Транзисторно ламповый генератор высокочастотных колебаний. Общие принципы работы лампового генератора

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10...+12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора C a.р и блокировочного дросселя L а.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель L а.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор С а.р.Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение С а.р выбирается из условия:

,

где R э – эквивалентное сопротивление колебательного контура.

Н
азначениеL а.б – не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором C б (см. рис. 2).

Стабильный диапазонный генератор в радиолюбительской практике до сих пор проблемой номер один является стабильность частоты генераторов с плавной настройкой. Каждый коротковолновик знает, как неприятно, а иногда и трудно работать с корреспондентом, когда частота его передатчика «ползет» вверх или вниз. Это особенно ощутимо при работе CW или SSB. Но кроме субъективного фактора, имеется и официальное положение, которое жестко определяет стабильность частоты коротковолновой радиостанции. Уход частоты генератора в радиолюбительской практике не всегда вызван небрежностью конструктора-оператора: работой на коротких волнах занимаются люди различного возраста и профессий, обладающие различной степенью специальной подготовки.

В лабораторных условиях в результате анализа и многочисленных экспериментов была выбрана схема задающего стабильный диапазонный генератор, который и предлагается вниманию читателей. Этот генератор может быть использован также в качестве гетеродина в приемнике, в измерительной аппаратуре и пр. При выборе схемы генератора был рассмотрен ряд кривых, характеризующих уход частоты в зависимости от изменения напряжения питания различных схем ламповых генераторов, описанная ниже схема обладает наибольшей стабильностью. Остальные факторы, влияющие на стабильность частоты лампового генератора, учтены и скомпенсированы известными способами, Очевидно, будет удобнее это проследить непосредственно на предложенной схеме (рис.).

Весь содержит три каскада: собственно генератор на лампе 6Н15П (Л1), катодный повторитель и усилитель на лампе 6Ф1П (Л2).

Собственно стабильный диапазонный генератор

собран по схеме с отрицательным сопротивлением. Работа генераторов с отрицательным сопротивлением достаточно полно освещена в литературе (например, см. А. А. Куликовский «Новое в технике любительского радиоприема», Томас Мартин «Электронные цепи»). По сути, схема представляет собой несимметричный мультивибратор, в одну из цепей которого включен реактивный элемент. Прямая связь между триодами генератора осуществляется через -тод; положительная обратная связь, необходимая для возникновения генерации, - с анода правого (по схеме) триода на сетку левого триода.

Здесь необходимо остановиться на-одной очень существенной детали, не акцентируемой в литературе. Эта деталь главным образом влияет на работу генератора и на которую многие конструкторы не обратили внимания и вынуждены были отказаться от него.
Дело заключается в том, что, как уже отмечалось выше, прямая связь между триодами генератора осуществляется через катод. Таким образом катодная нагрузка будет являться нагрузкой и по перемеменному и по постоянному току. Что получится в том случае, если в катоде будет стоять только активное сопротивление? В первую очередь величина этого сопротивления будет подбираться, чтобы обеспечить нужный режим каскада.

Практически его величина не превысит 2-3 ком. В свою очередь это сопротивление является нагрузкой и для высокочастотного напряжения. И здесь, как правило, оказывается, что его величина слишком мала и не обеспечивает достаточной передачи ВЧ энергии на правый по схеме триод. Кроме того, это сопротивление значительно шунтирует контур генератора, сильно снижая его добротность, ухудшая и без того тяжелые условия возбуждения. Проанализировав подобным образом схему стабильный диапазонный генератор, можно прийти к простому решению: последовательно с катодным сопротивлением нагрузки включить ВЧ дроссель. Теперь комплексная катодная нагрузка будет складываться по постоянному току.

В общем же случае емкость конденсатора C1 может быть выбрана в пределах нескольких пикофарад. Генерация получается такой устойчивой, что при снижении анодного напряжения до 10 в на катодном дросселе остается напряжение ВЧ около 1,5 в. Возвращаясь к конкретным данным приведенной схемы, отметим, что положительное изменение емкости контура генератора от нагрева во время работы компенсируется конденсатором С3 (КТК голубой). Конденсатор С3 должен быть обязательно КСО-2 группы «Г». Конденсатор C1 - типа КТК голубой.

Для большего повышения стабильности целесообразно снимать напряжение ВЧ на следующий каскад именно с дросселя катодной нагрузки, а не с какой-нибудь другой точки схемы по следующим соображениям: снимая ВЧ напряжение непосредственно с контура генератора, с анода правого триода или-непосредственно с катода генератора, нарушаем стабильность колебаний. Снимая сигнале катодного дросселя, мы практически полностью изолируем генератор.

Здесь особенно видно, насколько оправдана именно такая последовательность включения сопротивления и дросселя в катод генератора. В самом деле, цепь катодной нагрузки в нашем случае для ВЧ можно представить как делитель, состоящий из двух последовательных сопротивлений: R1, которое в зависимости от типа лампы и выбранного режима генератора может быть от нескольких ом до 2-3 ком; и реактивного сопротивления дросселя Rx, которое в лучшем случае несоизмеримо велико по сравнению с R1 (рис.)Таким образом для ВЧ сигнала величина R1 в нашем делителе получается очень малой, и можно полагать, что в лучшем случае по ВЧ Uвх будет равно Uвых, или, иными словами, снимаемое напряжение ВЧ с дросселя будет равно напряжению ВЧ на катоде генератора. Однако в реальных условиях, разумеется, сопротивление дросселя по ВЧ будет иметь конкретное значение в силу конечных параметров последнего и влияния схемы в целом.

Но тем не менее его величина будет гораздо больше R1 и проигрыш в снимаемом напряжении будет незначительным. В то же время сопротивление R1 защищает в значительной степени от возможного вмешательства в цепь связи, обеспечивающую работу генератора. Чтобы еще больше «развязать» стабильный диапазонный генератор от последующих каскадов, имеется буферный каскад, собранный по схеме катодного повторителя на триоде лампы Л2. Как известно, катодный повторитель обладает высоким входным сопротивлением и практически не шунтирует дроссель Др1. Необходимо отметить еще одно достоинство этого генератора.

При соответственно выбранном режиме он обладает малым процентом гармоник. В большинстве случаев даже вторую гармонику не удавались замерить. Это является весьма положительным качеством, особенно при использовании подобного генератора в качестве гетеродина в приемнике с несколькими преобразователями или как VFO в SSB передатчике, где возникает опасность появления комбинационных частот или интерференционных свистов.

Однако в описываемом стабильный диапазонный генератор имеется в виду дальнейшее умножение частоты для получения всех любительских диапазонов, для этой цели после катодного повторителя следует каскад усилителя на основной частоте (80 м любительский диапазон), собранный на пентодной части лампы Л2. Для замера ухода частоты генератора использовался декадный счетчик ЭЧ-1, так как, например, волномером 526У вообще не удалось замерить уход частоты при часовой проверке. Основной замер производился после двадцатиминутного прогрева. Уход частоты за первые 15 минут замера составлял: 3 645 282- 3 645 245 гц-37 гц! За следующие 15 минут уход частоты составил 33 гц.

Необходимо заметить, что при эксперименте было стабилизировано только анодное напряжение. Экран контура задающего генератора (L1) находился около экрана лампы генератора на расстоянии 22 мм. Контур был выбран заведомо с невысокой добротностью Q = 60. Он имел 60 витков провода ПЭ 0,29, намотанных виток к витку на полистироловом каркасе диаметром 8 мм, и был заключен в латунный экран диаметром 21 мм (катушка L2 намотана на таком же каркасе с таким же экраном с настройкой ферритовым сердечником и имела 37 витков провода ПЭЛШКО 0,2, намотка «универсалы), ширина намотки 4 мм). Можно утверждать, что если принять дополнительные меры; стабилизировать накал генераторной лампы барретором, применить контур задающего генератора с высокой добротностью, как можно лучше изолировать контур генератора в тепловом отношении, то стабильность будет еще выше.

В заключение остановимся на примененном здесь способе манипуляции. Манипуляция производится не срывом генерации, как обычно, а уводом частоты в сторону, за пределы пропускания контуров передатчика. Это осуществляется миниатюрным реле РЭС-10 (возможно использовать реле РЭС-9), которое имеет размеры 10Х 16 X 19 мм, весит 7,5 г, работает при температуре до +125° С и относительной влажности до 98%. При этом является малоемкостным и имеет время срабатывания 5 мсек. Это реле и процессе манипуляции подключает к контуру стабильный диапазонный генератор конденсатор Са, уводя частоту генератора в сторону, но не срывая ее.

Проверка производилась субъективно при помощи волномера 526У. При манипуляции не было замечено ни малейшего «хлюпания», ни каких бы то ни было других нежелательных явлений. Полностью отсутствуют щелчки. Произведенный эксперимент позволяет утверждать, что подобный метод манипуляции может быть рекомендован коротковолновикам, как простой, высококачественный и весьма эффективный.

Приборы и принадлежности: трехэлектродная лампа, источник постоянного напряжения на 300 В, источник переменного напряжения на 4В, два воздушных конденсатора постоянной и переменной емкости, две катушки индуктивности, два конденсатора постоянной емкости, сопротивление, микроамперметр, индикатор высокочастотного электромагнитного поля на неоновой лампе, неизвестные емкость и индуктивность.

Краткая теория

Электрический колебательный контур представляет собой цепь (рис.1), состоящую из последовательно соединенных емкости С, индуктивности L и сопротивления R проводников.

В контуре происходят периодические изменения силы тока и связанных с ней величин. Перезарядку пластин конденсатора можно понять, вспомнив, в чем состоит явление самоиндукции.

Явление самоиндукции состоит в следующем: при всяком изменении тока в контуре в нем возникает э.д.с. самоиндукции  c , которая прямо пропорциональна скорости изменения тока в контуре (di/dt) и обратно этой скорости направлена:

Если ток нарастает, э.д.с. препятствует этому увеличению тока и создает индукционный ток противоположного направления. Если ток уменьшается, э.д.с. препятствует уменьшению тока и создает индукционный ток того же направления.

Рассмотрим работу контура. Зарядим конденсатор от внешнего источника электроэнергии до некоторой разности потенциалов U, сообщив его обкладкам заряды ±q , и затем с помощью ключа К замкнуть контур, то конденсатор начнет разряжаться и в цепи потечет некоторый ток. При малом значении R он будет очень быстро нарастать. Направление для тока i, показанное на рис.1, примем за положительное (верхняя пластина заряжена положительно, нижняя - отрицательно) и рассмотрим процессы, протекающие в контуре.

Допустим сначала, что омическое сопротивление проводника, из которых состоит контур, исчезающе мало, т.е. R»0, и пусть в начальный момент времени заряд конденсатора максимален (q=q o ). При этом разность потенциалов между его обкладками также максимальна (U=U o), а ток в цепи равен нулю (рис.2,а). Когда конденсатор начнет разряжаться, то в контуре потечет ток.

В результате энергия электрического поля будет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленного током, текущим через индуктивность. Так как в цепи действует э.д.с. самоиндукции, ток будет увеличиваться постепенно, и через время t=1/4 T (четверть периода) он достигнет максимального значения (i=i o ), конденсатор разрядится полностью, и электрическое поле исчезнет, т.е. q =0 и U=0. Теперь вся энергия контура сосредоточена в магнитном поле катушки (рис.2,б). В последующий момент времени магнитное поле катушки начнет ослабевать, в связи с чем в ней индуцируется ток, идущий (согласно правилу Ленца) в том же направлении, в котором шел ток разрядки конденсатора. Благодаря этому конденсатор перезаряжается. Через время t=1/2 T магнитное поле исчезнет, а электрическое поле достигнет максимума. При этом q=q o , U=U o и i=0. Таким образом, энергия магнитного поля катушки индуктивности превратится в энергию электрического поля конденсатора (рис.2,в). Через время t=3/4 T конденсатор полностью разрядится, ток опять достигнет максимальной величины (i=i o ), а энергия контура сосредоточится в магнитном поле катушки (рис.2,г). В последующий момент времени магнитное поле катушки начнет ослабевать и индукционный ток, препятствующий этому ослаблению, перезарядит конденсатор. В результате к моменту времени t=T система (контур) возвращается в исходное состояние (рис.2,а) и начинается повторение рассмотренного процесса.

В ходе процесса периодически изменяются (колеблются) заряд и напряжение на конденсаторе, сила и направление тока, текущего через индуктивность. Эти колебания сопровождаются взаимными превращениями энергий электрического и магнитного полей.

Таким образом, если сопротивление контура равно нулю, то указанный процесс будет продолжаться неограниченно долго и мы получим незатухающие электрические колебания, период которых будет зависеть от величин L и С.

Колебания, происходящие в таком идеальном контуре (R=0), называются свободными , или собственными , колебаниями контура с периодом

. (10)

В реальном колебательном контуре омическое сопротивление R нельзя свести к нулю. Поэтому в нем электрические колебания всегда будут затухающими, так как часть энергии будет затрачиваться на нагревание проводников (Джоулево тепло).

Для осуществления незатухающих электрических колебаний необходимо обеспечить автоматическую подачу энергии с частотой, равной частоте собственных колебаний контура, т.е. необходимо создать автоколебательную систему. Такой системой незатухающих колебаний является ламповый генератор.

Ламповый генератор

Простейшая схема лампового генератора незатухающих электромагнитных колебаний приведена на рис.3

Он состоит из колебательного контура LC, включенного в анодную цепь трехэлектродной лампы последовательно с источником Б А постоянного анодного напряжения. Анодная батарея Б А является как бы "резервуаром", из которого подается энергия в колебательный контур. С катушкой L контура индуктивно связана катушка L 1 , концы которой подключены к сетке и катоду лампы. Она связывает работу лампы с колебательным процессом в контуре и называется катушкой обратной связи.

Трехэлектродная лампа вместе с катушкой обратной связи служит для того, чтобы энергия подавалась в контур в такт колебаниям. Незатухающие колебания получаются благодаря периодической подзарядке конденсатора анодным током лампы, проходящим через контур. Для того чтобы осуществлять периодическую подзарядку конденсатора контура в необходимые моменты времени, анодный ток должен иметь пульсирующий характер. Это обеспечивается путем соответствующего изменения потенциала на сетке лампы, который меняется при изменении направления тока разрядки в контуре LC за счет явления взаимной индукции между катушками L и L 1 .

При отрицательном заряде на сетке лампа оказывается "запертой", анодный ток через лампу не пойдет. Колебательный контур будет работать в обычном режиме. При положительном заряде на сетке лампа ’’откроется’’ и произведет подразядку конденсатора. Затем начнется повторение процесса.

Таким образом, лампа периодически подает в контур энергию от анодной батареи. Благодаря этому в контуре совершаются незатухающие электрические колебания.

Высокочастотные генераторы служат для образования колебаний электрического тока в интервале частот от нескольких десятков килогерц до сотен мегагерц. Такие устройства создают с применением контуров колебаний LС или резонаторов на кварцах, которые являются элементами задания частоты. Схемы работы остаются такими же. В некоторых цепях контуры гармонических колебаний заменяются .

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Схема прибора

Главные составляющие элементы прибора: выпрямитель, емкость, транзистор. Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.

Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.

Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.

Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.

Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.

Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.

Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.

При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.

В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт. Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме. Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.

При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.

При выключенных потребителях устройство расходует немалую мощность, учитываемую счетчиком. Поэтому лучше выключать этот прибор при отключенной нагрузки.

Принцип работы и конструкция полупроводникового генератора ВЧ

Генераторы высокой частоты выполнены на широко применяемой схеме. Различия генераторов заключаются в цепочке RС эмиттера, которая задает транзистору режим по току. Для образования обратной связи в цепи генератора от индуктивной катушки создают вывод клеммы. Генераторы ВЧ работают нестабильно на из-за влияния транзистора на колебания. Свойства транзистора могут измениться при колебаниях температуры и разности потенциалов. Поэтому образующаяся частота не остается постоянной величиной, а «плавает».

Чтобы транзистор не влиял на частоту, нужно уменьшить связь контура колебаний с транзистором до минимальной. Для этого нужно снизить размеры емкостей. На частоту оказывает влияние изменение нагрузочного сопротивления. Поэтому нужно между нагрузкой и генератором включить повторитель. Для подключения напряжения к генератору применяют постоянные блоки питания с небольшими импульсами напряжения.

Генераторы, сделанные по схеме, изображенной выше, имеют максимальные характеристики, собраны на . Во многих схемах генераторов ВЧ сигнал выхода снимается с контура колебаний через небольшой конденсатор, а также с электродов транзистора. Здесь нужно учесть, что вспомогательная нагрузка контура колебаний изменяет его свойства и частоту работы. Часто это свойство применяют для замера разных физических величин, для проверки технологических параметров.

На этой схеме показан измененный генератор высокой частоты. Значение обратной связи и лучшие условия возбуждения выбирают при помощи элементов емкости.

Из всего количества схем генераторов выделяются варианты с ударным возбуждением. Они действуют за счет возбуждения контура колебаний сильным импульсом. В итоге электронного удара в контуре образуются затухающие колебания по синусоидальной амплитуде. Такое затухание происходит из-за потерь в контуре гармонических колебаний. Скорость таких колебаний вычисляется по добротности контура.

Сигнал ВЧ на выходе будет стабильным в том случае, если импульсы будут иметь высокую частоту. Такой вид генераторов самый старый из всех рассматриваемых.

Ламповый генератор ВЧ

Чтобы получить плазму с определенными параметрами, необходимо подвести необходимую величину к разряду мощности. Для эмиттеров на плазме, работа которых основана на разряде высокой частоты, применяется схема подведения мощности. Схема изображена на рисунке.

На лампах преобразовывает энергию электрического постоянного тока в переменный ток. Главным элементом работы генератора стала электронная лампа. В нашей схеме это тетроды ГУ-92А. Это устройство представляет собой электронную лампу на четырех электродах: анод, экранирующая сетка, управляющая сетка, катод.

Сетка управления, на которую поступает сигнал высокой частоты малой амплитуды, закрывает часть электронов, когда сигнал характеризуется отрицательной амплитудой, и повышает ток на аноде, при положительном сигнале. Экранирующая сетка создает фокус электронного потока, увеличивает усиление лампы, снижает емкость прохода между сеткой управления и анодом в сравнении с 3-электродной системой в сотни раз. Это уменьшает выходные искажения частот на лампе при действии на высоких частотах.

Генератор состоит из цепей:

  1. Цепь накала с питанием низкого напряжения.
  2. Цепь возбуждения и питания сетки управления.
  3. Цепь питания сетки экрана.
  4. Анодная цепь.

Между антенной и выходом генератора находится ВЧ трансформатор. Он предназначен для отдачи мощности на эмиттер от генератора. Нагрузка контура антенны не равна величине отбираемой наибольшей мощности от генератора. Эффективность передачи мощности от каскада выхода усилителя к антенне может быть достигнута при согласовании. Элементом согласования выступает емкостный делитель в цепи контура анода.

Элементом согласования может работать трансформатор. Его наличие необходимо в разных согласующих схемах, потому что без трансформатора не осуществится высоковольтная развязка.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на , буду рад если вы найдете на моем еще что-нибудь полезное.

В томе II, § 106, мы познакомились с устройством электронной лампы и видели, что изменение напряжения на ее сетке меняет силу тока в ее анодной цепи. Когда сетка заряжена отрицательно, то электроны не могут пролетать к аноду, ток не идет, лампа, как говорят, «заперта». Зарядив сетку положительно, мы «отпираем» лампу, т. е. через нее может идти ток. Изменения анодного тока следуют за изменениями напряжения на сетке практически мгновенно - через десятимиллиардные доли секунды (время пролета электронов от сетки к аноду), т. е. электронная лампа является «выключателем» с ничтожной инерцией. Поэтому, соединив лампу с колебательным контуром и батареей так, чтобы в нужные моменты лампа отпиралась и пропускала ток к конденсатору, мы можем получить электрическую автоколебательную систему, позволяющую возбуждать (генерировать) незатухающие электрические колебания.

Очевидно, для того чтобы колебания в контуре управляли анодным током лампы, надо подать на ее сетку напряжение, зависящее от колебаний тока или напряжения в контуре, т. е., как говорят, связать контур с сеточной цепью лампы. Такая электрическая связь может быть осуществлена различными способами - при помощи электростатической индукции (емкостная связь), при помощи электромагнитной индукции (индуктивная связь) и т. д. Главное здесь заключается не в том, каким именно способом контур связан с лампой, а в том, что благодаря этой связи мы имеем не только действие лампы на колебания в контуре, но и обратное воздействие этих колебаний на лампу. Разнообразные способы соединения лампы с колебательным контуром, обеспечивающие такое обратное воздействие, являются примерами так называемой обратной связи, а сами электрические автоколебательные системы такого рода называются ламповыми генераторами. Современные ламповые генераторы позволяют получать колебания с частотами до нескольких миллиардов герц и применяются чрезвычайно широко. Они служат основой каждой радиостанции и входят в состав многих типов радиоприемников.

На рис. 58 показана одна из весьма многочисленных и разнообразных схем лампового генератора - схема с индуктивной обратной связью.

Колебательный контур, состоящий из катушки индуктивности и конденсатора емкости , включен последовательно с батареей в анодную цепь лампы, т. е. между анодом и накаленной нитью (катодом) . Нить накаливается током от батареи накала . В сеточную цепь лампы - между сеткой и катодом - включена вторая катушка индуктивности , связанная индуктивно с катушкой контура. Таким образом, катушки и образуют как бы первичную и вторичную обмотки трансформатора, но без сердечника. Впрочем, в генераторах низких (звуковых) частот можно применять трансформатор с железным сердечником.

Катушка управляет напряжением на сетке и осуществляет обратную связь между колебаниями в контуре и на сетке лампы.

Представим себе, что в контуре, состоящем из катушки индуктивности и конденсатора емкости , происходят колебания. По катушке протекает переменный ток, который наводит в катушке переменную э. д. с. Сетка заряжается то положительно, то отрицательно по отношению к катоду , причем период этих колебаний сеточного напряжения, очевидно, тот же, что и период колебаний в контуре , т. е.

Лампа то «отпирается», то «запирается»; таким образом, колебания в контуре вызывают пульсации анодного тока лампы. Анодный ток, идущий от анода через контур к катоду, разветвляясь, проходит через катушку индуктивности и конденсатор (разумеется, постоянная, т. е. не меняющаяся со временем, составляющая анодного тока проходит при этом только через катушку, так как постоянный ток через конденсатор идти не может, см. том II, § 159). Если фаза колебаний анодного тока подобрана правильно, т. е. «толчки» анодного тока действуют на контур в нужные моменты, то колебания в контуре будут поддерживаться (ср. § 30). Другими словами, за каждый период колебаний от батареи будет заимствоваться порция энергии, как раз покрывающая потери энергии в контуре за то же время, и колебания будут незатухающими. Если поменять местами концы катушки , то фаза колебаний сеточного напряжения изменится на 180°, и колебания не возбудятся (аналогично тому, как это получалось в системе, изображенной на рис. 56).

Рис. 58. Ламповый генератор

Наблюдать колебания можно с помощью электронного осциллографа или - если колебания имеют звуковую частоту - с помощью громкоговорителя, включенного прямо в анодную цепь лампы. Можно также включить в конденсаторную ветвь контура лампочку накаливания (от карманного фонаря или автомобильную, в зависимости от мощности генератора). Так как лампочка включена последовательно с конденсатором, постоянная составляющая анодного тока через нее не проходит. Следовательно, лампочка будет загораться только при наличии в контуре электрических колебаний.

С помощью лампового генератора, подобного описанному, нетрудно наблюдать и явление электрического резонанса, связав индуктивно с контуром генератора второй такой же колебательный контур, но с переменным конденсатором и с включенной в контур лампочкой накаливания. Плавно меняя емкость в этом контуре, его можно настроить в резонанс на частоту генератора. При соответствующем подборе лампочки и связи между контурами нетрудно добиться таких условий, что при резонансе лампочка вспыхивает, а при расстройке гаснет.