слабеет, но еще важнее то, что постепенно снижается мощность радиоизотопных генераторов, которые питают передатчики. Ожидается, что станция сможет передавать научные данные еще по крайней мере 10 лет, после чего связь с ней прекратится.
"Космические радиолинии

Самой высокой скоростью межпланетной передачи данных может сегодня похвастаться аппарат Mars Reconnaissance Orbiter, вышедший на орбиту Марса 10 марта 2006 года. Он оснащен 100-ваттным передатчиком с трехметровой параболической антенной и может передавать информацию на скорости до 6 мегабит в секунду. Доставить к Марсу более крупный и мощный передатчик пока затруднительно.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)

Лазеры

Единственное отличие лазерного излучения от радиоизлучения - частота. Частота света - ~6*10^14Гц, 1,5мкм лазера - 2*10^14Гц. Радиопередатчики на космических аппаратах работают на частоте в единицы ГГц. Радио Ультра в Москве вещало на 100.5Мгц.
Высокая частота и, соответственно, маленькая длина волны - это и дар и проклятье лазерного излучения. Используя электромагнитное излучение такой частоты для связи, мы получаем в нагрузку и все его болезни - низкую проникающую способность, узконаправленность (это, конечно, может быть и не болезнь, если решается задача сокрытия канала связи) и т.д. Лазерный пучок имеет гауссову форму:

Т.е. чем дальше от земли, тем больше будет площадь лазерного пятна и, соответственно меньшая часть фотонов будет принимать участия в, собственно, передаче информации. Т.е. межзвездным средством связи лазер, даже с учетом отсутствия препятствия к распространению излучения в космосе, все равно не станет. А межпланетным?

Впервые лазерная связь в космосе была осуществлена 21 ноября 2002 года. Европейский спутник дистанционного зондирования Земли SPOT 4, находящийся на орбите высотой 832 километра, установил контакт с экспериментальным космическим аппаратом Artemis, обращающимся на высоте 31 000 километров и передал снимки земной поверхности. А недавно Лаборатория Линкольна в Массачусетсском технологическом институте (MIT) совместно с NASA приступила к разработке лазерной системы дальней космической связи. Первый тестовый коммуникационный лазер планируется отправить к Марсу в 2009 году. Ожидается, что этот 5-ваттный передатчик в период сближения планет обеспечит скорость передачи данных до 30 мегабит в секунду.
"Космические радиолинии " («Вокруг света», №10 (2805) | Октябрь 2007)
Более свежие новости, правда, говорят о тестировании лазерного канала Марс-Земля в 2012 году .

Ту систему, что второго числа совершала обмен данными с Землей с борта МКС, строит ОАО «НПК „СПП“». Совсем чуть-чуть информации о системе (то ли той, что на борту МКС, то ли похожей), можно найти на их сайте . Позволю себе продублировать эту информацию здесь:

Межспутниковые лазерные системы передачи информации со скоростью до 600 Мбит/с и дальностью действия от 1 до 6 тыс. км (линии НКА-НКА) от 30 до 46 тыс. км (линии НКА-ГКА):

Терминал для проведения космических экспериментов по лазерной связи на трассе Борт-Земля для МКС:

Длина трассы - до 2000 км
Масса терминала с транспортной рамой - 80 кг
Энергопотребление - 150 Вт
Скорость передачи данных - до 600 Мбит/с
Длина волны передатчика - 1550 нм
Длина волны маяка - 810 нм
Диаграмма передатчика - 50 угл. сек
Точность наведения - 10 угл. сек

На этом выступление заканчиваю. Простите за большое количество копипаста и ссылок, надеюсь, что информация интересная. И еще, я возмущен: ГЛОНАСС у нас отдельным хабом значится, а вот космонавтика (я так понимаю, это такой хаб-сборная солянка для всего, что к космосу отношение имеет) - хаб-оффтопик. Непорядок, ребят. Я бы местами поменял.

Сегодня невозможно представить себе нашу жизнь без компьютеров и сетей на их основе. Человечество стоит на пороге нового мира, в котором будет создано единое информационное пространство. В этом мире осуществлению коммуникаций больше не будут препятствовать ни физические границы, ни время, ни расстояния.

Сейчас во всем мире существует огромное количество сетей, выполняющих различные функции и решающих множество разнообразных задач. Раньше или позже, но всегда наступает момент, когда пропускная способность сети бывает исчерпана и требуется проложить новые линии связи. Внутри здания это сделать относительно легко, но уже при соединении двух соседних зданий начинаются сложности. Требуются специальные разрешения, согласования, лицензии на проведение работ, а также выполнение целого ряда сложных технических требований и удовлетворение немалых финансовых запросов организаций, распоряжающихся землей или канализацией. Как правило, сразу же выясняется, что самый короткий путь между двумя зданиями - это не прямая. И совсем необязательно, что длина этого пути будет сопоставима с расстоянием между этими зданиями.

Конечно, всем известно беспроводное решение на основе различного радиооборудования (радиомодемов, малоканальных радиорелейных линий, микроволновых цифровых передатчиков). Но количество сложностей не уменьшается. Эфир перенасыщен и получить разрешение на использование радиооборудования весьма непросто, а иногда - даже невозможно. Да и пропускная способность этого оборудования существенно зависит от его стоимости.

Мы предлагаем воспользоваться новым экономичным видом беспроводной связи, который возник совсем недавно, - лазерной связью. Наибольшее развитие эта технология получила в США, где и была разработана. Лазерная связь обеспечивает экономичное решение проблемы надежной и высокоскоростной ближней связи (1,2 км), которая может возникнуть при объединении телекоммуникационных систем разных зданий. Ее использование позволит осуществить интеграцию локальных сетей с глобальными, интеграцию удаленных друг от друга локальных сетей, а также обеспечить нужды цифровой телефонии. Лазерная связь поддерживает все необходимые для этих целей интерфейсы - от RS-232 до АТМ.

Как осуществляется связь

Лазерная связь позволяет осуществлять соединения типа "точка-точка" со скоростью передачи информации до 155 Мбит/с. В компьютерных и телефонных сетях лазерная связь обеспечивает обмен информацией в режиме полного дуплекса. Для приложений, не требующих высокой скорости передачи (например, для передачи видеосигнала и сигналов управления в системах технологического и охранного телевидения), имеется специальное экономичное решение с полудуплексным обменом. Когда требуется объединить не только компьютерные, но и телефонные сети, могут применяться модели лазерных устройств со встроенным мультиплексором для одновременной передачи трафика ЛВС и цифровых групповых потоков телефонии (Е1/ИКМ30).

Лазерные устройства могут осуществлять передачу любого сетевого потока, который доставляется им при помощи оптоволокна или медного кабеля в прямом и обратном направлениях. Передатчик преобразует электрические сигналы в модулированное излучение лазера в инфракрасном диапазоне с длиной волны 820 нм и мощностью до 40 мВт. В качестве среды распространения лазерная связь использует атмосферу. Затем лазерный луч попадает в приемник, имеющий максимальную чувствительность в диапазоне длины волны излучения. Приемник производит преобразование излучения лазера в сигналы используемого электрического или оптического интерфейса. Так осуществляется связь с помощью лазерных систем.

Семейства, модели и их особенности

В этом разделе мы хотим представить Вам три семейства наиболее популярных в США лазерных систем - LOO, OmniBeam 2000 и OmniBeam 4000 (таблица 1). Семейство LOO является базовым и позволяет осуществлять передачу данных и голосовых сообщений на расстояние до 1000 м. Семейство OmniBeam 2000 имеет аналогичные возможности, но действует на большее расстояние (до 1200 м) и может передавать видеоизображения и комбинацию данных и речи. Семейство OmniBeam 4000 может осуществлять высокоскоростную передачу данных: от 34 до 52 Мбит/с на расстояние до 1200 м и от 100 до 155 Мбит/с - до 1000 м. На рынке представлены и другие семейства лазерных систем, но они либо покрывают меньшее расстояние, либо поддерживают меньшее количество протоколов.

Таблица 1.

Семейство LOO OmniBeam 2000 OmniBeam 4000
Ethernet (10 Мбит/с) + + -
Token Ring (416 Мбит/с) + + -
E1 (2 Мбит/с) + + -
Видеоизображение - + -
Комбинация данных и речи - + -
Высокоскоростная передача данных (34-155 Мбит/с) - - +
Возможность модернизации - + +

Каждое из семейств включает в себя набор моделей, поддерживающих различные коммуникационные протоколы (таблица 2). В семейство LOO входят экономичные модели, которые обеспечивают передачу на расстояние до 200 м (буква "S" в конце наименования).

Таблица 2.

Несомненным достоинством лазерных устройств связи является их совместимость с большинством телекоммуникационного оборудования различного назначения (концентраторов, маршрутизаторов, повторителей, мостов, мультиплексоров и АТС).

Установка лазерных систем

Немаловажным этапом создания системы является ее инсталляция. Собственно включение занимает ничтожно малое время по сравнению с монтажом и настройкой лазерного оборудования, которые продолжаются несколько часов при условии их выполнения хорошо обученными и оснащенными специалистами. При этом от качества выполнения этих операций будет зависеть и качество работы самой системы. Поэтому перед представлением типовых вариантов включения мы хотели бы уделить некоторое внимание этим вопросам.

При наружном размещении приемопередатчики могут устанавливаться на поверхности крыш или стен. Лазер монтируется на специальной жесткой опоре, обычно металлической которая крепится к стене здания. Опора также обеспечивает возможность регулировки угла наклона и азимута луча.

В этом случае для удобства монтажа и обслуживания системы ее подключение осуществляется через распределительные коробки (РК). В качестве соединительных кабелей обычно используют оптоволокно для цепей передачи данных и медный кабель для цепей питания и контроля. Если оборудование не имеет оптического интерфейса данных, то возможно использование модели с электрическим интерфейсом или внешнего оптического модема.

Блок питания (БП) приемопередатчика всегда устанавливается внутри помещения и может крепиться на стене или в стойке, которая используется для оборудования ЛВС или кросса структурированных кабельных систем. Рядом может быть установлен и монитор состояний, который служит для дистанционного контроля функционирования приемопередатчиков семейств ОВ2000 и ОВ4000. Его использование позволяет осуществлять диагностику лазерного канала, индикацию величины сигнала, а также закольцовывание сигнала для его проверки.

При внутреннем монтаже лазерных приемопередатчиков необходимо помнить о том, что мощность лазерного излучения падает при прохождении через стекло (не менее 4% на каждом стекле). Другая проблема - капли воды, стекающие по внешней стороне стекла во время дождя. Они играют роль линз и могут привести к рассеиванию луча. Чтобы уменьшить этот эффект, рекомендуется устанавливать оборудование вблизи верхней части стекла.

Для обеспечения качественной связи необходимо учесть некоторые основные требования.

Самым главным из них, без выполнения которого связь будет невозможна, является то, что здания должны находится в пределах прямой видимости, при этом не должно быть непрозрачных препятствий на пути распространения луча. Кроме того, поскольку лазерный луч в области приемника имеет диаметр 2 м, необходимо, чтобы приемопередатчики находились над пешеходами и потоком транспорта на высоте не ниже 5 м. Это связано с обеспечением правил безопасности. Транспорт также является источником газов и пыли, которые влияют на надежность и качество передачи. Луч не должен распространяться в непосредственной близости от линий электропередач или пересекать их. Необходимо учесть возможный рост деревьев, движения их крон при порывах ветра, а также влияние атмосферных осадков и возможные сбои в работе из-за пролетающих птиц.

Правильный выбор приемопередатчика гарантирует устойчивую работу канала во всем диапазоне климатических условий России. Например, при большом диаметре луча уменьшается вероятность сбоев, связанных с атмосферными осадками.

Лазерное оборудование не является источником электромагнитного излучения (ЭМИ). Однако если разместить его вблизи приборов с ЭМИ, то электронное оборудование лазера будет улавливать это излучение, что может вызвать изменение сигнала как в приемнике, так и в передатчике. Это повлияет на качество связи, поэтому не рекомендуется размещать лазерное оборудование вблизи таких источников ЭМИ, как мощные радиостанции, антенны и т.п.

При установке лазера желательно избегать ориентации лазерных приемопередатчиков в направлении восток-запад, так как несколько дней в году солнечные лучи могут на несколько минут перекрыть лазерное излучение, и передача станет невозможной, даже при наличии специальных оптических фильтров в приемнике. Зная, как движется солнце по небосклону в конкретном районе, можно легко решить эту проблему.

Вибрация может вызвать сдвиг лазерного приемопередатчика. Во избежание этого не рекомендуется устанавливать лазерные системы вблизи моторов, компрессоров и т.п.

Рисунок 1.
Размещение и подключение лазерных приемопередатчиков.

Несколько типовых способов включения

Лазерная связь поможет решить проблему ближней связи при соединении типа "точка-точка". В качестве примеров рассмотрим несколько типовых вариантов или способов включения. Итак, у вас есть центральный офис (ЦО) и филиал (Ф), в каждом из которых функционирует компьютерная сеть.

На рисунке 2 представлен вариант организации канала связи для случая, в котором требуется объединить Ф и ЦО, использующие в качестве сетевого протокола Ethernet, а в качестве физической среды - коаксиальный кабель (толстый или тонкий). В ЦО находится сервер ЛВС, а в Ф - компьютеры, которые требуется подключить к этому серверу. С помощью лазерных систем, например моделей LOO-28/LOO-28S или ОВ2000Е, вы легко решите эту проблему. Мост устанавливается в ЦО, а повторитель в Ф. Если мост или повторитель имеет оптический интерфейс, то оптический минимодем не потребуется. Лазерные приемопередатчики подключаются посредством сдвоенного оптоволокна. Модель LOO-28S позволит вам осуществлять связь на расстоянии до 213 м, а LOO-28 - до 1000 м при угле "уверенного" приема 3 мрад. Модель ОВ2000Е покрывает расстояние до 1200 м при угле "уверенного" приема 5 мрад. Все эти модели работают в режиме полного дуплекса и обеспечивают скорость передачи 10 Мбит/с.

Рисунок 2.
Подключение удаленного сегмента ЛВС Ethernet на основе коаксиального кабеля.

Подобный же вариант объединения двух сетей Ethernet, использующих в качестве физической среды витую пару (10BaseT) приведен на рисунке 3. Его отличие заключается в том, что вместо моста и повторителя используются концентраторы (хабы), имеющие необходимое число разъемов 10BaseT и один интерфейс AUI или FOIRL для подключения лазерных приемопередатчиков. В этом случае необходимо установить лазерный приемопередатчик LOO-38 или LOO-38S, который обеспечивает требуемую скорость передачи в режиме полного дуплекса. Модель LOO-38 может поддерживать связь на расстоянии до 1000 м, а модель LOO-38S - до 213 м.

Рисунок 3.
Подключение удаленного сегмента ЛВС Ethernet на основе витой пары.

На рисунке 4 представлен вариант комбинированной передачи данных между двумя ЛВС (Ethernet) и группового цифрового потока E1 (ИКМ30) между двумя УАТС (в ЦО и Ф). Для решения этой проблемы подходит модель ОВ2846, которая обеспечивает передачу данных и речи со скоростью 12 (10+2) Мбит/с на расстояние до 1200 м. ЛВС подключается к приемопередатчику при помощи сдвоенного оптоволокна через стандартный SMA-разъем, а телефонный трафик передается посредством коаксиального кабеля 75 Ом через BNC-разъем. Необходимо отметить тот факт, что мультиплексирование потоков данных и речи не требует дополнительного оборудования и выполняется приемопередатчиками без снижения пропускной способности каждого из них в отдельности.

Рисунок 4.
Объединение вычислительных и телефонных сетей.

Вариант осуществления высокоскоростной передачи данных между двумя ЛВС (LAN "A" в ЦО и LAN "B" в Ф) с использованием коммутаторов АТМ и лазерных приемопередатчиков представлен на рисунке 5. Модель ОВ4000 позволит решить проблему высокоскоростной ближней связи оптимальным образом. Вы получите возможность передавать потоки Е3, ОС1, SONET1 и ATM52 с требуемыми скоростями на расстояние до 1200 м, а потоки 100 Base-VG или VG ANYLAN (802.12), 100 Base-FX или Fast Ethernet (802.3), FDDI, TAXI 100/140, OC3, SONET3 и ATM155 с требуемыми скоростями - на расстояние до 1000 м. Передаваемые данные доставляются на лазерный приемопередатчик при помощи стандартного сдвоенного оптоволокна, подключаемого через SMA-разъем.

Рисунок 5.
Объединение высокоскоростных телекоммуникационных сетей.

Приведенные примеры не исчерпывают всех возможных вариантов применения лазерного оборудования.

Что выгодней?

Попробуем определить место лазерной связи среди остальных проводных и беспроводных решений, кратко оценив их достоинства и недостатки (таблица 3).

Таблица 3.

Ориентировочная стоимость Медный кабель Оптоволокно Радиоканал Лазерный канал
от 3 до 7 тыс. дол. за 1 км до 10 тыс. дол. за 1 км от 7 до 100 тыс. дол. за комплект 12-22 тыс. дол. за комплект
Время на подготовку и выполнение монтажа Подготовка работ и прокладка - до 1 месяца; установка HDSL-модемов - несколько часов Подготовка работ и прокладка 1-2 месяца Подготовка работ 2-3 месяца, установка - несколько часов Подготовка работ 1-2 недели, установка - несколько часов
Максимальная пропускная способность До 2 Мбит/с при использованием HDSL До 155 Мбит/с До 155 Мбит/с До 155 Мбит/с
Максимальная дальность связи без повторителей До 20 км при использовании HDSL Не менее 50-70 км До 80 км (зависит от мощности сигнала) До 1,2 км
BER >1E-7 1E-10 1E-10...1E-9

Начнем со всем известного обычного медного кабеля. Некоторые его характеристики позволяют практически точно рассчитать параметры создаваемого канала связи. Для такого канала неважно, каково направление передачи и нахоятся ли объекты в прямой видимости, не нужно думать о влиянии осадков и многих других факторов. Однако качество и скорость передачи, обеспечиваемые этим кабелем, оставляют желать лучшего. Частота появления ошибочных битов (BER) составляет величину порядка 1Е-7 и выше, что значительно больше величины этого показателя у оптоволокна или беспроводной связи. Медные кабели относятся к низкоскоростным каналам связи, поэтому прежде чем прокладывать новые кабели, подумайте о том, стоит ли их использовать. Если кабель уже имеется, то вам стоит задуматься о том, как повысить его пропускную способность на основе технологии HDSL. Однако следует учитывать, что она может не обеспечить требуемого качества связи из-за неудовлетворительного состояния кабельных линий.

Оптоволоконные кабели имеют значительные преимущества перед медными. Высокие пропускная способность и качество передачи (BER

Сейчас широкое применение находит радиосвязь, особенно радиорелейные линии и радиомодемы. Им также присущ свой набор преимуществ и недостатков. Существующие технологии радиосвязи при создании канала для передачи данных обеспечат вам более высокие качество (BER

Лазерная связь - быстро и качественно, надежно и эффективно решает проблему ближней связи между двумя зданиями, находящимися на расстоянии до 1200 м и в прямой видимости. Без выполнения этих условий лазерная связь невозможна. Ее несомненными преимуществами являются:

  • "прозрачность" для большинства сетевых протоколов (Ethernet, Token Ring, Sonet/OC, ATM, FDDI и др.);
  • высокая скорость передачи данных (до 155 Мбит/с сегодня, до 1 Гбит/с у анонсированного производителями оборудования);
  • высокое качество связи с BER=1Е-10...1Е-9;
  • подведение сетевого трафика к лазерному приемопередатчику при помощи кабельных и/или оптоволоконных устройств сопряжения;
  • отсутствие необходимости получения разрешений на использование;
  • относительно низкая стоимость лазерного оборудования, по сравнению с радиосистемами.

Лазерные приемопередатчики, из-за низкой мощности их излучения, не представляют опасности для здоровья. Следует отметить, что хотя луч безопасен, птицы его видят и стараются уклониться, что существенно уменьшает вероятность сбоев. Если передаваемая информация доставляется к лазерному приемопередатчику и от него по стандартному многомодовому оптоволоконному кабелю, то гарантируется передача данных без радиоволнового и электромагнитного излучения. Это не только обеспечивает отсутствие воздействия на работающее рядом оборудование, но и делает невозможным несанкционированный доступ к информации (получить его можно, только подобравшись непосредственно к приемопередатчику).

крепыш 4 января 2015 в 05:04

Вариации на тему космической лазерной связи

  • Космонавтика

Одна из актуальных на сегодняшний день тем в коммерческой космонавтике, и не только - это тема лазерной связи. Преимущества ее известны, тесты проводились и оказались успешны или очень успешны. Если кому плюсы и минусы неизвестны - кратко изложу.

Лазерная связь позволяет передавать данные на гораздо большие относительно радиосвязи расстояния, скорость передачи благодаря высокой концентрации энергии и гораздо более высокой частоте несущей (на порядки) также выше. Энергоэффективность, низкий вес и компактность также в разы или на порядки лучше. Как и стоимость - в принципе, для лазерной связи в космосе вполне может подойти обыкновенная китайская лазерная указка мощностью в районе 1 Вт и выше, что я и намерен доказать ниже.

Из минусов можно упомянуть прежде всего необходимость гораздо более точного наведения приемных и передающих модулей относительно радиосвязи. Ну и известные атмосферные проблемы с облачностью и пылью. На самом деле все эти проблемы легко решаемы, если подойти к их решению с головой.

Прежде всего - рассмотрим, как работает приемный модуль. Он представляет из себя специализированный (не всегда) телескоп, который улавливает излучение лазера и превращает его в электросигналы, которые затем известными методами усиливаются и преобразуются в полезную информацию. Связь, естественно, как и везде сейчас, должна быть цифровой и, соотв., полнодуплексной. Но вот должна быть ли она при этом лазерной в обе стороны? Совершенно не обязательно! Почему это так - нам станет ясно, стоит нам только рассмотреть, как отличаются приемные и передающие устройства для лазерной связи, и как отличаются требования к массогабаритным параметрам устройств связи на орбитальных КА (или КА дальнего космоса) и наземных комплексах.

Как уже сказано ранее - приемный комплекс - это телескоп. С линзами и (или) рефлекторами, системой их крепления и наведения телескопа. А это означает - тяжелая и громоздкая конструкция - что совершенно неприемлемо для КА. Ибо для КА любое устройство должно быть как раз максимально легким и компактным. Что как раз для передатчика ЛИ вполне характерно - все, наверное, уже видели современные ПП лазеры размером и весом с авторучку. Ну правда, питание для настоящего, неигрушечного лазера будет весить поболее, ну так оно и для систем радиоцифровой связи будет весить еще поболее ввиду его гораздо меньшей энергоэффективности.

Что из этого всего следует? Это значит - совершенно не нужно передавать данные в обе стороны лазером, достаточно передавать их только со спутника в оптоканале, а на спутник (КА) - в радиоканале, как и ранее. Конечно, это значит, что придется все-таки использовать направленную параболическую антенну для приема, что для веса КА не есть хорошо. Но при этом следует учитывать, что антенна для приема, как и, собственно, сам ресивер, будет все-таки весить в разы меньше, чем она же для передачи. Ибо мощность наземного передатчика мы можем делать на порядки мощнее, чем на КА, а значит - и антенна не нужна большая. В некоторых же случаях направленная антенная вообще не нужна будет.

Т.о. мы имеем уменьшение веса КА практически в разы, так же как и энергопотребления. Что является прямой дорогой к возможности повсеместно использовать для нужд связи, исследования космоса и др. нужд микроспутников, а значит - резкого удешевления космоса. Но и это еще не все.

Для начала рассмотрим путь решения проблемы наведения луча лазера со спутника на наземный приемник. На первый взгляд - проблема серьезная, а в некоторых случаях - и вовсе нерешаемая (если спутник не на геостационаре). Но вот вопрос - а надо ли луч наводить на приемник?

Есть известная проблема - это расхождение и ослабление луча лазера при прохождении в атмосфере. Особенно проблема обостряется при прохождении луча через слои с разной плотностью. При прохождении границ раздела сред луч света, в т.ч. и лазерный луч, испытывает особенно сильные преломления, рассеивание и ослабление. В этом случае мы можем наблюдать своего рода световое пятно, получающееся как раз при прохождении такой границы раздела сред. В атмосфере Земли таких границ несколько - на высоте около 2 км (активный погодный атмосферный слой), на высоте примерно 10 км, и на высоте примерно 80-100 км, т. е. уже на границе космоса. Высоты слоев даны для средних широт для летнего периода. Для других широт и других времен года высоты и само кол-во границ раздела сред может сильно отличаться от описанного.

Т.о. при вхождении в атмосферу Земли луч лазера, до этого спокойно преодолевший миллионы километров без каких-либо потерь (на разве что небольшую расфокусировку), на каких то несчастных десятках километров теряет львиную долю своей мощности. Однако этот плохой на первый взгляд факт мы отлично можем обратить себе на пользу. Ибо этот факт позволяет нам обойтись без какого либо серьезного наведения луча на приемник. Ибо в качестве такого приемника, точнее первичного приемника, мы как раз и можем использовать саму атмосферу Земли, точнее эти самые границы раздела слоев, сред. Мы просто можем наводить телескоп на получающееся световое пятно и считывать с него информацию. Конечно, это заметно прибавит кол-во помех и снизит скорость передачи данных. И сделает ее вообще невозможной в дневное время по понятным причинам - Солнце же! Зато насколько мы можем удешевить спутник за счет экономии на системе наведения! Это особенно актуально для спутников на нестационарных орбитах, а также для КА для исследований дальнего космоса. Кроме того, учитывая, что лазеры, пусть даже с такой некачественной, не узкой частотной полосой, как китайские лазеры - вполне реально можно отсеивать от помех с помощью светофильтров или узкочастотных фотоприемников.

Не менее актуальным могло бы быть использование лазерной связи не для космоса, а для наземной дальней связи способом, подобным тропосферной связи. Имеется в виду передача данных лазером также с использованием атмосферного рассеяния на границах раздела атмосферных слоев с одной точки поверхности Земли до другой. Дальность такой связи может достигать сотен и тысяч километров, а при использовании релейного принципа - и того более.

Теги: лазерная связь, космос

Лазерные системы передачи данных предназначены для организации односторонней и дуплексной связи между объектами, находящимися в пределах прямой видимости.
Free Space Optics - Технология FSO, в которую входит - атмосферная оптическая связь, (АОЛС) и беспроводный оптический канал связи (БОКС) – это способ беспроводной передачи информации в коротковолновой части электромагнитного спектра. В ее основе лежит принцип передачи цифрового сигнала через атмосферу (или космическое пространство) путем модуляции излучения (инфракрасном или видимом) и его последующим детектированием оптическим фотоприемным устройством.
Современное состояние беспроводной оптической связи позволяет создавать надежные каналы связи на расстояниях от 100 до 1500-2000 м в условиях атмосферы и до 100 000 км в открытом космосе, например для связи между спутниками. Являясь альтернативным решением по отношению к оптоволокну, атмосферные оптические линии передачи данных (АОЛП) позволяют сверхоперативно сформировать беспроводный оптический канал связи.

1. Атмосферная оптическая линия связи

Бурное развитие телекоммуникационного рынка требует высокоскоростных линий передачи данных. Однако прокладка оптического волокна подразумевает солидные инвестиции, да и в принципе не всегда возможна.
Естественной альтернативой в этом случае являются беспроводные линии связи СВЧ-диапазона, но проблема оперативного получения частотных разрешений резко ограничивает перспективы их применения, особенно в крупных городах.
Другим способом беспроводной связи являются оптические линии связи (лазерная или оптическая связь), использующие топологию «точка–точка» (point-to-point) или в режиме многоточечного доступа (point-to-multipoint). Оптическая связь осуществляется путем передачи информации с помощью электромагнитных волн оптического диапазона. В качестве примера оптической связи можно привести применявшуюся в прошлом передачу сообщений с помощью костров или семафорной азбуки. В 60-е годы XX века были созданы лазеры и появилась возможность построения широкополосных систем оптической связи. Первая атмосферная линии связи (АЛС) в Москве появилась в конце 60-х годов: была пущена телефонная линия между зданием МГУ на Ленинских горах и Зубовской площадью протяженностью более 5 км. Качество передаваемого сигнала полностью соответствовало нормам. В те же годы опыты с АЛС проводились в Ленинграде, Горьком, Тбилиси и Ереване. В целом, испытания были успешными, но на тот момент специалисты посчитали, что плохие погодные условия делают лазерную связь ненадёжной, и она была признана неперспективной.
Использование сигналов с непрерывной (аналоговой) модуляцией, применявшейся в те годы, приводило к ненормированному затуханию оптического сигнала из-за влияния атмосферы.
Современное широкое распространение АЛС во многих странах мира началось в 1998 году, когда были созданы недорогие полупроводниковые лазеры мощностью в 100 мВт и более, а применение цифровой обработки сигнала позволило избежать ненормированного затухания сигнала и выполнять повторную передачу пакета информации при обнаружении ошибки.
В это же время возникла потребность в лазерной связи, так как стали стремительно развиваться информационные технологии. Резко увеличивается число абонентов, требующих предоставления таких телекоммуникационных услуг, как Интернет, IP-телефония, кабельное телевидение с большим числом каналов, компьютерные сети и т. д. В результате возникла проблема "последней мили" (подключение широкополосного канала связи к конечному пользователю). Прокладка новых кабельных сетей требует крупных капиталовложений, а в ряде случаев, особенно в условиях плотной городской застройки, очень трудна или даже невозможна.
Оптимальным решением проблемы последнего участка является использование беспроводных линий передачи.
Преимущества беспроводных линий связи очевидны: это экономичность (не требуется рыть траншеи для укладки кабеля и арендовать землю); низкие эксплуатационные расходы; высокая пропускная способность и качество цифровой связи; быстрое развертывание и изменение конфигурации сети; легкое преодоление препятствий - железных дорог, рек, гор и т.д.
Беспроводная связь в радиодиапазоне ограничена перегруженностью и дефицитом частотного диапазона, недостаточной скрытностью, подверженностью помехам, в том числе и преднамеренным, и с соседних каналов, повышенным энергопотреблением. Кроме того, для радиосвязи необходимо длительное согласование и регистрация с назначением частот органами Госсвязьнадзора РФ, арендная плата за канал, обязательная сертификация радиооборудования Государственной комиссией по радиочастотам. Применение лазерных средств снимает этот сложный вопрос. Это обусловлено тем, что, во-первых, частота излучения лазерных систем связи выходит за пределы диапазона, в котором необходимо согласование (в России), во-вторых, отсутствием практических возможностей их обнаружения и идентификации как средств информационного обмена.
Основные свойства лазерных систем:
практически абсолютная защищенность канала от несанкционированного доступа и, как следствие, высокий уровень помехоустойчивости и помехозащищенности за счет возможности концентрации всей энергии сигнала в углах от долей угловых минут (в лазерных космических системах связи) до десятков градусов (полнодоступные системы связи в помещениях);
высокие информационные емкости каналов (до десятков Гбит/с)
отсутствуют задержки при передаче информации (ping<1ms) как у радиолиний
отсутствие ярко выраженных демаскирующих признаков (в основном, побочных электромагнитных излучений) и возможность дополнительной маскировки, позволяющей скрыть не только передаваемую информацию, но и сам факт информационного обмена.
Кроме того, многие специалисты отмечают биологическую безопасность этих систем, так как средняя плотность мощности излучения в лазерных системах различного назначения примерно в 3 - 6 раз меньше облученности, создаваемой Солнцем, а также простоту принципов их построения и функционирования, относительно малую стоимость по сравнению с традиционными средствами передачи информации аналогичного назначения.
Конструкция:
Лазерная линия связи состоит из двух идентичных станций, устанавливаемых напротив друг друга в пределах прямой видимости (рис. 1).

Рис. 1. Конструкция АЛС

Построение всех станций АЛС практически одинаково: интерфейсный модуль, модулятор, лазер, оптическая система передатчика, оптическая система приемника, демодулятор и интерфейсный модуль приемника. Передатчик представляет собой излучатель на основе импульсного полупроводникового лазерного диода (иногда обычного светодиода). Приемник в большинстве случаев имеет в своей основе скоростной pin фотодиод или лавинный фотодиод.
Передаваемый поток данных от аппаратуры пользователя поступает на интерфейсный модуль и затем на модулятор излучателя. Затем сигнал преобразуется высокоэффективным инжекционным лазером в оптическое излучение ИК-диапазона, оптикой коллимируется в узкий пучок и передается через атмосферу к приемнику. На противоположном пункте принимаемое оптическое излучение фокусируется приемным объективом на площадку высокочувствительного быстродействующего фотоприемника (лавинные или pin-фотодиоды), где детектируется. После дальнейшего усиления и обработки сигнал поступает на интерфейс приемника, а оттуда на аппаратуру пользователя. Аналогичным образом в дуплексном режиме одновременно и независимо идет встречный поток данных.
Так как лазерный луч передается между пунктами связи в атмосфере, то его распространение сильно зависит от метеоусловий, от наличия дыма, пыли и других загрязнений воздуха. Однако, несмотря на указанные проблемы, атмосферная лазерная связь оказалась вполне надежной на расстояниях нескольких километров и особенно перспективной для решения проблемы "последней мили".
Рассмотрим влияние атмосферы на качество беспроводной инфракрасной связи. Распространение лазерного излучения в атмосфере сопровождается целым рядом явлений линейного и нелинейного взаимодействия света со средой. По чисто качественным признакам указанные явления можно разделить на три основные группы:
1. поглощение (непосредственное взаимодействием луча фотонов с молекулами атмосферы);
2. рассеяние на аэрозолях (пыль, дождь, снег, туман);
3. флуктуации излучения на турбулентностях атмосферы.

Связь по лазерному лучу через атмосферу в настоящее время стала реальной. Она обеспечивает передачу большого количества информации с высокой надежностью на расстояниях до 5 км и решает многие труднопоставимые задачи. Поэтому в последнее время возрастает интерес к этому виду связи.

¹Флуктуации (от лат. fluctuatio - колебание), случайные отклонения физических величин от их средних значений.
²Интернет-источник: http://laseritc.ru/?id=93

2. Беспроводной оптический канал связи

Беспроводной оптический канал связи (БОКС) – устройство, осуществляющее передачу данных через атмосферу. Оно предназначено для создания канала передачи данных стандарта Ethernet. БОКС состоит из двух одинаковых приемопередатчиков (оптических труб), устанавливаемых на обеих сторонах канала связи. Каждый блок состоит из приемопередающего модуля, козырька, интерфейсного кабеля (длиной 5 м), системы наведения, кронштейна, блока питания и блока доступа.
Приемопередающий модуль включает передатчик остронаправленного оптического излучения ИК-диапазона (состоящий из инфракрасного полупроводникового светодиода) и приемник - высокочувствительный светодиод. Светодиоды работают на длине волны 0,87 мкм. Несколько примеров отечественных производителей систем БОКС и их характеристики описаны в таблице 1.
Таблица 1. Устройства для создания оптических каналов связи

Название устройства Производитель Стандарты сигналов Дистанция Тип излучателя Цена, долл.
ЛАЛ2+ ИТЦ, Новосибирск G.703, IEEE802.3 от 1000 м до 5000 м Лазер 7030 9230
МОСТ 100/500 Рязанский приборостроительный завод G.703, IEEE802.3, IEEE802.3u 1200-1400 м Лазер 4890
БОКС-10М "Катарсис" IEEE802.3 500 м Светодиод 2450
БОКС-10МПД "Катарсис" G.703, IEEE802.3 1000 м Светодиод 4344

На рисунке 2 наглядно показан БОКС-10М.

Рис. 2. БОКС-10М

Принцип работы:
Рассмотрим процесс передачи данных с использованием оптического канала (рис. 3). Электрический сигнал с порта Ethernet поступает по интерфейсному кабелю на передатчик, где светодиод преобразует его в ИК-излучение, которое проходит через светоделительное устройство и фокусируется объективом в узконаправленный луч. Пройдя через атмосферу, часть излучения попадает на объектив другого приемопередатчика, фокусируется и светоделительным устройством подается на приемник. Приемник преобразует ИК-излучение в электрический сигнал, который по интерфейсному кабелю поступает на порт Ethernet. Источник питания обеспечивает работу передатчика, приемника, блока индикации и системы предотвращения запотевания/обледенения объектива.

Рис. 3. Общий принцип работы устройства семейства БОКС.

Надежность передачи достигается в первую очередь за счет правильного наведения и энергетического запаса. При правильном наведении энергетический запас системы должен быть четырехкратным для моделей БОКС-10МЛ и БОКС-10М (иными словами, закрывая 4/5 линзы объектива, мы имеем надежный 100%-ный канал при хорошей погоде). Модель БОКС-10МПД имеет 16-кратный энергетический запас. В этом случае доступность канала в течение года будет составлять 99,7-99,9%. Чем выше энергетический запас системы, тем выше надежность канала, которая в идеальном случае достигает 99,99%.
Кроме того, надежная работа системы обусловлена методом доступа к среде передачи CSMA/CD, используемым в сетях Ethernet. Любая коллизия - ухудшение погодных условий или появление кратковременной преграды приводит к повторной передаче пакета на физическом уровне, но даже если случится так, что коллизия не будет услышана (это возможно, например, в моделях БОКС-10МЛ и БОКС-10М из-за того, что время переключения с приема на передачу, конечно, и равно 4 мкс) и пакет будет потерян, то протоколы более высокого уровня, работающие с гарантией доставки, отследят это происшествие, и запрос будет повторен.
Соединение через атмосферу никогда не дает 100%-ной гарантии наличия связи, поэтому возможно, что, например, в плохих погодных условиях (сильный снегопад, очень плотный туман, мощный ливень и т.д.) канал не будет работать. Но в этом случае прекращение связи будет временным, и после улучшения условий связь сама восстановится. Чтобы уменьшить вероятность потери связи по метеоусловиям, необходимо ставить модели с большей рабочей дистанцией, что повышает энергетику светового потока и, как следствие, надежность системы в целом.
Еще одно условие надежной и стабильной работы системы - совпадение центра геометрического пятна освещенности передатчика с центром объектива приемника. Ветровые нагрузки, а также механические и сезонные колебания опоры могут вывести систему из зоны пятна освещенности, в результате чего связь исчезнет. Вся конструкция систем и размер пятна освещенности от передатчика согласованы таким образом, чтобы вероятность потери связи из-за вышеперечисленных причин была сведена к минимуму. При наведении решается следующая геометрическая задача: из точки, полученной при грубом наведении, требуется переместить систему в геометрический центр пятна освещенности от светового потока излучателя, окончательно зафиксировав систему наведения в этом положении. С помощью стандартной системы наведения эта задача решается за 35 итераций.
Монтаж:
Приемопередатчики можно устанавливать на поверхности крыш или стен. БОКС монтируется на металлической опоре, которая позволяет регулировать угол наклона по горизонтали и вертикали (рис. 4). Приемопередатчик подключается через специальный блок доступа, в качестве соединительных кабелей обычно используют витую пару категории 5 (UTP). Со стороны оптического канала блок доступа соединяется с приемопередатчиком интерфейсным кабелем, в качестве которого используется обычная витая пара, снабженная специальными разъемами. С другой стороны блок доступа соединяется с компьютером или сетевым устройством (маршрутизатором или коммутатором).
Блок доступа и блок питания приемопередатчика всегда устанавливают внутри помещения рядом друг с другом. Их можно крепить на стене или размещать в таких же стойках, какие используются для оборудования ЛВС.
Для надежной работы необходимо учесть следующие рекомендации:
здания должны находиться в пределах прямой видимости (на всем пути луч не должен встречать непрозрачных препятствий);
лучше, если устройство будет находиться как можно выше над землей и в труднодоступном месте;
при установке системы следует избегать ориентации приемопередатчиков в направлении восток - запад (такое специфическое требование объясняется достаточно просто: солнечные лучи на восходе или закате могут на несколько минут перекрыть излучение, и передача прекратится);
вблизи от места крепления не должно быть моторов, компрессоров и т.д., поскольку вибрация может привести к сдвигу трубы и разрыву соединения.

Рис. 4. Схема системы наведения

Типы соединений:
На рисунке 5 показаны возможные типы соединений БОКС.

Рис. 5. Типы соединений БОКС

В разных источниках встречается большое количество названий оборудования беспроводной передачи данных в инфракрасном диапазоне длин волн. За рубежом данный класс систем принято называть FSO – Free Space Optics, на постсоветском пространстве существует целый ряд обозначений систем беспроводной оптической связи. За основу следует принять аббревиатуру БОКС – беспроводной оптический канал связи, как отраженную в сертификате системы «Связь» (ССС).