Что такое устройство жесткого диска. Магнитный принцип чтения и записи информации

Как хорошо известно большинству пользователей персонального компьютера, все данные в ПК хранятся на жестком диске - устройстве хранения информации произвольного доступа, которое работает на основе принципа магнитной записи. Современные жесткие диски способны вместить в себе информацию, общим объемом до 6 терабайт (емкость самого вместительного на данный момент диска, выпущенного фирмой HGST), что еще десять лет назад казалось невозможным. Помимо того, что жесткий диск компьютера обладает колоссальной емкостью, благодаря применяющимся в его работе сложным современным технологиям он еще и позволяет получать практически мгновенный доступ к хранящейся на нем информации, без чего продуктивная работа ПК была бы невозможной. Как же устроено это чудо современной техники, и каким образом оно работает?

Устройство жесткого диска

Если снять верхнюю крышку жесткого диска, вы увидите лишь плату электроники и еще одну крышку, под которой находится герметическая зона. Именно в этой гермозоне и расположены основные элементы HDD. Несмотря на распространенное мнение, что гермозона жесткого диска содержит вакуум, это вовсе не так – внутри гермозона заполнена очищенным от пыли сухим воздухом, а в крышке обычно имеется небольшое отверстие с очищающим фильтром, предназначенное для выравнивания давления воздуха внутри гермозоны.

В целом жесткий диск состоит из следующих основных компонентов:

Принцип работы жесткого диска

Что же происходит, когда на жесткий диск компьютера подается питание и он начинает работать? Следуя команде электронного контроллера, двигатель жесткого диска начинает вращаться, приводя тем самым в движение и магнитные диски, которые жестко прикреплены к его оси. Как только скорость вращения шпинделя достигает значения, достаточного для того, чтобы над поверхностью диска образовался постоянный поток воздуха, который не даст считывающейся головке упасть на поверхность накопителя, механизм коромысла начинает двигать считывающие головки, и они зависают над поверхностью диска. При этом расстояние от считывающей головки до магнитного слоя накопителя составляет всего лишь около 10 нанометров, что равно одной миллиардной части метра.

Первым делом при включении жесткого диска происходит считывание с накопителя служебной информации (ее также называют «нулевой дорожкой»), которая содержит сведения о диске и его состоянии. Если сектора со служебной информацией повреждены, то винчестер не будет работать.

Затем начинается непосредственно работа с данными, расположенными на диске. Частицы ферромагнитного материала, которым покрыта поверхность диска, под воздействием магнитной головки условно формируют биты – единицы хранения цифровой информации. Данные на жестком диске распределены по дорожкам, представляющим собой кольцевую область на поверхности одного магнитного диска. Дорожка в свою очередь поделена на одинаковые отрезки, называемые секторами. Таким образом, паря над рабочей поверхностью диска, магнитная головка может посредством изменения магнитного поля осуществлять запись данных строго в определенное место накопителя, а с помощью улавливания магнитного потока происходит считывание информации по секторам.

Форматирование жесткого диска

Для того, чтобы на жесткий диск можно было наносить данные, его предварительно подвергают процессу форматирования. Также форматирование иногда требуется при переустановке операционной системы, правда во втором случае форматируется не весь диск, а лишь один его логический раздел.

Во время форматирования на диск наносится служебная информация, а также данные о нахождении секторов и треков на поверхности диска. Это необходимо для точного позиционирования магнитных головок при работе с жестким диском.

Характеристики жесткого диска

Современный рынок жестких дисков предлагает на выбор самые разнообразные модели винчестеров, отличающиеся между собой по различным техническим параметрам. Вот основные характеристики, по которым различаются жесткие диски:

  • Интерфейс подключения. Большинство современных жестких дисков подключаются к материнской плате посредством интерфейса SATA, однако встречаются модели и с другими типами подключений: eSATA, FireWire, Thunderbolt и IDE.
  • Емкость. Величина, характеризующая количество информации, способное поместиться на жестком диске. На данный момент наибольшей популярностью пользуются накопители емкостью 500 Гб и 1 Тб.
  • Форм-фактор. Современные жесткие диски выпускают в двух физических размерах: 2,5 дюйма и 3,5 дюйма. Первые предназначены для использования в ноутбуках и компактных версиях ПК, вторые используются в обычных настольных компьютерах.
  • Скорость вращения шпинделя. Чем выше скорость вращения шпинделя жесткого диска, тем быстрее он работает. Основная масса винчестеров на рынке имеют скорость вращения 5400 или 7200 оборотов за минуту, однако встречаются также диски со скоростью вращения шпинделя 10000 об/мин.
  • Объем буфера. Для сглаживания разницы в скорости чтения/записи и передачи через интерфейс в жестких дисках используется промежуточная память, именуемая буфером. Объем буфера составляет от 8 до 128 мегабайт.
  • Время произвольного доступа. Это время, которое требуется для выполнение операции по позиционированию магнитной головки на произвольный участок поверхности жесткого диска. Может составлять от 2,5 до 16 миллисекунд.

Почему жесткий диск называют винчестером?

Согласно одной из версий, свое неофициальное прозвище «винчестер» жесткий диск получил в 1973 году, когда был выпущен первый в мире HDD, в котором считывающие аэродинамические головки размещались в одной герметичной коробке с магнитными пластинами. Данный накопитель имел емкость 30 Мбайт плюс 30 Мбайт в сменном отсеке, из-за чего инженеры, которые трудились над его разработкой дали ему кодовое название 30-30, что было созвучно с обозначением популярного ружья, использующего патрон.30-30 Winchester. В начале девяностых годов название «винчестер» вышло из употребления в странах Европы и США, но до сих пор пользуется популярностью в русскоязычных странах. Также нередко можно услышать более сокращенную сленговую версию названия винчестер – «винт», употребляемую в основном компьютерными специалистами.

Жесткие диски

Выполнил студент
группы 40-101Б.
Каримов К.Р.
Преподаватель:
Усов П.А.

1. Принцип работы жесткого диска.. 3

2. Устройство диска.. 5

3. Работа жесткого диска.. 10

4. Объем, скорость и время доступа.. 12

5. Интерфейсы жестких дисков.. 14

6. Внешние жесткие диски.. 16

Принцип работы жесткого диска

Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время, как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты.

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Устройство диска

Типовой винчестер состоит из гермоблока и платы электроники. В гермоблоке размещены все механические части, на плате - вся управляющая электроника, за исключением предусилителя, размещенного внутри гермоблока в непосредственной близости от головок.

Под дисками расположен двигатель - плоский, как во floppy-дисководах, или встроенный в шпиндель дискового пакета. При вращении дисков создается сильный поток воздуха, который циркулирует по периметру гермоблока и постоянно очищается фильтром, установленным на одной из его сторон.

Ближе к разъемам, с левой или правой стороны от шпинделя, находится поворотный позиционер, несколько напоминающий по виду башенный кран: с одной стороны оси, находятся обращенные к дискам тонкие, длинные и легкие несущие магнитных головок, а с другой - короткий и более массивный хвостовик с обмоткой электромагнитного привода. При поворотах коромысла позиционера головки совершают движение по дуге между центром и периферией дисков. Угол между осями позиционера и шпинделя подобран вместе с расстоянием от оси позиционера до головок так, чтобы ось головки при поворотах как можно меньше отклонялась от касательной дорожки.

В более ранних моделях коромысло было закреплено на оси шагового двигателя, и расстояние между дорожками определялось величиной шага. В современных моделях используется так называемый линейный двигатель, который не имеет какой-либо дискретности, а установка на дорожку производится по сигналам, записанным на дисках, что дает значительное увеличение точности привода и плотности записи на дисках.

Обмотку позиционера окружает статор, представляющий собой постоянный магнит. При подаче в обмотку тока определенной величины и полярности коромысло начинает поворачиваться в соответствующую сторону с соответствующим ускорением; динамически изменяя ток в обмотке, можно устанавливать позиционер в любое положение. Такая система привода получила название Voice Coil (звуковая катушка) - по аналогии с диффузором громкоговорителя.

На хвостовике обычно расположена так называемая магнитная защелка - маленький постоянный магнит, который при крайнем внутреннем положении головок (landing zone - посадочная зона) притягивается к поверхности статора и фиксирует коромысло в этом положении. Это так называемое парковочное положение головок, которые при этом лежат на поверхности диска, соприкасаясь с нею. В ряде дорогих моделей (обычно SCSI) для фиксации позиционера предусмотрен специальный электромагнит, якорь которого в свободном положении блокирует движение коромысла. В посадочной зоне дисков информация не записывается.

В оставшемся свободном пространстве размещен предусилитель сигнала, снятого с головок, и их коммутатор. Позиционер соединен с платой предусилителя гибким ленточным кабелем, однако в отдельных винчестерах (в частности - некоторые модели Maxtor AV) питание обмотки подведено отдельными одножильными проводами, которые имеют тенденцию ломаться при активной работе. Гермоблок заполнен обычным обеспыленным воздухом под атмосферным давлением. В крышках гермоблоков некоторых винчестеров специально делаются небольшие окна, заклеенные тонкой пленкой, которые служат для выравнивания давления внутри и снаружи. В ряде моделей окно закрывается воздухопроницаемым фильтром. У одних моделей винчестеров оси шпинделя и позиционера закреплены только в одном месте - на корпусе винчестера, у других они дополнительно крепятся винтами к крышке гермоблока. Вторые модели более чувствительны к микродеформации при креплении - достаточно сильной затяжки крепежных винтов, чтобы возник недопустимый перекос осей. В ряде случаев такой перекос может стать труднообратимым или необратимым совсем. Плата электроники - съемная, подключается к гермоблоку через один - два разъема различной конструкции. На плате расположены основной процессор винчестера, ПЗУ с программой, рабочее ОЗУ, которое обычно используется и в качестве дискового буфера, цифровой сигнальный процессор (DSP) для подготовки записываемых и обработки считанных сигналов, и интерфейсная логика. На одних винчестерах программа процессора полностью хранится в ПЗУ, на других определенная ее часть записана в служебной области диска. На диске также могут быть записаны параметры накопителя (модель, серийный номер и т.п.). Некоторые винчестеры хранят эту информацию в электрически репрограммируемом ПЗУ (EEPROM).

Многие винчестеры имеют на плате электроники специальный технологический интерфейс с разъемом, через который при помощи стендового оборудования можно выполнять различные сервисные операции с накопителем - тестирование, форматирование, переназначение дефектных участков и т.п. У современных накопителей марки Conner технологический интерфейс выполнен в стандарте последовательного интерфейса, что позволяет подключать его через адаптер к алфавитно-цифровому терминалу или COM-порту компьютера. В ПЗУ записана так называемая тест-мониторная система (ТМОС), которая воспринимает команды, подаваемые с терминала, выполняет их и выводит результаты обратно на терминал. Ранние модели винчестеров, как и гибкие диски, изготовлялись с чистыми магнитными поверхностями; первоначальная разметка (форматирование) производилась потребителем по его усмотрению, и могла быть выполнена любое количество раз. Для современных моделей разметка производится в процессе изготовления; при этом на диски записывается сервоинформация - специальные метки, необходимые для стабилизации скорости вращения, поиска секторов и слежения за положением головок на поверхностях. Не так давно для записи сервоинформации использовалась отдельная поверхность (dedicated - выделенная), по которой настраивались головки всех остальных поверхностей. Такая система требовала высокой жесткости крепления головок, чтобы между ними не возникало расхождений после начальной разметки. Ныне сервоинформация записывается в промежутках между секторами (embedded - встроенная), что позволяет увеличить полезную емкость пакета и снять ограничение на жесткость подвижной системы. В некоторых современных моделях применяется комбинированная система слежения - встроенная сервоинформация в сочетании с выделенной поверхностью; при этом грубая настройка выполняется по выделенной поверхности, а точная - по встроенным меткам.

Поскольку сервоинформация представляет собой опорную разметку диска, контроллер винчестера не в состоянии самостоятельно восстановить ее в случае порчи. При программном форматировании такого винчестера возможна только перезапись заголовков и контрольных сумм секторов данных.

При начальной разметке и тестировании современного винчестера на заводе почти всегда обнаруживаются дефектные сектора, которые заносятся в специальную таблицу переназначения. При обычной работе контроллер винчестера подменяет эти сектора резервными, которые специально оставля- ются для этой цели на каждой дорожке, группе дорожек или выделенной зоне диска. Благодаря этому новый винчестер создает видимость полного отсутствия дефектов поверхности, хотя на самом деле они есть почти всегда.

При включении питания процессор винчестера выполняет тестирование электроники, после чего выдает команду включения шпиндельного двигателя. При достижении некоторой критической скорости вращения плотность увлекаемого поверхностями дисков воздуха становится достаточной для преодоления силы прижима головок к поверхности и поднятия их на высоту от долей до единиц микрон над поверхностями дисков - головки "всплывают". С этого момента и до снижения скорости ниже критической головки "висят" на воздушной подушке и совершенно не касаются поверхностей дисков.

После достижения дисками скорости вращения, близкой к номинальной (обычно - 3600, 4500, 5400 или 7200 об/мин) головки выводятся из зоны парковки и начинается поиск сервометок для точной стабилизации скорости вращения. Затем выполняется считывание информации из служебной зоны - в частности, таблицы переназначения дефектных участков.

В завершение инициализации выполняется тестирование позиционера путем перебора заданной последовательности дорожек - если оно проходит успешно, процессор выставляет на интерфейс признак готовности и переходит в режим работы по интерфейсу.

Во время работы постоянно работает система слежения за положением головки на диске: из непрерывно считываемого сигнала выделяется сигнал рассогласования, который подается в схему обратной связи, управляющую током обмотки позиционера. В результате отклонения головки от центра дорожки в обмотке возникает сигнал, стремящийся вернуть ее на место.

Для согласования скоростей потоков данных - на уровне считывания/записи и внешнего интерфейса - винчестеры имеют промежуточный буфер, часто ошибочно называемый кэшем, объемом обычно в несколько десятков или сотен килобайт. В ряде моделей (например, Quantum) буфер размещается в общем рабочем ОЗУ, куда вначале загружается оверлейная часть микропрограммы управления, отчего действительный объем буфера получается меньшим, чем полный объем ОЗУ (80-90 кб при ОЗУ 128 кб у Quantum). У других моделей (Conner, Caviar) ОЗУ буфера и процессора сделаны раздельными.

При отключении питания процессор, используя энергию, оставшуюся в конденсаторах платы либо извлекая ее из обмоток двигателя, который при этом работает как генератор, выдает команду на установку позиционера в парковочное положение, которая успевает выполниться до снижения скорости вращения ниже критической. В некоторых винчестерах (Quantum) этому способствует помещенное между дисками подпружиненное коромысло, постоянно испытывающее давление воздуха. При ослаблении воздушного потока коромысло дополнительно толкает позиционер в парковочное положение, где тот фиксируется защелкой. Движению головок в сторону шпинделя способствует также центростремительная сила, возникающая из-за вращения дисков.

Работа жесткого диска

Теперь - собственно о процессе работы винчестера. После начальной настройки электроники и механики микрокомпьютер винчестера переходит в режим ожидания команд от контроллера, расположенного на системной плате или интерфейсной карте. Получив команду, он включает нужную головку, по сервоимпульсам отыскивает нужную дорожку, дожидается, пока до головки "доедет" нужный сектор, и выполняет считывание или запись информации. Если контроллер запросил чтение/запись не одного сектора, а нескольких - винчестер может работать в так называемом блочном режиме, используя ОЗУ в качестве буфера и совмещая чтение/запись с передачей информации к контроллеру или от него.

Для оптимального использования поверхности дисков применяется так называемая зоновая запись (Zoned Bit Recording - ZBR), принцип которой состоит в том, что на внешних дорожках, имеющих большую длину (а следовательно - и информационную емкость), информация записывается с большей плотностью, чем на внутренних. Таких зон с постоянной плотностью записи в пределах всей поверхности образуется до десятка и более; соответственно, скорость чтения и записи на внешних зонах выше, чем на внутренних. Благодаря этому файлы, расположенные ближе к "началу" винчестера, в целом будут обрабатываться быстрее файлов, расположенных ближе к его "концу".

Теперь о том, откуда берутся неправдоподобно большие количества головок, указанные в параметрах винчестеров. Когда-то эти числа - число цилиндров, головок и секторов на дороже - действительно обозначали реальные физические параметры (геометрию) винчестера. Однако при использовании ZBR количество секторов меняется от дорожки к дорожке, и для каждого винчестера эти числа различны - поэтому стала использоваться так называемая логическая геометрия, когда винчестер сообщает контроллеру некие условные параметры, а при получении команд сам преобразует логические адреса в физические. При этом в винчестере с логической геометрией, например, в 520 цилиндров, 128 головок и 63 сектора (общий объем - 2 Гб) находится, скорее всего, два диска - и четыре головки чтения/записи.

В винчестерах последнего поколения используются технологии PRML (Partial Response, Maximum Likelihood - максимальное правдоподобие при неполном отклике) и S.M.A.R.T. (Self Monitoring Analysis and Report Technology - технология самостоятельного следящего анализа и отчетности). Первая разработана по причине того, что при существующих плотностях записи уже невозможно четко и однозначно считывать сигнал с поверхности диска - уровень помех и искажений очень велик. Вместо прямого преобразования сигнала используется его сравнение с набором образцов, и на основании максимальной похожести делается заключение о приеме того или иного кодового слова - примерно так же мы читаем слова, в которых пропущены или искажены буквы.

Винчестер, в котором реализована технология S.M.A.R.T., ведет статистику своих рабочих параметров (количество старт/стопов и наработанных часов, время разгона шпинделя, обнаруженные/исправленные ошибки и т.п.), которая регулярно сохраняется в перепрограммируемом ПЗУ или в служебных зонах диска. Эта информация накапливается в течение всей жизни винчестера и может быть в любой момент затребована программами анализа; по ней можно судить о состоянии механики, условиях эксплуатации или примерной вероятности выхода из строя.


Похожая информация.


Жёсткий диск («винчестер», hdd, hard disc drive — eng.) — накопитель информации основанный на магнитных пластинах и эффекте магнетизма.

Применяется повсеместно в персональных компьютерах, ноутбуках, серверах и так далее.

Устройство жёсткого диска. Как жёсткий диск работает.



В полу герметичном блоке находятся двусторонние пластины, с нанесённым на них магнитным слоем , посаженные на вал двигателя и вращающиеся со скоростью от 5400 оборотов в минуту.Блок не совсем герметичен, но самое главное он не пропускает мелкие частицы и не допускает перепадов влажности . Всё это пагубно сказывается на сроке службы и качестве работы жёсткого диска.

В современных жёстких дисках, для вала используются . Это даёт меньший шум при работе, значительно увеличивает долговечность и уменьшает шанс заклинивания вала из-за разрушившегося .

Считывание и запись производится с помощью блока головок .

В рабочем состоянии, головки парят над поверхностью диска на расстоянии ~10нм . Они имеют аэродинамическую форму и поднимаются над поверхностью диска за счёт восходящего потока от крутящейся пластины. Магнитные головки могут находится с двух сторон пластины, если с каждой стороны магнитного диска нанесены магнитные слои.

Соединённый блок головок имеет фиксированное положение , то есть головки перемещаются все вместе.

Всеми головками, управляет специальный привод основанный на электромагнетизме .

Неодимовый магнит создаёт магнитное поле , в котором с высокой скоростью реакции под воздействием тока, может перемещаться блок головок. Это лучший и самый быстрый вариант перемещения блока головок, а ведь когда то блок головок перемещался механически, с помощью шестерёнок.

Когда диск выключается, чтобы головки не опустились на диск и не повредили его, они убираются в зону парковки головок (парковочная зона, parking zone).

Это также, позволяет без особых ограничений транспортировать выключенные жёсткие диски. В выключенном состоянии, диск может выдержать большие нагрузки и не повредиться. Во включенном состоянии, даже небольшой толчёк под определённым углом может разрушить магнитный слой пластины или повредить головки при касании о диск.

Помимо герметичной части, у современных жёстких дисков есть наружная плата управления . Когда то, все платы управления были вставлены в материнскую плату компьютера в слоты расширения. Это было не удобно в плане универсальности и возможностей. Сейчас у жёстких дисков, вся управляющая диском электроника, и интерфейса расположены на небольшой плате в нижней части жёсткого диска. Благодаря этому, можно настроить каждый диск под определённые, выгодные с точки зрения его строения параметры, давая ему выигрыш в скорости, либо более тихую работу к примеру.

Для подключения интерфейса и питания используются стандартные общепринятые разъёмы / и Molex /Power SATA .

Особенности.

Жёсткие диски являются самыми ёмкими хранителями информации и относительно надёжными . Объёмы дисков постоянно растут, но в последнее время это связано с некоторыми сложностями и для дальнейшего расширения объёма, требуются новые технологии. Можно сказать, что жёсткие диски практически вышли на прямую в достижении максимальных возможностей. Распространению жёстких дисков в основном поспособствовало соотношение ценаобъём . В большинстве случаев, гигабайт объёма диска стоит меньше чем 2.5 рубля .

Плюсы и минусы жёстких дисков в сравнении с .

До появления твёрдотельных SSD (solid state drive ) — накопителей, у жёстких дисков не было конкурентов. Теперь у жёстких дисков есть направление куда нужно стремиться.

Минусы жёстких дисков (hard drive)(ssd) накопителями:

  • низкая скорость последовательного чтения
  • низкая скорость доступа
  • низкая скорость чтения
  • немного более низкая скорость записи
  • вибрации и небольшой шум при работе

Хотя с другой стороны, у жёстких дисков есть другие, более весомые преимущества, к которым SSD накопителям стремиться и стремиться.

Плюсы жёстких дисков (hard drive) в сравнении с твёрдотельными (ssd) накопителями:

  • значительно лучший показатель объёмцена
  • лучший показатель надёжности
  • больший максимальный объём
  • при выходе из строя, в разы больший шанс восстановить данные
  • лучший вариант для использования в медиа центрах, благодаря компактности и большому объёму 2.5 накопителей

О том, на что стоит обращать внимание при выборе жёсткого диска, можно посмотреть в нашей статье ««. Если вам необходим ремонт жесткого диска или восстановление информации, можно обратиться к .

Лекция №5: Накопители информации

План

1. Жесткие диски
2. Твердотельные накопители

1. Жесткие диски

Историческая справка

В ходе развития жёстких дисков сменилось шесть типоразмеров – форм-факторов.

Рисунок 1. Типоразмеры HDD

1956 год – жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).
1980 год – первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
1981 год – 5,25-дюймовый Shugart ST-412, 10 Мб.
1986 год – стандарты SCSI, ATA(IDE).
1991 год – максимальная ёмкость 100 Мб.
1995 год – максимальная ёмкость 2 Гб.
1997 год – максимальная ёмкость 10 Гб.
1998 год – стандарты UDMA/33 и ATAPI.
1999 год – IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
2002 год – стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
2003 год – появление SATA.
2005 год – максимальная ёмкость 500 Гб.
– стандарт Serial ATA 3G (или SATA II), появление SAS (Serial Attached SCSI).
2006 год – применение перпендикулярного метода записи в коммерческих накопителях.
– появление первых «гибридных» жёстких дисков, содержащих блок флэш-памяти.
2007 год – Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
2009 год – на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
– Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
– появление стандарта SATA 3.0 (SATA 6G).
2010 год – компания Seagate приступает к разработки HDD объемом 3ТБ.

Определение и устройство HDD
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard Disk Drive, HDD ), жёсткий диск , винчестер , в компьютерном сленге «винт» , хард , хард диск – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Принципиально HDD состоит из следующих основных блоков:
Блок электроники включает в себя контакты и микросхему, на которой расположены: контроллер управления HDD, разъемы питания, блок перемычек, разъем для шлейфов (интерфейс подключения).
Механический блок состоит из магнитных пластин, шпинделя, коромысла, осей вращения коромысла, сервопривода коромысла, головок чтения и записи.
Корпус – это конструкция в которой расположены все элементы HDD.

Рисунок 2. Схема устройства HDD

Рисунок 3. Устройство HDD

Принципы хранения информации на HDD
Информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала (оксид железа), чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси.
Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых разделена на секторы по 512 байт, состоящие из горизонтально ориентированных доменов. Ориентация доменов в магнитном слое служит для распознавания двоичной информации (0 или 1). Размер доменов определяет плотность записи данных с целью, адресации пространства поверхности пластин диска, которые делятся на дорожки – концентрические кольцевые области. Каждая дорожка делится на равные отрезки – секторы .

Цилиндр – совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора – конкретный сектор на дорожке.

Организация считывания/записи данных происходит благодаря головкам чтения/записи (ГЧЗ). В рабочем режиме ГЧЗ не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм ). Отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне (зона парковки), где исключён их нештатный контакт с поверхностью дисков.

Рисунок 4. Организация пластин HDD.

Режимы адресации

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder head sector , CHS ) и линейная адресация блоков (англ. linear block addressing , LBA ).

CHS
При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра , номером головки и номером сектора . В современных дисках со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами»
Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов. Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA – была введена функция авто определения геометрии (команда Identify Drive).

LBA
При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA:
LBA = [ (Cylinder * no of heads + heads) * sectors/track ] + (Sector-1)
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.
Характеристики HDD

В настоящее время выделяют следующие характеристики HDD:

Интерфейс (англ. interface ) – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии правил (протокола) обмена.
Серийно выпускаемые жёсткие диски могут использовать интерфейсы:

Ёмкость (англ. capacity ) - количество данных, которые могут храниться накопителем. С момента создания первых жестких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная емкость непрерывно увеличивается. Ёмкость современных жестких дисков (с форм-фактором 3.5 дюйма) на начало 2010г. достигает 2000 Гб (2 Терабайта). Однако компания Seagate подтвердила разработку HDD с объемом 3ТБ.

Примечание: в отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ.

Физический размер (форм-фактор) (англ. dimension ). Почти все современные (2001-2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3.5, либо 2.5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1.8 дюйма, 1.3 дюйма, 1 дюйм и 0.85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5.25 дюймов.

Время произвольного доступа (англ. random access time ) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5).

Скорость вращения шпинделя (англ. spindle speed ) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) - определяется как среднее время наработки на отказ (MTBF ). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G shock rating ) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В дисках 2009 года он обычно варьируется от 8 до 64 Мб.

Плотность записи на пластине (поверхностная плотность) зависит от расстояния между дорожками (поперечная плотность) и минимального размера магнитного домена (продольная плотность). Обобщающим критерием выступает плотность записи на единицу площади диска или емкость пластины. Чем выше плотность записи, тем больше скорость обмена данными между головками и буфером (внутренняя скорость передачи данных). Постепенно резервы роста, обусловленные отмеченным выше технологическим скачком, пошли на убыль. К 2003 г. типовая емкость пластин жестких дисков достигла 80 Гбайт. В 2004 г. появились диски с пластинами емкостью 100 Мбайт, в 2005 г. — 133 Мбайт, в 2009 – 333ГБ

Минимальной адресуемой областью данных на жёстком диске является сектор . Размер сектора традиционно равен 512 байт. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.

В окончательной версии Windows Vista, вышедшей в 2007 году, присутствует ограниченная поддержка дисков с таким размером сектора.

Технологии записи данных на жесткие диски

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи
Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи
Метод перпендикулярной записи - это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современныхобразцов - 60 Гбит/см². Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи
Метод тепловой магнитной записи (англ. Heat- assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, плотность записи которых 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². Широкого распространения данной технологии следует ожидать в 2011-2012 годах.

Технология RAID

RAID (англ. redundant array of independent/inexpensive disks) избыточный массив независимых/недорогих жёстких дисков - матрица из нескольких дисков управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

RAID 0

RAID 0 («Striping») представляет собой дисковый массив из 2 или более дисков, в котором информация разбита на блоки А n и последовательно записана на жесткие диски. Соответственно информация записывается и читается одновременно, что увеличивает скорость.

Рисунок 5. Схема RAID 0

К сожалению, при отказе одного из дисков информация необратимо теряется, поэтому применяется либо в домашних условиях, либо для хранения файла подкачки, своп файла.

RAID 1

RAID 1 (Mirroring — «зеркалирование»). В данном случае один диск полностью повторяет другой, что гарантирует работоспособность при поломке одного диска, но объем полезного пространства уменьшается вдвое. Поскольку диски покупаются одновременно, в случае бракованной партии возможен отказ обоих дисков. Скорость записи приблизительно равна скорости записи на один диск, возможно чтение сразу с двух дисков (если контроллер поддерживает данную функцию), что увеличивает скорость.

Рисунок 6. Схема RAID 1

Применяется чаще всего в малых офисах под базы данных, либо для хранения операционной системы.

RAID 10

RAID 10 (RAID 1+0). Сочетает в себе принципы RAID 0 и RAID 1. При его применении каждый жесткий диск имеет свою «зеркальную пару», при это используется половина полезного объема. Работоспособен пока существует один рабочий диск из каждой пары. Наиболее высокие показатели записи/перезаписи, сопоставимы с RAID 5 по скорости чтения. Применяется для хранения баз данных, при высокой нагрузке.

RAID 5

RAID 5. В данном случае все данные разбиваются на блоки и для каждого набора считается контрольная сумма, которая хранится на одном из дисков – циклически записывается на все диски массива (попеременно на каждый), и используется для восстановления данных. Устойчив к потере не более чем одного диска.

Рисунок 7. Схема RAID 5

RAID 5 имеет высокие показатели чтения – информация считывается почти со всех дисков, но уменьшенную производительность при записи – требуется вычислять контрольную сумму. Но самая критичная операция перезапись, так как она проходит в несколько этапов:
1) Чтение данных
2) Чтение контрольной суммы
3) Сравнение новых и старых данных
4) Запись новых данных
5) Запись новой контрольной суммы
6) Применяются при необходимости большого объема, и высокой скорости чтения.

RAID 6

RAID 6 (ADG). Логическое продолжение RAID 5. Отличие заключается в том что контрольная сумма высчитывается 2 раза, и, как следствие имеет большую надежность (устойчив при поломке более 2 дисков), и меньшую производительность.

Рисунок 8. Схема RAID 6

Организация работы RAID обеспечивается RAID-контроллерами, которые могут быть: встроенными в материнскую плату, внутренними (в виде платы) и внешними.

Рисунок 9. Внутренний RAID контроллер

Два или более дисков подключаются к контроллеру в сервере либо внешняя дисковая полка подключается к контроллеру, в зависимости от выбранного уровня отказоустойчивости, защищает от поломки одного или более дисков, сохраняя работоспособность.

При наличии энергонезависимого кэша и использовании SAS дисков, защищает от проблем, связанных с перебоями электропитания, за исключением тех случаев, когда происходит электрическое повреждение оборудование. Но при повреждении сервера возможна потеря данных.

Защищает данные от:
— аппаратных проблем — отказ, порча, поломка оборудования. Частично, только от отказа жестких дисков;
— сбои электропитания – частично, защищает данные, хранимые в буфере контроллера в очереди на запись, но ограниченное время и только при наличии аккумулятора на контроллере.

Не защищает от:
— программных сбоев;
— человеческого фактора;
— инфраструктурных проблем (хотя все соединения, как правило, находятся внутри сервера);
— аварий;
— катастроф.

Основная цель применения – защита данных от потери при отказе жесткого диска, так же, одна из причин внедрения — потребность в повышенной производительности дисковой подсистемы.

RAID контроллеры поставляют многие компании: IBM, DELL, SUN, HP, Adaptec, 3ware, LSI, и прочие.

Внешний RAID массив

Рисунок 10. Внешний RAID массив

Начальный уровень. Диски и контроллер вынесены в отдельную внешнюю систему. Один или несколько серверов могут быть подключены к внешнему массиву различными интерфейсами, к примеру SAS, iSCSI, FC. Почти все такие системы имеют дублирование вентиляторов и блоков питания, многие предусматривают возможность установки дублирующего контроллера. Сами по себе, внешние RAID массивы более производительны и надежны по сравнению с внутренними RAID контроллерами и могут расширяться до более чем сотни дисков (при помощи дисковых полок).

На данный момент во многих моделях есть продвинутые средства мониторинга и управления, как самим массивом, так и данными на нём. Средства контроля за состоянием дисков заранее оповещают о возможном отказе, большинство достойных производителей меняют диски только на основании данных сообщений, до факта неработоспособности. У некоторых моделей есть возможно делать мгновенные снимки – (snapshot), что позволяет защитить данные и упрощает резервное копирование.

Защищает данные от:
— аппаратных проблем – частично, при наличии дублирования всех систем.
— Программных сбоев – частично, некоторые массивы обладают функциями создания мгновенных копий, что поможет создавать множественные снимки;
— инфраструктурных проблем – защищают при условии дублирования всех массивов вне сервера;
— сбои электропитания – частично, защищает данные в буфере контроллера на запись при наличии аккумулятора. Наличие дублированных блоков питания гарантирует большую надежность.

Не защищают от:
— человеческого фактора;
— аварий;
— катастроф.

Причиной внедрения является либо потребность в консолидации ресурсов хранения, их более простом управлении, возможности одновременного доступа (например, при создании кластера), либо потребность в высокой производительности, либо потребность в большей надежности (дублирование путей к контроллеру).

Типичные представители класса: Xyratex 5xxx/6xxx, Dell MD3000, IBM 3XXX, HP MSA 2000.

2. Твердотельные накопители

Рисунок 11. Накопитель SSD

Твердотельный накопитель (англ. SSD, solid-state drive) – компьютерное запоминающее устройство на основе микросхем памяти, управляемые контроллером. SSD накопители не содержат движущихся механических частей.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флэш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, копания Samsung в 2011 году продала бизнес по производству жёстких дисков компании Seagate.

Существуют гибридные жесткие диски, такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления). Пока, такие диски используются, в основном, в переносных устройствах (ноутбуках, сотовых телефонах и т. п.).

Рисунок 12. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 13. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 14. Блок электроники гибридного накопителя Seagate Momentus XT 500 GB

История развития

1978 год – американская компания StorageTek разработала первый полупроводниковый накопитель современного типа (основанный на RAM-памяти).
1982 год – американская компания Cray представила полупроводниковый накопитель на RAM-памяти для своих суперкомпьютеров Cray-1 со скоростью 100 МБит/с и Cray X-MP со скоростью 320 МБит/с, объемом 8, 16 или 32 миллиона 64 разрядных слов.
1995 год – израильская компания M-Systems представила первый полупроводниковый накопитель на flash-памяти.
2008 год – Южнокорейской компании Mtron Storage Technology удалось создать SSD накопитель со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя - 128 ГБ. По заявлению компании, выпуск таких устройств начнётся уже в 2009 году.
2009 год – Super Talent Technology выпустила SSD объёмом 512 гигабайт., OCZ представляет SSD объёмом 1 терабайт.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают SSD-направление в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA. Кроме того, свой интерес к этому рынку демонстрирует Toshiba.

Устройство и функционирование

SSD накопители бывают двух типов:

NAND SSD
NAND SSD – накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились относительно недавно с гораздо более низкой стоимостью (от 2 долларов США за гигабайт), и, начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям – жестким дискам – в скорости записи, но компенсировали это высокой скоростью поиска информации (начального позиционирования). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, в разы превосходящие возможности жестких дисков. Характеризуются относительно небольшими размерами и низким энергопотреблением.

RAM SSD
RAM SSD– это накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ ПК) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Преимущества и недостатки
Преимущества , по сравнению с жёсткими дисками (HDD):

  • отсутствие движущихся частей;
  • высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.);
  • низкое энергопотребление;
  • полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов;
  • высокая механическая стойкость;
  • широкий диапазон рабочих температур;
  • стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;
  • малые габариты и вес;
  • большой модернизационный потенциал как у самих накопителей так и у технологий их производства.
  • намного меньшая чувствительность к внешним электромагнитным полям.

Недостатки :

  • Главный недостаток SSD - ограниченное количество циклов перезаписи. Обычная (MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) - более 100 000 раз Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами»;
  • Проблема совместимости SSD накопителей с устаревшими и даже многими актуальными версиями ОС семейства Microsoft Windows, которые не учитывают специфику SSD накопителей и дополнительно изнашивают их. Использование операционными системами механизма свопинга (подкачки) на SSD также, с большой вероятностью, уменьшает срок эксплуатации накопителя;
  • Цена гигабайта SSD-накопителей существенно выше цены гигабайта HDD. К тому же, стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит от количества пластин и медленнее растёт при увеличении объёма накопителя.

Microsoft Windows и компьютеры данной платформы с твердотельными накопителями.

В ОС Windows 7 введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей, эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-диску дефрагментацию, технологии Superfetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.

Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жесткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключенными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.

Компания ASUS ещё в 2007 г. выпустила нетбук EEE PC 701 с SSD-накопителем объёмом 4Гб. Компания Dell 9 сентября 2011 года заявила о первой на рынке комплектации ноутбуков Dell Precision твердотельной памятью объемами 512Гб одним накопителем и 1Тб двумя накопителями для моделей компьютеров M4600 и M6600 соответственно. Производитель установил цену за один 512Гб SATA3 накопитель на момент объявления в $1120 долларов США.

На SSD-накопителе работают планшеты компании Acer - модели Iconia Tab W500 и W501, Fujitsu Stylistic Q550 под управлением Windows 7.

Mac OS X и компьютеры Макинтош с твердотельными накопителями

Операционная система Mac OS X начиная с версии 10.7 (Lion) полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти.

С 2010 года компания Apple представила компьютеры линейки Air полностью комплектуемые только твердотельной памятью на основе Флеш-NAND памяти. До 2010 г. покупатель мог выбрать для данного компьютера обычный жесткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жестких дисков в пользу твердотельных накопителей. Объем комплектуемой памяти в компьютерах серии Air составляет от 64Гб до 512Гб. По данным J.P. Morgan с момента представления было продано 420 000 компьютеров этой серии полностью на твердотельной Флэш-NAND памяти.

3. Магнитные и оптические накопители

Самостоятельное изучение.

Страница 2 из 11

ЧАСТЬ I. восстановление файлов с жесткого диска

ГЛАВА 1. КАК РАБОТАЕТ ЖЕСТКИЙ ДИСК И КАК НА НЕМ ХРАНЯТСЯ ДАННЫЕ

Немного об устройстве жесткого диска. Общее устройство HDD

Что же представляет собой жесткий диск (по строгому - накопитель на жестких дисках)? Если у вас не было возможности его лицезреть, то скажем, что снаружи он выглядит как единый металлический блок. Причем очень прочный и полностью герметичный. Дело в том, что технология работы диска настолько тонка, что даже мельчайшая инородная частица, попавшая внутрь, способна полностью нарушить его работу. Дополнительно, для предотвращения кризисной ситуации, в жесткий диск был помещен фильтр очистки. Также корпус винчестера служит в качестве экрана от электропомех. На самом деле жесткий диск состоит из двух основных частей - механики и электроники. Основу механической части составляют пластины (диски), имеющие круглую форму. Вообще-то диск может быть и всего один. Все зависит от емкости винчестера в целом. По одной из версий название «винчестер» жесткий диск получил благодаря фирме, которая в 1973 году выпустила жесткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инжене- у ры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером». В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слов «винт» (наиболее употребимый вариант), «винч» и «веник». Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:
ОКСИДНЫЙ;
тонкопленочный;
двойной антиферромагнитный (AFC)

В настоящее время встречаются экземпляры жестких дисков, состоящие из четырех и более пластин. Состав дисков может быть различен. Их изготавливают из алюминия, стекла или керамики. Последние два состава более практичны, однако очень дороги, и поэтому они используются для создания «элитных» жестких дисков. После изготовления пластины покрывают слоем ферромагнитного материала. Со времен создания первых винчестеров здесь использовалась окись железа. Однако данное вещество имело существенный недостаток. Диски, покрытые данным ферромагнетиком, имели небольшую износостойкость. В связи с этим в настоящее время в качестве покрытия пластин большинство производителей используют кобальт хрома. Износостойкость данного вещества на порядок превышает годами применявшийся ферромагнетик. К тому же данное покрытие намного тоньше, так как наносится методом напыления, что значительно увеличивает плотность записи. Ферромагнетик наносится на обе стороны диска, поэтому данные будут размещаться также с двух сторон. Пластины помещаются на шпиндель на одинаковое друг от друга расстояние, образовывая таким образом их пакет. Под дисками находится двигатель, который их вращает. С обеих сторон пластин размещены головки чтения/записи. Они устроены таким образом, чтоб перемещаться от края диска до его центра. За это «отвечает» специально выделенный для этого двигатель. Электроника представляет собой плату, на которой помещены различные «нужные» для работы винчестера элементы, такие как процессор, управляющая программа, ОЗУ, усилитель записи/чтения и другие. Каждая сторона пластины разбита на дорожки. Они, в свою очередь, на сектора. Все дорожки одного диаметра всех поверхностей образуют цилиндр. Современные винчестеры имеют «инженерный цилиндр». Он содержит служебную информацию (модель диска, серийный номер и т.п.), предназначенную для дальнейшего считывания компьютером..

Раньше для того, чтобы диск был готов к работе, пользователю необходимо было провести так называемое форматирование на низком уровне. В BIOS даже присутствовал соответствующий пункт. Сейчас же данная разметка производится сразу при производстве винчестеров. Дело в том, что при низкоуровневом форматировании происходит запись сервоинформации. Она содержит специальные метки, которые нужны для стабилизации скорости вращения шпинделя, поиска головками необходимых секторов, а также слежения за положением головок на поверхности пластин. Если вы думаете, что «плохие» сектора на винчестере появляются только в процессе эксплуатации, то вы ошибаетесь. Любой вновь созданный жесткий диск уже имеет bad block. Так вот, при низкоуровневом форматировании данные блоки обнаруживаются и записываются в специальную таблицу переназначения. Затем в процессе эксплуатации контроллер жесткого диска заменит неисправные блоки работоспособными, которые специально резервируются для таких целей уже при производстве. В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с концентрических окружностей вращающихся магнитных дисков (дорожек), разбитых на секторы емкостью 512 байт. Дорожка - это «кольцо» данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами .

Принципы работы жесткого диска

В силу своей специфичности, при работе винчестера не происходит прямого контакта магнитных головок с поверхностью пластин. Можно сказать по-другому: соприкосновение «смерти подобно». Конструкция головок создана так, что она позволяет «парить» над поверхностью пластин. Двигатель вращает шпиндель с такой скоростью (до 15000 об/мин), что от крутящихся дисков создается сильный поток воздуха. При этом получается эффект воздушной подушки. Зазор между головками и дисками составляет доли микрона. Однако, как мы упоминали выше, недопустимо соприкосновение головок с поверхностью. Но ведь бывают сбои в электроснабжении, скажете вы. Да, естественно. Вот для этого случая была придумана так называемая "парковочная зона". И когда происходит ситуация, в которой скорость вращения шпинделя опускается ниже границы допустимой нормы (во время обычной работы или в экстренном режиме при отключении питания), которую постоянно отслеживает процессор жесткого диска, головки отводятся в эту самую парковочную зону. Зона находится у самого шпинделя, где не происходит записи информации, поэтому магнитным головкам можно спокойно «лечь» на поверхность диска. Как же выполняется "запуск" винчестера? В двух словах все происходит примерно так. Как только жесткий диск получил питание, его процессор начинает тестировать электронику и при положительном результате запускает двигатель, вращающий пластины. По мере увеличения скорости вращения достигается эффект воздушной подушки, которая подымает магнитные головки с зоны парковки. Когда скорость достигает необходимой величины, головки покидают парковочную зону и с помощью контроллера "ищут" сервометки, чтобы стабилизировать частоту вращения. Затем производится переназначение "плохих" секторов, а также проверка позиционирования головок. В случае положительного результата проделанной работы контроллер винчестера переходит в рабочий режим. Конечно же, механический процесс работы жесткого диска при более детальном рассмотрении более глубокий, но мы не задаемся целью его подробнейшего описания. Главное, чтоб вы поняли основные принципы механизма взаимодействия головок с пластинами. Если кого-то интересует детализация данного процесса, то на эту тему создано огромное количество материалов. А мы перейдем к другой части рабочего процесса винчестера - технологии чтения/записи данных.

Технологии чтения/записи данных на жестком диске

Чтение/запись информации на диск происходит с помощью магнитных головок, принцип движения которых был рассмотрен выше. Если вы еще застали старый добрый магнитофон, то способ записи/чтения звука на/с магнитной ленты идентичен рассматриваемому нами. Данные преобразуются в переменный электрический ток, который поступает на магнитную головку, после чего он преобразуется в магнитное поле, с помощью которого происходит намагничивание нужных участков магнитного диска. Мы уже знаем, что пластины жесткого диска покрыты ферромагнитным слоем. Отдельно выбранная область данного покрытия может быть намагничена одним из двух возможных способов. Намагничивание одним способом будет обозначать ноль, другим способом - единицу. Такой отдельно намагниченный участок называется доменом. Он представляет собой мини-магнитик с определенной ориентацией южного и северного полюсов. Воздействуя на определенный домен внешним магнитным полем (магнитной головкой), он примет данное соответствие. Прекратив воздействие внешнего поля, на поверхности возникают зоны остаточной намагниченности. Они означают сохраненную на диске информацию. Хочется отметить, что именно от размера домена зависит плотность записи данных, то есть собственно емкость диска. С давних пор было известно о двух технологиях записи информации на винчестер: параллельной и перпендикулярной. Хотя второй метод записи более производителен, он немного сложнее в технологическом разрешении. Поэтому производителями использовался и совершенствовался параллельный способ до тех пор, пока ему не пришел физический предел. Если вкратце описать технологию параллельной записи, то она такова. Намагниченность доменов располагается параллельно плоскости диска. Все, наверное, в детстве «баловались» магнитиками и поэтому знают, что они будут притягиваться, когда повернуть их друг к другу разными полюсами (синим и красным). И наоборот, если попробовать прижать их друг к другу сторонами одинакового цвета, то такая попытка никогда не увенчается успехом. Так вот, при использовании данной технологии на границе соседних доменов возникает поле рассеяния, забирающее энергию их магнитных полей. Вследствие этого крайние частицы доменов становятся менее стабильными, к тому же увеличивается влияние термофлуктуации на его магнитный порядок. При использовании технологии перпендикулярной записи намагниченность доменов располагается под углом 90° к плоскости пластины. Благодаря этому пропадает эффект отталкивания однополюсных соседних доменов, ведь в данном расположении намагниченные частицы повернуты друг к другу разными полюсами. Это позволяет уменьшить размер междоменного пространства по сравнению с параллельной технологией записи, что также увеличивает емкость жестких дисков. Однако для данного способа записи требуется использование более сложного состава магнитного слоя. Под тонким защитным слоем расположен записывающий слой, состоящий из окисленного сплава кобальта, платины и хрома. Подложка состоит из двух слоев сложного химического состава, называемых антиферромагнит-носвязанными слоями. Именно они позволяют снять внутренние напряженности магнитного поля. К тому же перпендикулярная запись требует использования других магнитных меток, которые смогут генерировать более сильное магнитное поле.Плотность перпендикулярной записи составляет 500 Гбит/дюйм2. Это позволит выпускать винчестеры емкостью несколько терабайт. Однако наука не стоит на месте, и уже вовсю идет разработка новых технологий. Одна из них называется HAMR (Heat Assistant Magnetic Recording) - Термомагнитная запись. Эта технология является последователем перпендикулярной записи и направлена на её улучшение. Запись в данном случае происходит с предварительным нагревом с помощью лазера. Нагрев происходит в течение пикосекунды, при этом температура достигает 100 °С. Магнитные частицы домена в данном случае получают больше энергии, поэтому при генерации поля большой напряженности не требуется. А высокая энергия обеспечивает повышенную стабильность записанной информации. Опять же применение данной технологии невозможно без использования материалов с высоким уровнем анизотропности. Однако подходящие для этого сплавы слишком дороги. К тому же при термомагнитной записи потребуется две раздельных головки. Еще нужно позаботиться о том, как отводить тепло от дисков. Но все же огромной мотивацией применения термомагнитной записи служит тот факт, что данная технология позволяет добиться плотности записи до 1 Тбит/дюйм2

Как данные хранятся на жестком диске

Наименьшая единица информации, которой оперирует система управления жесткого диска, носит название сектора. В подавляющем числе современных носителей сектор равен 512 байтам. Используемая в настоящий момент система адресации секторов называется LBA (Logical block addressing). В то же время для дисков небольшой ёмкости или с целью обратной совместимости со старым оборудованием может быть использована система адресации CHS. Аббревиатура CHS расшифровывается как Cylinder, Head, Sector - цилиндр, головка, сектор. Из названия понятен смысл этого типа адресации, как привязанной к частям устройства жесткого диска. Преимущество LBA над CHS в том, что вторая имеет ограничение на максимальное число адресуемых секторов, в количественном представлении равное 8,4 гигабайта, LB А данного ограничения лишена. Первый сектор жесткого диска (а точнее, нулевой) носит название MBR (Master Boot Record), или главной загрузочной записи. В начале этого сектора находится код, куда передает управление базовая система ввода-вывода компьютера при его загрузке. В дальнейшем этот код передает управление загрузчику операционной системы. Также в 0 секторе находится таблица разделов жесткого диска. Раздел представляет собой определенный диапазон секторов. В таблицу заносится запись о разделе, с номером его начального сектора и размером. Всего в таблице разделов может находиться четыре таких записи. Раздел, запись о котором находится в таблице разделов нулевого сектора, носит название первичного (primary). Из-за упомянутых ограничений таких разделов на одном диске может быть максимум четыре. Некоторые операционные системы устанавливаются только на первичные тома. При необходимости использования большего числа разделов в таблицу заносится запись о расширенном (extended) разделе. Данный тип раздела представляет собой контейнер, в котором создаются логические (logical) разделы. Логических томов может быть неограниченное количество, однако в ОС семейства Windows число одновременно подключенных томов ограничено количеством букв латинского алфавита. Эти три типа разделов имеют наиболее широкую АР, поддержку среди подавляющего числа операционных систем и наибольшее распространение. Фактически в домашних условиях либо масштабе клиентских машин организаций встречаются именно эти типы разделов. Однако это не значит, что типы разделов ограничиваются этими тремя видами. Существует большое число специализированных разделов, но и они используют первичные тома в качестве контейнеров. Раздел - это всего лишь размеченное пространство на диске; чтобы сохранить в нем какую-либо информацию для организации структуры хранения данных, должна быть создана файловая система. Данный процесс носит название форматирования раздела. Типов файловых систем существует великое множество, в ОС семейства Windows используются FAT/ NTFS, в операционных системах на ядре Линукс применяются Ext2/3FS, ReiserFS, Swap. Существует множество утилит для кроссплатформен-ного доступа к различным файловым системам из не поддерживающих их изначально операционных систем (например, обеспечивающих возможность доступа из Windows к разделам Linux и наоборот). Некоторые файловые системы, например FAT/NTFS, оперируют более крупными структурами данных на жестком диске, носящими название кластеров. Кластер может включать произвольное число секторов. Манипулирование размером кластера приносит дополнительный выигрыш к произво дительности файловой системы или расходованию свободного пространства. Таким образом, получается следующая логическая структура хранения данных: жесткий диск разбивается на разделы (при этом информация об этом разбиении хранится в так называемой главной загрузочной записи) - они носят названия С:, D:, Е: и т.д., на каждый раздел устанавливается файловая система (в результате форматирования раздела). Файловая система содержит информацию о том, как разграничено пространство раздела (логического диска) и где какие файлы на нем находятся. Ну а далее на разделе хранятся файлы, которые разбиваются на определенное количество кластеров, физически занимающих определенное количество секторов, на которые разбиты дорожки жесткого диска. Файловая система присваивает всем секторам свои адреса, а затем по этим адресам хранит свои файлы, записывая в свою таблицу адреса кластеров (диапазонов кластеров), принадлежащих тем или иным файлам.