Принцип записи информации на жесткие диски. Жесткий диск: принцип работы и основные характеристики

Устройство жесткого диска

Артём Рубцов, R.LAB Уточнение связи между русскоязычной и англоязычной терминологией выполнено Леонидом Воржевым.

Цель этой статьи - описать устройство современного жёсткого диска, рассказать о его главных компонентах, показать, как они выглядят и называются. Кроме того, мы покажем связь между русскоязычной и англоязычной терминологиями, описывающими компоненты жестких дисков.

Для наглядности, разберём 3.5-дюймовый SATA диск. Это будет совершенно новый терабайтник Seagate ST31000333AS. Осмотрим нашего подопытного кролика.

Зелёный текстолит с медными дорожками, разъемами питания и SATA называется платой электроники или платой управления (Printed Circuit Board, PCB). Она служит для управления работой жесткого диска. Чёрный алюминиевый корпус и его содержимое называется гермоблоком (Head and Disk Assembly, HDA), специалисты также называют его «банкой». Сам корпус без содержимого также называют гермоблоком (base).

Теперь снимем печатную плату и изучим размещённые на ней компоненты.

Первым в глаза бросается большой чип, расположенный посередине – микроконтроллер, или процессор (Micro Controller Unit, MCU). На современных жёстких дисках микроконтроллер состоит из двух частей – собственно центрального процессора (Central Processor Unit, CPU), который производит все вычисления, и канала чтения/записи (read/write channel) - особого устройства, преобразующего поступающий с головок аналоговый сигнал в цифровые данные во время операции чтения и кодирующий цифровые данные в аналоговый сигнал при записи. Процессор имеет порты ввода-вывода (IO ports) для управления остальными компонентами, расположенными на печатной плате, и передачи данных через SATA-интерфейс.

Чип памяти (memory chip) представляет собой обычную DDR SDRAM память. Объем памяти определяет размер кэша жёсткого диска. На этой печатной плате установлена память Samsung DDR объемом 32 Мб, что в теории даёт диску кэш в 32 Мб (и именно такой объём приводится в технических характеристиках жёсткого диска), но это не совсем верно. Дело в том, что память логически разделена на буферную память (кэш) и память прошивки. Процессору требуется некоторый объём памяти для загрузки модулей прошивки. Насколько нам известно, только Hitachi/IBM указывают действительный объём кэша в описании технических характеристик; относительно остальных дисков, об объёме кэша остаётся только гадать.

Следующий чип – контроллер управления двигателем и блоком головок, или «крутилка» (Voice Coil Motor controller, VCM controller). Кроме того, этот чип управляет вторичными источниками питания, расположенными на плате, от которых питается процессор и микросхема предусилителя-коммутатора (preamplifier, preamp), расположенная в гермоблоке. Это главный потребитель энергии на печатной плате. Он управляет вращением шпинделя и движением головок. Ядро VCM-контроллера может работать даже при температуре в 100° C.

Часть прошивки диска хранится во флэш-памяти. При подаче питания на диск микроконтроллер загружает содержимое флэш-чипа в память и приступает к исполнению кода. Без корректно загруженного кода диск даже не пожелает раскручиваться. Если на плате отстутствует флэш-чип, значит, он встроен в микроконтроллер.

Датчик вибрации (shock sensor) реагирует на опасную для диска тряску и посылает сигнал об этом контроллеру VCM. Контроллер VCM немедленно паркует головки и может остановить вращение диска. Теоретически, такой механизм должен защищать диск от дополнительных повреждений, но на практике он не работает, так что не роняйте диски. На некоторых дисках датчик вибрации обладает повышенной чувствительностью, реагируя на малейшую вибрацию. Полученные с датчика данные позволяют контроллеру VCM корректировать движение головок. На таких дисках установлено как минимум два датчика вибрации.

На плате имеется ещё одно защитное устройство - ограничитель переходного напряжения (Transient Voltage Suppression, TVS). Он защищает плату от скачков напряжения. При скачке напряжения TVS перегорает, создавая короткое замыкание на землю. На этой плате установлено два TVS, на 5 и 12 вольт.

Теперь рассмотрим гермоблок.

Под платой находятся контакты мотора и головок. Кроме того, на корпусе диска имеется маленькое, почти незаметное отверстие (breath hole). Оно служит для выравнивания давления. Многие считают, что внутри жёсткого диска находится ваккум. На самом деле это не так. Это отверстие позволяет диску выровнять давление внутри и снаружи гермозоны. С внутренней стороны это отверстие прикрыто фильтром (breath filter), который задерживает частицы пыли и влаги.

Теперь заглянем внутрь гермозоны. Снимем крышку диска.

Сама крышка не представляет собой ничего интересного. Это просто кусок металла с резиновой прокладкой для защиты от пыли. Наконец, рассмотрим начинку гермозоны.

Драгоценная информация хранится на металлических дисках, называемых также блинами или пластинами (platters). На фотографии вы видите верхний блин. Пластины изготавливаются из полированного алюминия или стекла и покрываются несколькими слоями различного состава, в том числе ферромагнитным веществом, на котором, собственно, и хранятся данные. Между блинами, а также над верхним из них, мы видим специальные пластины, называемыми разделителями или сепараторами (dampers or separators). Они нужны для выравнивания потоков воздуха и снижения акустических шумов. Как правило, их изготавливают из алюминия или пластика. Алюминиевые разделители успешнее справляются с охлаждением воздуха внутри гермозоны.

Вид блинов и сепараторов сбоку.

Головки чтения-записи (heads), устанавливаются на концах кронштейнов блока магнитных головок, или БМГ (Head Stack Assembly, HSA). Парковочная зона - это область, в которой должны находиться головки исправного диска, если шпиндель остановлен. У этого диска, парковочная зона расположена ближе к шпинделю, что видно на фотографии.

На некоторых накопителях парковка производится на специальных пластиковых парковочных площадках, расположенных за пределами пластин.

Жёсткий диск - механизм точного позиционирования, и для его нормальной работы требуется очень чистый воздух. В процессе использования внутри жёсткого диска могут образовываться микроскопические частицы металла и смазки. Для немедленной очистки воздуха внутри диска имеется циркуляционный фильтр (recirculation filter). Это высокотехнологичное устройство, которое постоянно собирает и задерживает мельчайшие частицы. Фильтр находится на пути потоков воздуха, создаваемых вращением пластин.

Теперь снимем верхний магнит и посмотрим, что скрывается под ним.

В жёстких дисках используются очень мощные неодимовые магниты. Эти магниты настолько мощны, что могут поднимать вес в 1300 раз больший их собственного. Так что не стоит класть палец между магнитом и металлом или другим магнитом - удар получится очень чувствительным. На этой фотографии изображены ограничители БМГ. Их задача - ограничить движение головок, оставляя их на поверхности пластин. Ограничители БМГ разных моделей устроены по-разному, но их всегда два, они используются на всех современных жестких дисках. На нашем накопителе второй ограничитель расположен на нижнем магните.

Вот что можно там увидеть.

Ещё мы видим здесь катушку (voice coil), которая является частью блока магнитных головок. Катушка и магниты образуют привод БМГ (Voice Coil Motor, VCM). Привод и блок магнитных головок образуют позиционер (actuator) - устройство, которое перемещает головки. Чёрная пластиковая деталь сложной формы называется фиксатором (actuator latch). Это защитный механизм, освобождающий БМГ после того, как шпиндельный двигатель наберёт определённое число оборотов. Происходит это за счёт давления воздушного потока. Фиксатор защищает головки от нежелательных движений в парковочном положении.

Теперь снимем блок магнитных головок.

Точность и плавность движения БМГ поддерживается прецизионным подшипником. Самая крупная деталь БМГ, изготовленная из алюминиевого сплава, обычно называется кронштейном или коромыслом (arm). На конце коромысла находятся головки на пружинной подвеске (Heads Gimbal Assembly, HGA). Обычно сами головки и коромысла поставляют разные производители. Гибкий кабель (Flexible Printed Circuit, FPC) идёт к контактной площадке, стыкующейся с платой управления.

Рассмотрим составляющие БМГ подробнее.

Катушка, соединенная с кабелем.

Подшипник.

На следующей фотографии изображены контакты БМГ.

Прокладка (gasket) обеспечивает герметичность соединения. Таким образом, воздух может попасть внутрь блока с дисками и головками только через отверстие для выравнивания давления. У этого диска контакты покрыты тонким слоем золота для улучшения проводимости.

Это классическая конструкция коромысла.

Маленькие чёрные детали на концах пружинных подвесов называют слайдерами (sliders). Многие источники указывают, что слайдеры и головки - это одно и то же. На самом же деле слайдер помогает считывать и писать информацию, поднимая головку над поверхностью блинов. На современных жёстких дисках головки двигаются на расстоянии 5–10 нанометров от поверхности блинов. Для сравнения: человеческий волос имеет диаметр около 25000 нанометров. Если под слайдер попадёт какая-нибудь частица, это может привести к перегреву головок из-за трения и выходу их из строя, именно поэтому так важна чистота воздуха внутри гермозоны. Сами считывающие и записывающие элементы находятся на конце слайдера. Они так малы, что разглядеть их можно только в хороший микроскоп.

Как видите, поверхность слайдера не плоская, на ней имеются аэродинамические канавки. Они помогают стабилизировать высоту полёта слайдера. Воздух под слайдером образует воздушную подушку (Air Bearing Surface, ABS). Воздушная подушка поддерживает почти параллельный поверхности блина полёт слайдера.

Вот ещё одно изображение слайдера.

Здесь хорошо видны контакты головок.

Это ещё одна важная часть БМГ, которая пока не обсуждалась. Она называется предусилителем (preamplifier, preamp). Предусилитель - это чип, управляющий головками и усиливающий поступающий к ним или от них сигнал.

Предусилитель располагают прямо в БМГ по очень простой причине - сигнал, идущий с головок, очень слаб. На современных дисках он имеет частоту около 1 ГГц. Если вынести предусилитель за пределы гермозоны, такой слабый сигнал сильно затухнет по пути к плате управления.

От предусилителя к головкам (справа) ведёт больше дорожек, чем к гермозоне (слева). Дело в том, что жёсткий диск не может одновременно работать более чем с одной головкой (парой пишущих и считывающих элементов). Жёсткий диск посылает сигналы на предусилитель, и он выбирает головку, к которой в данный момент обращается жёсткий диск. У этого жёсткого диска к каждой головке ведёт шесть дорожек. Зачем так много? Одна дорожка - земля, ещё две - для элементов чтения и записи. Следующие две дорожки - для управления мини-приводами, особыми пьезоэлектрическими или магнитными устройствами, способными двигать или поворачивать слайдер. Это помогает точнее задать положение головок над треком. Последняя дорожка ведёт к нагревателю. Нагреватель служит для регулирования высоты полёта головок. Нагреватель передаёт тепло подвесу, соединяющему слайдер и коромысло. Подвес изготавливается из двух сплавов, имеющих разные характеристики теплового расширения. При нагреве подвес изгибается к поверхности блина, уменьшая, таким образом, высоту полёта головки. При охлаждении подвес выпрямляется.

Хватит о головках, давайте разбирать диск дальше. Снимем верхний сепаратор.

Вот как он выглядит.

На следующей фотографии вы видите гермозону со снятыми верхним разделителем и блоком головок.

Стал виден нижний магнит.

Теперь прижимное кольцо (platters clamp).

Это кольцо удерживает блок пластин вместе, не давая им двигаться друг относительно друга.

Блины нанизаны на шпиндель (spindle hub).

Теперь, когда блины ничто не удерживает, снимем верхний блин. Вот что находится под ним.

Теперь понятно, за счёт чего создается пространство для головок - между блинами находятся разделительные кольца (spacer rings). На фотографии виден второй блин и второй сепаратор.

Разделительное кольцо - высокоточная деталь, изготовленная из немагнитного сплава или полимеров. Снимем его.

Вытащим из диска все остальное, чтобы осмотреть дно гермоблока.

Так выглядит отверстие для выравнивания давления. Оно располагается прямо под воздушным фильтром. Рассмотрим фильтр внимательнее.

Так как поступающий снаружи воздух обязательно содержит пыль, фильтр имеет несколько слоёв. Он гораздо толще циркуляционного фильтра. Иногда он содержит частицы силикагеля для борьбы с влажностью воздуха.

Приветствую, друзья!

Сегодня мы с вами поговорим о такой штуке, как винчестер. Редкий пользователь компьютера не слышал о нем!

Винчестер, он же HDD (Hard Disk Drive), он же жесткий диск - это устройство для хранения информации.

HDD получил свое жаргонное название по имени знаменитой винтовки, с которой белые люди завоевывали Америку. Одна из первых моделей жестких дисков обозначалась «30/30», что совпадало с калибром этого огнестрельного оружия.

Ниже будет идти речь о компьютерных винчестерах.

Как устроен компьютерный винчестер?

Мы рассмотрим, ка утроен традиционный (электромеханический) винчестер, применяющийся в персональных компьютерах. Основа его - один или несколько информационных дисков. В первых моделях винчестеров использовались диски из алюминия.

Но те первые модели имели большой размер и малую емкость.

Гибкие и жесткие диски

Те «винты» (еще одно жаргонное название) имели физические размеры и объем, примерно равный дисководу гибких дисков 5,25 дюйма. На заре компьютерной индустрии данные хранились и на гибких дисках (дискетах) 5,25 и 3,5 дюймов.

Привод для чтения и записи таких дисков назывался FDD (Floppy Disk Drive).

Эти диски были сделаны из круглого куска пластика с нанесенным на обе стороны ферромагнитным покрытием. Они были тонкими и гибкими, поэтому привод и получил такое название. Для защиты от внешних воздействий эти диски помещались в квадратный пластиковый футляр.

Диски в HDD имеют похожее строение, но они толще и не гнутся, что и отражается в названии. На такой диск наносится с помощью центрифуги тонкий ферромагнитный слой из окислов металлов. Данные записываются и считываются с помощью магнитных головок.

При записи в магнитную головку подается информационный сигнал, который меняет ориентацию доменов (ферромагнитных частиц) в ферромагнитном слое.

При считывании намагниченные участки наводят ток в головке, который затем обрабатывается схемой управления (контроллером). Требования к скорости и объемам данных постоянно росли. В эту область были направлены лучшие умы мира. И жесткие диски, как и остальное компьютерное «железо» непрерывно совершенствовались.

Диски стали делать из стекла и стеклокерамики. Это позволило уменьшить их вес, толщину и увеличить скорость вращения.

Скорость вращения диска возросла с 3600 об/мин до 5400, 7200, а потом до 10 000 и даже до 15 00о об/мин! Для сравнения скажем, что скорость вращения диска в FDD имела величину 360 об/мин.

Чем больше скорость вращения, тем быстрее считываются данные.

Ферромагнитный слой

Ферромагнитный слой на поверхность дисков может наноситься двумя способами - гальваническим осаждением и вакуумным напылением. В первом случае диск погружается в раствор солей металлов, и на него осаждается тонкая пленка металла (кобальта).

При вакуумном напылении диск помещают в герметичную камеру, откачивают из нее воздух и с помощью электрического разряда осаждают частицы металла.

Сверху на магнитный слой наносят защитное углеродистое покрытие. Оно предохраняет тонкий магнитный слой от разрушения (и потери информации) при возможном соприкосновении с головкой.

Винчестер может иметь один физический диск или несколько. В последнем случае диски собраны в единую конструкцию и вращаются синхронно. Каждый диск имеет две стороны с ферромагнитным слоем, данные считываются двумя различными головками (расположенными сверху и снизу).

Головки также собраны в единую конструкцию и перемещаются синхронно.

Механизм перемещения головок содержит в себе катушку с проводом и неподвижно закрепленный постоянный магнит. При подаче току в катушку в ней генерируется магнитное поле, взаимодействующее с магнитом. Возникающая при этом сила двигает катушку со всей подвижной частью механизма (и головками тоже).

Механизм содержит в себе пружину, которая при отсутствии питания перемещает головки в исходное положение (зону парковки). Это предохраняет головки и диски от повреждения.

Отметим, что небольшие неодимовые магниты, создающие постоянное магнитное поле, очень сильны!

В рабочем состоянии диски вращаются с постоянной скоростью, головки «парят» над диском. При вращении возникает аэродинамический поток, приподнимающий головки. По мере совершенствовании технологии расстояние между головками и диском уменьшается.

К настоящему времени доведено до нескольких десятков нанометров!

Уменьшение расстояния позволяет увеличить плотность записи информации. Таким образом, в тот же самый объем можно втиснуть больше информации.

Считывающие и записывающие головки

В современных винчестерах применяются магниторезистивные головки .

Кристалл магниторезистора может изменять свое сопротивление в зависимости от величина и направления магнитного поля. При прохождении головки над областями с различной намагниченностью ее сопротивление меняется, что улавливается схемой управления.

Головка винчестера содержит в себе, собственно, две головки - считывающую и записывающую. Записывающая головка работает на том же принципе, что и головка в старых магнитофонах, в которых использовались кассеты с магнитной лентой.

Она содержит разомкнутый сердечник, в зазоре которого создается магнитное поле, изменяющее ориентацию магнитных доменов на поверхности диска. «Обмотка» головки выполнена печатным способом с помощью фотолитографии.

Шпиндель и гермоблок

Основной двигатель винчестера (шпиндель), крутящий диск, содержит в себе гидродинамический подшипник . Он отличается от шарикоподшипника тем, что он имеет гораздо меньшее радиальное биение.

В современных винчестерах плотность записи информации очень высока, дорожки располагаются очень близко друг к другу.

Большая величина радиального биения не дала бы увеличить плотность записи, либо (при уменьшении расстояния между дорожками) головка «скакала» бы по соседним дорожкам в течение одного оборота. Гидродинамический подшипник содержит в себе тонкий слой смазки между подвижной и неподвижной частью.

В заключение скажем, что шпиндель, диски, головка с приводом помещены в отдельный отсек. Первые модели винчестеров содержали негерметичные отсеки, снабженные фильтром с очень мелкими ячейками для выравнивания давления.

Потом появились герметичные отсеки, которые имели в себе отверстие, закрытое гибкой мембраной. Мембрана может изгибаться в обе стороны, компенсируя перепад давлений воздуха внутри и вне отсека с головками.

В следующей части статьи мы продолжим знакомство с тем, как устроен и как работает винчестер.

С вами был Виктор Геронда. До встречи на блоге!

Страница 2 из 11

ЧАСТЬ I. восстановление файлов с жесткого диска

ГЛАВА 1. КАК РАБОТАЕТ ЖЕСТКИЙ ДИСК И КАК НА НЕМ ХРАНЯТСЯ ДАННЫЕ

Немного об устройстве жесткого диска. Общее устройство HDD

Что же представляет собой жесткий диск (по строгому - накопитель на жестких дисках)? Если у вас не было возможности его лицезреть, то скажем, что снаружи он выглядит как единый металлический блок. Причем очень прочный и полностью герметичный. Дело в том, что технология работы диска настолько тонка, что даже мельчайшая инородная частица, попавшая внутрь, способна полностью нарушить его работу. Дополнительно, для предотвращения кризисной ситуации, в жесткий диск был помещен фильтр очистки. Также корпус винчестера служит в качестве экрана от электропомех. На самом деле жесткий диск состоит из двух основных частей - механики и электроники. Основу механической части составляют пластины (диски), имеющие круглую форму. Вообще-то диск может быть и всего один. Все зависит от емкости винчестера в целом. По одной из версий название «винчестер» жесткий диск получил благодаря фирме, которая в 1973 году выпустила жесткий диск модели 3340, впервые объединивший в одном неразъёмном корпусе пластины диска и считывающие головки. При его разработке инжене- у ры использовали краткое внутреннее название «30-30», что означало два модуля (в максимальной компоновке) по 30 Мб каждый. Кеннет Хотон, руководитель проекта, по созвучию с обозначением популярного охотничьего ружья «Winchester 30-30» предложил назвать этот диск «винчестером». В Европе и США название «винчестер» вышло из употребления в 1990-х годах, в русском же языке сохранилось и получило полуофициальный статус, а в компьютерном сленге сократилось до слов «винт» (наиболее употребимый вариант), «винч» и «веник». Независимо от того, какой материал используется в качестве основы диска, он покрывается тонким слоем вещества, способного сохранять остаточную намагниченность после воздействия внешнего магнитного поля. Этот слой называется рабочим или магнитным, и именно в нем сохраняется записанная информация. Самыми распространенными являются следующие типы рабочего слоя:
ОКСИДНЫЙ;
тонкопленочный;
двойной антиферромагнитный (AFC)

В настоящее время встречаются экземпляры жестких дисков, состоящие из четырех и более пластин. Состав дисков может быть различен. Их изготавливают из алюминия, стекла или керамики. Последние два состава более практичны, однако очень дороги, и поэтому они используются для создания «элитных» жестких дисков. После изготовления пластины покрывают слоем ферромагнитного материала. Со времен создания первых винчестеров здесь использовалась окись железа. Однако данное вещество имело существенный недостаток. Диски, покрытые данным ферромагнетиком, имели небольшую износостойкость. В связи с этим в настоящее время в качестве покрытия пластин большинство производителей используют кобальт хрома. Износостойкость данного вещества на порядок превышает годами применявшийся ферромагнетик. К тому же данное покрытие намного тоньше, так как наносится методом напыления, что значительно увеличивает плотность записи. Ферромагнетик наносится на обе стороны диска, поэтому данные будут размещаться также с двух сторон. Пластины помещаются на шпиндель на одинаковое друг от друга расстояние, образовывая таким образом их пакет. Под дисками находится двигатель, который их вращает. С обеих сторон пластин размещены головки чтения/записи. Они устроены таким образом, чтоб перемещаться от края диска до его центра. За это «отвечает» специально выделенный для этого двигатель. Электроника представляет собой плату, на которой помещены различные «нужные» для работы винчестера элементы, такие как процессор, управляющая программа, ОЗУ, усилитель записи/чтения и другие. Каждая сторона пластины разбита на дорожки. Они, в свою очередь, на сектора. Все дорожки одного диаметра всех поверхностей образуют цилиндр. Современные винчестеры имеют «инженерный цилиндр». Он содержит служебную информацию (модель диска, серийный номер и т.п.), предназначенную для дальнейшего считывания компьютером..

Раньше для того, чтобы диск был готов к работе, пользователю необходимо было провести так называемое форматирование на низком уровне. В BIOS даже присутствовал соответствующий пункт. Сейчас же данная разметка производится сразу при производстве винчестеров. Дело в том, что при низкоуровневом форматировании происходит запись сервоинформации. Она содержит специальные метки, которые нужны для стабилизации скорости вращения шпинделя, поиска головками необходимых секторов, а также слежения за положением головок на поверхности пластин. Если вы думаете, что «плохие» сектора на винчестере появляются только в процессе эксплуатации, то вы ошибаетесь. Любой вновь созданный жесткий диск уже имеет bad block. Так вот, при низкоуровневом форматировании данные блоки обнаруживаются и записываются в специальную таблицу переназначения. Затем в процессе эксплуатации контроллер жесткого диска заменит неисправные блоки работоспособными, которые специально резервируются для таких целей уже при производстве. В накопителях на жестких дисках данные записываются и считываются универсальными головками чтения/записи с концентрических окружностей вращающихся магнитных дисков (дорожек), разбитых на секторы емкостью 512 байт. Дорожка - это «кольцо» данных на одной стороне диска. Дорожка записи на диске слишком велика, чтобы использовать ее в качестве единицы хранения информации. Во многих накопителях ее емкость превышает 100 тыс. байтов, и отводить такой блок для хранения небольшого файла крайне расточительно. Поэтому дорожки на диске разбивают на нумерованные отрезки, называемые секторами .

Принципы работы жесткого диска

В силу своей специфичности, при работе винчестера не происходит прямого контакта магнитных головок с поверхностью пластин. Можно сказать по-другому: соприкосновение «смерти подобно». Конструкция головок создана так, что она позволяет «парить» над поверхностью пластин. Двигатель вращает шпиндель с такой скоростью (до 15000 об/мин), что от крутящихся дисков создается сильный поток воздуха. При этом получается эффект воздушной подушки. Зазор между головками и дисками составляет доли микрона. Однако, как мы упоминали выше, недопустимо соприкосновение головок с поверхностью. Но ведь бывают сбои в электроснабжении, скажете вы. Да, естественно. Вот для этого случая была придумана так называемая "парковочная зона". И когда происходит ситуация, в которой скорость вращения шпинделя опускается ниже границы допустимой нормы (во время обычной работы или в экстренном режиме при отключении питания), которую постоянно отслеживает процессор жесткого диска, головки отводятся в эту самую парковочную зону. Зона находится у самого шпинделя, где не происходит записи информации, поэтому магнитным головкам можно спокойно «лечь» на поверхность диска. Как же выполняется "запуск" винчестера? В двух словах все происходит примерно так. Как только жесткий диск получил питание, его процессор начинает тестировать электронику и при положительном результате запускает двигатель, вращающий пластины. По мере увеличения скорости вращения достигается эффект воздушной подушки, которая подымает магнитные головки с зоны парковки. Когда скорость достигает необходимой величины, головки покидают парковочную зону и с помощью контроллера "ищут" сервометки, чтобы стабилизировать частоту вращения. Затем производится переназначение "плохих" секторов, а также проверка позиционирования головок. В случае положительного результата проделанной работы контроллер винчестера переходит в рабочий режим. Конечно же, механический процесс работы жесткого диска при более детальном рассмотрении более глубокий, но мы не задаемся целью его подробнейшего описания. Главное, чтоб вы поняли основные принципы механизма взаимодействия головок с пластинами. Если кого-то интересует детализация данного процесса, то на эту тему создано огромное количество материалов. А мы перейдем к другой части рабочего процесса винчестера - технологии чтения/записи данных.

Технологии чтения/записи данных на жестком диске

Чтение/запись информации на диск происходит с помощью магнитных головок, принцип движения которых был рассмотрен выше. Если вы еще застали старый добрый магнитофон, то способ записи/чтения звука на/с магнитной ленты идентичен рассматриваемому нами. Данные преобразуются в переменный электрический ток, который поступает на магнитную головку, после чего он преобразуется в магнитное поле, с помощью которого происходит намагничивание нужных участков магнитного диска. Мы уже знаем, что пластины жесткого диска покрыты ферромагнитным слоем. Отдельно выбранная область данного покрытия может быть намагничена одним из двух возможных способов. Намагничивание одним способом будет обозначать ноль, другим способом - единицу. Такой отдельно намагниченный участок называется доменом. Он представляет собой мини-магнитик с определенной ориентацией южного и северного полюсов. Воздействуя на определенный домен внешним магнитным полем (магнитной головкой), он примет данное соответствие. Прекратив воздействие внешнего поля, на поверхности возникают зоны остаточной намагниченности. Они означают сохраненную на диске информацию. Хочется отметить, что именно от размера домена зависит плотность записи данных, то есть собственно емкость диска. С давних пор было известно о двух технологиях записи информации на винчестер: параллельной и перпендикулярной. Хотя второй метод записи более производителен, он немного сложнее в технологическом разрешении. Поэтому производителями использовался и совершенствовался параллельный способ до тех пор, пока ему не пришел физический предел. Если вкратце описать технологию параллельной записи, то она такова. Намагниченность доменов располагается параллельно плоскости диска. Все, наверное, в детстве «баловались» магнитиками и поэтому знают, что они будут притягиваться, когда повернуть их друг к другу разными полюсами (синим и красным). И наоборот, если попробовать прижать их друг к другу сторонами одинакового цвета, то такая попытка никогда не увенчается успехом. Так вот, при использовании данной технологии на границе соседних доменов возникает поле рассеяния, забирающее энергию их магнитных полей. Вследствие этого крайние частицы доменов становятся менее стабильными, к тому же увеличивается влияние термофлуктуации на его магнитный порядок. При использовании технологии перпендикулярной записи намагниченность доменов располагается под углом 90° к плоскости пластины. Благодаря этому пропадает эффект отталкивания однополюсных соседних доменов, ведь в данном расположении намагниченные частицы повернуты друг к другу разными полюсами. Это позволяет уменьшить размер междоменного пространства по сравнению с параллельной технологией записи, что также увеличивает емкость жестких дисков. Однако для данного способа записи требуется использование более сложного состава магнитного слоя. Под тонким защитным слоем расположен записывающий слой, состоящий из окисленного сплава кобальта, платины и хрома. Подложка состоит из двух слоев сложного химического состава, называемых антиферромагнит-носвязанными слоями. Именно они позволяют снять внутренние напряженности магнитного поля. К тому же перпендикулярная запись требует использования других магнитных меток, которые смогут генерировать более сильное магнитное поле.Плотность перпендикулярной записи составляет 500 Гбит/дюйм2. Это позволит выпускать винчестеры емкостью несколько терабайт. Однако наука не стоит на месте, и уже вовсю идет разработка новых технологий. Одна из них называется HAMR (Heat Assistant Magnetic Recording) - Термомагнитная запись. Эта технология является последователем перпендикулярной записи и направлена на её улучшение. Запись в данном случае происходит с предварительным нагревом с помощью лазера. Нагрев происходит в течение пикосекунды, при этом температура достигает 100 °С. Магнитные частицы домена в данном случае получают больше энергии, поэтому при генерации поля большой напряженности не требуется. А высокая энергия обеспечивает повышенную стабильность записанной информации. Опять же применение данной технологии невозможно без использования материалов с высоким уровнем анизотропности. Однако подходящие для этого сплавы слишком дороги. К тому же при термомагнитной записи потребуется две раздельных головки. Еще нужно позаботиться о том, как отводить тепло от дисков. Но все же огромной мотивацией применения термомагнитной записи служит тот факт, что данная технология позволяет добиться плотности записи до 1 Тбит/дюйм2

Как данные хранятся на жестком диске

Наименьшая единица информации, которой оперирует система управления жесткого диска, носит название сектора. В подавляющем числе современных носителей сектор равен 512 байтам. Используемая в настоящий момент система адресации секторов называется LBA (Logical block addressing). В то же время для дисков небольшой ёмкости или с целью обратной совместимости со старым оборудованием может быть использована система адресации CHS. Аббревиатура CHS расшифровывается как Cylinder, Head, Sector - цилиндр, головка, сектор. Из названия понятен смысл этого типа адресации, как привязанной к частям устройства жесткого диска. Преимущество LBA над CHS в том, что вторая имеет ограничение на максимальное число адресуемых секторов, в количественном представлении равное 8,4 гигабайта, LB А данного ограничения лишена. Первый сектор жесткого диска (а точнее, нулевой) носит название MBR (Master Boot Record), или главной загрузочной записи. В начале этого сектора находится код, куда передает управление базовая система ввода-вывода компьютера при его загрузке. В дальнейшем этот код передает управление загрузчику операционной системы. Также в 0 секторе находится таблица разделов жесткого диска. Раздел представляет собой определенный диапазон секторов. В таблицу заносится запись о разделе, с номером его начального сектора и размером. Всего в таблице разделов может находиться четыре таких записи. Раздел, запись о котором находится в таблице разделов нулевого сектора, носит название первичного (primary). Из-за упомянутых ограничений таких разделов на одном диске может быть максимум четыре. Некоторые операционные системы устанавливаются только на первичные тома. При необходимости использования большего числа разделов в таблицу заносится запись о расширенном (extended) разделе. Данный тип раздела представляет собой контейнер, в котором создаются логические (logical) разделы. Логических томов может быть неограниченное количество, однако в ОС семейства Windows число одновременно подключенных томов ограничено количеством букв латинского алфавита. Эти три типа разделов имеют наиболее широкую АР, поддержку среди подавляющего числа операционных систем и наибольшее распространение. Фактически в домашних условиях либо масштабе клиентских машин организаций встречаются именно эти типы разделов. Однако это не значит, что типы разделов ограничиваются этими тремя видами. Существует большое число специализированных разделов, но и они используют первичные тома в качестве контейнеров. Раздел - это всего лишь размеченное пространство на диске; чтобы сохранить в нем какую-либо информацию для организации структуры хранения данных, должна быть создана файловая система. Данный процесс носит название форматирования раздела. Типов файловых систем существует великое множество, в ОС семейства Windows используются FAT/ NTFS, в операционных системах на ядре Линукс применяются Ext2/3FS, ReiserFS, Swap. Существует множество утилит для кроссплатформен-ного доступа к различным файловым системам из не поддерживающих их изначально операционных систем (например, обеспечивающих возможность доступа из Windows к разделам Linux и наоборот). Некоторые файловые системы, например FAT/NTFS, оперируют более крупными структурами данных на жестком диске, носящими название кластеров. Кластер может включать произвольное число секторов. Манипулирование размером кластера приносит дополнительный выигрыш к произво дительности файловой системы или расходованию свободного пространства. Таким образом, получается следующая логическая структура хранения данных: жесткий диск разбивается на разделы (при этом информация об этом разбиении хранится в так называемой главной загрузочной записи) - они носят названия С:, D:, Е: и т.д., на каждый раздел устанавливается файловая система (в результате форматирования раздела). Файловая система содержит информацию о том, как разграничено пространство раздела (логического диска) и где какие файлы на нем находятся. Ну а далее на разделе хранятся файлы, которые разбиваются на определенное количество кластеров, физически занимающих определенное количество секторов, на которые разбиты дорожки жесткого диска. Файловая система присваивает всем секторам свои адреса, а затем по этим адресам хранит свои файлы, записывая в свою таблицу адреса кластеров (диапазонов кластеров), принадлежащих тем или иным файлам.

Если рассматривать жесткий диск в целом, то он состоит из двух основных частей: это плата электроники, на которой располагается так сказать "мозг" жесткого диска. На нем расположены процессор, так же присутствует управляющая программа, оперативное запоминающее устройство, усилитель записи и чтения. К механической части относятся такие части как блок магнитных головок имеющих аббревиатуру БМГ, двигатель, который придает вращение пластинам, ну и конечно же сами пластины. Давайте рассмотрим каждую часть более детально.

Гермоблок.

Гермоблок он же корпус жесткого диска - предназначен для крепления всех деталей, а так же выполняет функцию защиты от попадания частиц пыли на поверхность пластин. Стоит отметить что вскрытие гермоблока, можно осуществлять только в специально подготовленном для этого помещении, во избежание как раз таки попадания пыли и грязи внутрь корпуса.

Интегральная схема.

Интегральная схема или плата электроники синхронизирует работу жесткого диска с компьютером и управляет всеми процессами, в частности она поддерживает постоянной скорость вращения шпинделя и соответственно пластины, которая осуществляется двигателем.

Электромотор.

Электромотор или двигатель вращает пластины: около 7200 оборотов в секунду (взято среднее значение, есть винчестеры на которых скорость выше и доходит до 15000 оборотов в секунду, а есть и с меньшей скоростью около 5400, от скорости вращения пластин зависит скорость доступа к нужной информации на жестком диске).

Коромысло.

Коромысло предназначено для записи и чтения информации с пластин жесткого диска. Конец коромысла разделен и на нем находится блок магнитных головок, это сделано для того, что бы можно было записывать и считывать информацию с нескольких пластин.

Блок магнитных головок.

В состав коромысла входит блок магнитных головок, который довольно часто выходит из строя, но это "часто" параметр очень условный. Магнитные головки располагаются сверху и снизу пластин и служат для непосредственного считывания информации с платин, расположенных на жестком диске.

Пластины.

На пластинах непосредственно храниться информация, они изготавливаются из таких материалов как, алюминий, стекло и керамика. Самое большое распространение получил алюминий, а вот из двух остальных материалов изготавливают, так называемые "элитные диски". Первые выпускаемые пластины покрывались окисью железа, но этот ферромагнетик имел большой недостаток. Диски покрытые таким веществом имели небольшую износостойкость. На данный момент большинство производителей жестких дисков покрывают пластины кобальтом хрома, у которого запас прочности на порядок выше, чем у окиси железа. Пластисны крепятся на шпиндель на одинаковом друг от друга расстоянии, такая конструкция имеет название "пакет". Под дисками располагается двигатель или электромотор.

Каждая сторона пластины разбита на дорожки, они в свою очередь разделены на сектора или по другому блоки, все дорожки одного диаметра представляют из себя цилиндр.

Все современные винчестеры имеют так называемый "инженерный цилиндр", на нем хранятся служебная информация, такая как модель hdd, серийный номер и др. Эта информация предназначена для считывания компьютером.

Принцип работы жесткого диска

Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации.

Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение.

Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферро магнитным слоем. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным.

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить".

Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности.

Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей.

Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

Лекция №5: Накопители информации

План

1. Жесткие диски
2. Твердотельные накопители

1. Жесткие диски

Историческая справка

В ходе развития жёстких дисков сменилось шесть типоразмеров – форм-факторов.

Рисунок 1. Типоразмеры HDD

1956 год – жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).
1980 год – первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
1981 год – 5,25-дюймовый Shugart ST-412, 10 Мб.
1986 год – стандарты SCSI, ATA(IDE).
1991 год – максимальная ёмкость 100 Мб.
1995 год – максимальная ёмкость 2 Гб.
1997 год – максимальная ёмкость 10 Гб.
1998 год – стандарты UDMA/33 и ATAPI.
1999 год – IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
2002 год – стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
2003 год – появление SATA.
2005 год – максимальная ёмкость 500 Гб.
– стандарт Serial ATA 3G (или SATA II), появление SAS (Serial Attached SCSI).
2006 год – применение перпендикулярного метода записи в коммерческих накопителях.
– появление первых «гибридных» жёстких дисков, содержащих блок флэш-памяти.
2007 год – Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
2009 год – на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
– Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
– появление стандарта SATA 3.0 (SATA 6G).
2010 год – компания Seagate приступает к разработки HDD объемом 3ТБ.

Определение и устройство HDD
Накопитель на жёстких магнитных дисках или НЖМД (англ. Hard Disk Drive, HDD ), жёсткий диск , винчестер , в компьютерном сленге «винт» , хард , хард диск – устройство хранения информации, основанное на принципе магнитной записи. Является основным накопителем данных в большинстве компьютеров.

Принципиально HDD состоит из следующих основных блоков:
Блок электроники включает в себя контакты и микросхему, на которой расположены: контроллер управления HDD, разъемы питания, блок перемычек, разъем для шлейфов (интерфейс подключения).
Механический блок состоит из магнитных пластин, шпинделя, коромысла, осей вращения коромысла, сервопривода коромысла, головок чтения и записи.
Корпус – это конструкция в которой расположены все элементы HDD.

Рисунок 2. Схема устройства HDD

Рисунок 3. Устройство HDD

Принципы хранения информации на HDD
Информация в НЖМД записывается на жёсткие (алюминиевые, керамические или стеклянные) пластины, покрытые слоем ферромагнитного материала (оксид железа), чаще всего двуокиси хрома. В НЖМД используется от одной до нескольких пластин на одной оси.
Данные хранятся на пластинах в виде концентрических дорожек, каждая из которых разделена на секторы по 512 байт, состоящие из горизонтально ориентированных доменов. Ориентация доменов в магнитном слое служит для распознавания двоичной информации (0 или 1). Размер доменов определяет плотность записи данных с целью, адресации пространства поверхности пластин диска, которые делятся на дорожки – концентрические кольцевые области. Каждая дорожка делится на равные отрезки – секторы .

Цилиндр – совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора – конкретный сектор на дорожке.

Организация считывания/записи данных происходит благодаря головкам чтения/записи (ГЧЗ). В рабочем режиме ГЧЗ не касаются поверхности пластин благодаря прослойке набегающего потока воздуха, образующейся у поверхности при быстром вращении. Расстояние между головкой и диском составляет несколько нанометров (в современных дисках около 10 нм ). Отсутствие механического контакта обеспечивает долгий срок службы устройства. При отсутствии вращения дисков головки находятся у шпинделя или за пределами диска в безопасной зоне (зона парковки), где исключён их нештатный контакт с поверхностью дисков.

Рисунок 4. Организация пластин HDD.

Режимы адресации

Существует 2 основных способа адресации секторов на диске: цилиндр-головка-сектор (англ. cylinder head sector , CHS ) и линейная адресация блоков (англ. linear block addressing , LBA ).

CHS
При этом способе сектор адресуется по его физическому положению на диске 3 координатами - номером цилиндра , номером головки и номером сектора . В современных дисках со встроенными контроллерами эти координаты уже не соответствуют физическому положению сектора на диске и являются «логическими координатами»
Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов. Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA – была введена функция авто определения геометрии (команда Identify Drive).

LBA
При этом способе адрес блоков данных на носителе задаётся с помощью логического линейного адреса. LBA-адресация начала внедряться и использоваться в 1994 году совместно со стандартом EIDE (Extended IDE). Стандарты ATA требуют однозначного соответствия между режимами CHS и LBA:
LBA = [ (Cylinder * no of heads + heads) * sectors/track ] + (Sector-1)
Метод LBA соответствует Sector Mapping для SCSI. BIOS SCSI-контроллера выполняет эти задачи автоматически, то есть для SCSI-интерфейса метод логической адресации был характерен изначально.
Характеристики HDD

В настоящее время выделяют следующие характеристики HDD:

Интерфейс (англ. interface ) – совокупность линий связи, сигналов, посылаемых по этим линиям, технических средств, поддерживающих эти линии правил (протокола) обмена.
Серийно выпускаемые жёсткие диски могут использовать интерфейсы:

Ёмкость (англ. capacity ) - количество данных, которые могут храниться накопителем. С момента создания первых жестких дисков в результате непрерывного совершенствования технологии записи данных их максимально возможная емкость непрерывно увеличивается. Ёмкость современных жестких дисков (с форм-фактором 3.5 дюйма) на начало 2010г. достигает 2000 Гб (2 Терабайта). Однако компания Seagate подтвердила разработку HDD с объемом 3ТБ.

Примечание: в отличие от принятой в информатике системы приставок, обозначающих кратную 1024 величину (см.: двоичные приставки), производителями при обозначении ёмкости жёстких дисков используются величины, кратные 1000. Так, ёмкость жёсткого диска, маркированного как «200 ГБ», составляет 186,2 ГБ.

Физический размер (форм-фактор) (англ. dimension ). Почти все современные (2001-2008 года) накопители для персональных компьютеров и серверов имеют ширину либо 3.5, либо 2.5 дюйма - под размер стандартных креплений для них соответственно в настольных компьютерах и ноутбуках. Также получили распространение форматы 1.8 дюйма, 1.3 дюйма, 1 дюйм и 0.85 дюйма. Прекращено производство накопителей в форм-факторах 8 и 5.25 дюймов.

Время произвольного доступа (англ. random access time ) - время, за которое винчестер гарантированно выполнит операцию чтения или записи на любом участке магнитного диска. Диапазон этого параметра невелик - от 2,5 до 16 мс. Как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс), самым большим из актуальных - диски для портативных устройств (Seagate Momentus 5400.3 - 12,5).

Скорость вращения шпинделя (англ. spindle speed ) - количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и средняя скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 5400, 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об/мин (серверы и высокопроизводительные рабочие станции).

Надёжность (англ. reliability ) - определяется как среднее время наработки на отказ (MTBF ). Также подавляющее большинство современных дисков поддерживают технологию S.M.A.R.T.

Количество операций ввода-вывода в секунду - у современных дисков это около 50 оп./с при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.

Потребление энергии - важный фактор для мобильных устройств.

Уровень шума - шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже. Шум состоит из шума вращения шпинделя (в том числе аэродинамического) и шума позиционирования.

Сопротивляемость ударам (англ. G shock rating ) - сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки во включённом и выключенном состоянии.

Скорость передачи данных (англ. Transfer Rate ) при последовательном доступе:

  • внутренняя зона диска: от 44,2 до 74,5 Мб/с;
  • внешняя зона диска: от 60,0 до 111,4 Мб/с.

Объём буфера - буфером называется промежуточная память, предназначенная для сглаживания различий скорости чтения/записи и передачи по интерфейсу. В дисках 2009 года он обычно варьируется от 8 до 64 Мб.

Плотность записи на пластине (поверхностная плотность) зависит от расстояния между дорожками (поперечная плотность) и минимального размера магнитного домена (продольная плотность). Обобщающим критерием выступает плотность записи на единицу площади диска или емкость пластины. Чем выше плотность записи, тем больше скорость обмена данными между головками и буфером (внутренняя скорость передачи данных). Постепенно резервы роста, обусловленные отмеченным выше технологическим скачком, пошли на убыль. К 2003 г. типовая емкость пластин жестких дисков достигла 80 Гбайт. В 2004 г. появились диски с пластинами емкостью 100 Мбайт, в 2005 г. — 133 Мбайт, в 2009 – 333ГБ

Минимальной адресуемой областью данных на жёстком диске является сектор . Размер сектора традиционно равен 512 байт. В 2006 году IDEMA объявила о переходе на размер сектора 4096 байт, который планируется завершить к 2010 году.

В окончательной версии Windows Vista, вышедшей в 2007 году, присутствует ограниченная поддержка дисков с таким размером сектора.

Технологии записи данных на жесткие диски

Принцип работы жёстких дисков похож на работу магнитофонов. Рабочая поверхность диска движется относительно считывающей головки (например, в виде катушки индуктивности с зазором в магнитопроводе). При подаче переменного электрического тока (при записи) на катушку головки, возникающее переменное магнитное поле из зазора головки воздействует на ферромагнетик поверхности диска и изменяет направление вектора намагниченности доменов в зависимости от величины сигнала. При считывании перемещение доменов у зазора головки приводит к изменению магнитного потока в магнитопроводе головки, что приводит к возникновению переменного электрического сигнала в катушке из-за эффекта электромагнитной индукции.

В последнее время для считывания применяют магниторезистивный эффект и используют в дисках магниторезистивные головки. В них изменение магнитного поля приводит к изменению сопротивления, в зависимости от изменения напряженности магнитного поля. Подобные головки позволяют увеличить вероятность достоверности считывания информации (особенно при больших плотностях записи информации).

Метод параллельной записи
Биты информации записываются с помощью маленькой головки, которая, проходя над поверхностью вращающегося диска, намагничивает миллиарды горизонтальных дискретных областей - доменов. Каждая из этих областей является логическим нулём или единицей, в зависимости от намагниченности.

Максимально достижимая при использовании данного метода плотность записи составляет около 23 Гбит/см². В настоящее время происходит постепенное вытеснение данного метода методом перпендикулярной записи.

Метод перпендикулярной записи
Метод перпендикулярной записи - это технология, при которой биты информации сохраняются в вертикальных доменах. Это позволяет использовать более сильные магнитные поля и снизить площадь материала, необходимую для записи 1 бита. Плотность записи у современныхобразцов - 60 Гбит/см². Жёсткие диски с перпендикулярной записью доступны на рынке с 2005 года.

Метод тепловой магнитной записи
Метод тепловой магнитной записи (англ. Heat- assisted magnetic recording, HAMR ) на данный момент самый перспективный из существующих, сейчас он активно разрабатывается. При использовании этого метода используется точечный подогрев диска, который позволяет головке намагничивать очень мелкие области его поверхности. После того, как диск охлаждается, намагниченность «закрепляется». На рынке ЖД данного типа пока не представлены (на 2009 год), есть лишь экспериментальные образцы, плотность записи которых 150 Гбит/см². Разработка HAMR-технологий ведется уже довольно давно, однако эксперты до сих пор расходятся в оценках максимальной плотности записи. Так, компания Hitachi называет предел в 2,3−3,1 Тбит/см², а представители Seagate Technology предполагают, что они смогут довести плотность записи HAMR-носители до 7,75 Тбит/см². Широкого распространения данной технологии следует ожидать в 2011-2012 годах.

Технология RAID

RAID (англ. redundant array of independent/inexpensive disks) избыточный массив независимых/недорогих жёстких дисков - матрица из нескольких дисков управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0).

RAID 0

RAID 0 («Striping») представляет собой дисковый массив из 2 или более дисков, в котором информация разбита на блоки А n и последовательно записана на жесткие диски. Соответственно информация записывается и читается одновременно, что увеличивает скорость.

Рисунок 5. Схема RAID 0

К сожалению, при отказе одного из дисков информация необратимо теряется, поэтому применяется либо в домашних условиях, либо для хранения файла подкачки, своп файла.

RAID 1

RAID 1 (Mirroring — «зеркалирование»). В данном случае один диск полностью повторяет другой, что гарантирует работоспособность при поломке одного диска, но объем полезного пространства уменьшается вдвое. Поскольку диски покупаются одновременно, в случае бракованной партии возможен отказ обоих дисков. Скорость записи приблизительно равна скорости записи на один диск, возможно чтение сразу с двух дисков (если контроллер поддерживает данную функцию), что увеличивает скорость.

Рисунок 6. Схема RAID 1

Применяется чаще всего в малых офисах под базы данных, либо для хранения операционной системы.

RAID 10

RAID 10 (RAID 1+0). Сочетает в себе принципы RAID 0 и RAID 1. При его применении каждый жесткий диск имеет свою «зеркальную пару», при это используется половина полезного объема. Работоспособен пока существует один рабочий диск из каждой пары. Наиболее высокие показатели записи/перезаписи, сопоставимы с RAID 5 по скорости чтения. Применяется для хранения баз данных, при высокой нагрузке.

RAID 5

RAID 5. В данном случае все данные разбиваются на блоки и для каждого набора считается контрольная сумма, которая хранится на одном из дисков – циклически записывается на все диски массива (попеременно на каждый), и используется для восстановления данных. Устойчив к потере не более чем одного диска.

Рисунок 7. Схема RAID 5

RAID 5 имеет высокие показатели чтения – информация считывается почти со всех дисков, но уменьшенную производительность при записи – требуется вычислять контрольную сумму. Но самая критичная операция перезапись, так как она проходит в несколько этапов:
1) Чтение данных
2) Чтение контрольной суммы
3) Сравнение новых и старых данных
4) Запись новых данных
5) Запись новой контрольной суммы
6) Применяются при необходимости большого объема, и высокой скорости чтения.

RAID 6

RAID 6 (ADG). Логическое продолжение RAID 5. Отличие заключается в том что контрольная сумма высчитывается 2 раза, и, как следствие имеет большую надежность (устойчив при поломке более 2 дисков), и меньшую производительность.

Рисунок 8. Схема RAID 6

Организация работы RAID обеспечивается RAID-контроллерами, которые могут быть: встроенными в материнскую плату, внутренними (в виде платы) и внешними.

Рисунок 9. Внутренний RAID контроллер

Два или более дисков подключаются к контроллеру в сервере либо внешняя дисковая полка подключается к контроллеру, в зависимости от выбранного уровня отказоустойчивости, защищает от поломки одного или более дисков, сохраняя работоспособность.

При наличии энергонезависимого кэша и использовании SAS дисков, защищает от проблем, связанных с перебоями электропитания, за исключением тех случаев, когда происходит электрическое повреждение оборудование. Но при повреждении сервера возможна потеря данных.

Защищает данные от:
— аппаратных проблем — отказ, порча, поломка оборудования. Частично, только от отказа жестких дисков;
— сбои электропитания – частично, защищает данные, хранимые в буфере контроллера в очереди на запись, но ограниченное время и только при наличии аккумулятора на контроллере.

Не защищает от:
— программных сбоев;
— человеческого фактора;
— инфраструктурных проблем (хотя все соединения, как правило, находятся внутри сервера);
— аварий;
— катастроф.

Основная цель применения – защита данных от потери при отказе жесткого диска, так же, одна из причин внедрения — потребность в повышенной производительности дисковой подсистемы.

RAID контроллеры поставляют многие компании: IBM, DELL, SUN, HP, Adaptec, 3ware, LSI, и прочие.

Внешний RAID массив

Рисунок 10. Внешний RAID массив

Начальный уровень. Диски и контроллер вынесены в отдельную внешнюю систему. Один или несколько серверов могут быть подключены к внешнему массиву различными интерфейсами, к примеру SAS, iSCSI, FC. Почти все такие системы имеют дублирование вентиляторов и блоков питания, многие предусматривают возможность установки дублирующего контроллера. Сами по себе, внешние RAID массивы более производительны и надежны по сравнению с внутренними RAID контроллерами и могут расширяться до более чем сотни дисков (при помощи дисковых полок).

На данный момент во многих моделях есть продвинутые средства мониторинга и управления, как самим массивом, так и данными на нём. Средства контроля за состоянием дисков заранее оповещают о возможном отказе, большинство достойных производителей меняют диски только на основании данных сообщений, до факта неработоспособности. У некоторых моделей есть возможно делать мгновенные снимки – (snapshot), что позволяет защитить данные и упрощает резервное копирование.

Защищает данные от:
— аппаратных проблем – частично, при наличии дублирования всех систем.
— Программных сбоев – частично, некоторые массивы обладают функциями создания мгновенных копий, что поможет создавать множественные снимки;
— инфраструктурных проблем – защищают при условии дублирования всех массивов вне сервера;
— сбои электропитания – частично, защищает данные в буфере контроллера на запись при наличии аккумулятора. Наличие дублированных блоков питания гарантирует большую надежность.

Не защищают от:
— человеческого фактора;
— аварий;
— катастроф.

Причиной внедрения является либо потребность в консолидации ресурсов хранения, их более простом управлении, возможности одновременного доступа (например, при создании кластера), либо потребность в высокой производительности, либо потребность в большей надежности (дублирование путей к контроллеру).

Типичные представители класса: Xyratex 5xxx/6xxx, Dell MD3000, IBM 3XXX, HP MSA 2000.

2. Твердотельные накопители

Рисунок 11. Накопитель SSD

Твердотельный накопитель (англ. SSD, solid-state drive) – компьютерное запоминающее устройство на основе микросхем памяти, управляемые контроллером. SSD накопители не содержат движущихся механических частей.

Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флэш-памяти.

В настоящее время твердотельные накопители используются в компактных устройствах: ноутбуках, нетбуках, коммуникаторах и смартфонах. Некоторые известные производители переключились на выпуск твердотельных накопителей уже полностью, например, копания Samsung в 2011 году продала бизнес по производству жёстких дисков компании Seagate.

Существуют гибридные жесткие диски, такие устройства сочетают в одном устройстве накопитель на жёстких магнитных дисках (HDD) и твердотельный накопитель относительно небольшого объёма, в качестве кэша (для увеличения производительности и срока службы устройства, снижения энергопотребления). Пока, такие диски используются, в основном, в переносных устройствах (ноутбуках, сотовых телефонах и т. п.).

Рисунок 12. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 13. Гибридный накопитель Seagate Momentus XT 500 GB

Рисунок 14. Блок электроники гибридного накопителя Seagate Momentus XT 500 GB

История развития

1978 год – американская компания StorageTek разработала первый полупроводниковый накопитель современного типа (основанный на RAM-памяти).
1982 год – американская компания Cray представила полупроводниковый накопитель на RAM-памяти для своих суперкомпьютеров Cray-1 со скоростью 100 МБит/с и Cray X-MP со скоростью 320 МБит/с, объемом 8, 16 или 32 миллиона 64 разрядных слов.
1995 год – израильская компания M-Systems представила первый полупроводниковый накопитель на flash-памяти.
2008 год – Южнокорейской компании Mtron Storage Technology удалось создать SSD накопитель со скоростью записи 240 МБ/с и скоростью чтения 260 МБ/с, который она продемонстрировала на выставке в Сеуле. Объём данного накопителя - 128 ГБ. По заявлению компании, выпуск таких устройств начнётся уже в 2009 году.
2009 год – Super Talent Technology выпустила SSD объёмом 512 гигабайт., OCZ представляет SSD объёмом 1 терабайт.

В настоящее время наиболее заметными компаниями, которые интенсивно развивают SSD-направление в своей деятельности, можно назвать Intel, Kingston, Samsung Electronics, SanDisk, Corsair, Renice, OCZ Technology, Crucial и ADATA. Кроме того, свой интерес к этому рынку демонстрирует Toshiba.

Устройство и функционирование

SSD накопители бывают двух типов:

NAND SSD
NAND SSD – накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились относительно недавно с гораздо более низкой стоимостью (от 2 долларов США за гигабайт), и, начали уверенное завоевание рынка. До недавнего времени существенно уступали традиционным накопителям – жестким дискам – в скорости записи, но компенсировали это высокой скоростью поиска информации (начального позиционирования). Сейчас уже выпускаются твердотельные накопители Flash со скоростью чтения и записи, в разы превосходящие возможности жестких дисков. Характеризуются относительно небольшими размерами и низким энергопотреблением.

RAM SSD
RAM SSD– это накопители, построенные на использовании энергозависимой памяти (такой же, какая используется в ОЗУ ПК) характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость (от 80 до 800 долларов США за Гигабайт). Используются, в основном, для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели - системами резервного и/или оперативного копирования.

Преимущества и недостатки
Преимущества , по сравнению с жёсткими дисками (HDD):

  • отсутствие движущихся частей;
  • высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.);
  • низкое энергопотребление;
  • полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов;
  • высокая механическая стойкость;
  • широкий диапазон рабочих температур;
  • стабильность времени считывания файлов вне зависимости от их расположения или фрагментации;
  • малые габариты и вес;
  • большой модернизационный потенциал как у самих накопителей так и у технологий их производства.
  • намного меньшая чувствительность к внешним электромагнитным полям.

Недостатки :

  • Главный недостаток SSD - ограниченное количество циклов перезаписи. Обычная (MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) - более 100 000 раз Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами»;
  • Проблема совместимости SSD накопителей с устаревшими и даже многими актуальными версиями ОС семейства Microsoft Windows, которые не учитывают специфику SSD накопителей и дополнительно изнашивают их. Использование операционными системами механизма свопинга (подкачки) на SSD также, с большой вероятностью, уменьшает срок эксплуатации накопителя;
  • Цена гигабайта SSD-накопителей существенно выше цены гигабайта HDD. К тому же, стоимость SSD прямо пропорциональна их ёмкости, в то время как стоимость традиционных жёстких дисков зависит от количества пластин и медленнее растёт при увеличении объёма накопителя.

Microsoft Windows и компьютеры данной платформы с твердотельными накопителями.

В ОС Windows 7 введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей, эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-диску дефрагментацию, технологии Superfetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.

Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жесткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключенными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.

Компания ASUS ещё в 2007 г. выпустила нетбук EEE PC 701 с SSD-накопителем объёмом 4Гб. Компания Dell 9 сентября 2011 года заявила о первой на рынке комплектации ноутбуков Dell Precision твердотельной памятью объемами 512Гб одним накопителем и 1Тб двумя накопителями для моделей компьютеров M4600 и M6600 соответственно. Производитель установил цену за один 512Гб SATA3 накопитель на момент объявления в $1120 долларов США.

На SSD-накопителе работают планшеты компании Acer - модели Iconia Tab W500 и W501, Fujitsu Stylistic Q550 под управлением Windows 7.

Mac OS X и компьютеры Макинтош с твердотельными накопителями

Операционная система Mac OS X начиная с версии 10.7 (Lion) полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти.

С 2010 года компания Apple представила компьютеры линейки Air полностью комплектуемые только твердотельной памятью на основе Флеш-NAND памяти. До 2010 г. покупатель мог выбрать для данного компьютера обычный жесткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жестких дисков в пользу твердотельных накопителей. Объем комплектуемой памяти в компьютерах серии Air составляет от 64Гб до 512Гб. По данным J.P. Morgan с момента представления было продано 420 000 компьютеров этой серии полностью на твердотельной Флэш-NAND памяти.

3. Магнитные и оптические накопители

Самостоятельное изучение.