Что такое компьютерная диагностика транспортного средства. Неисправности программной части

Настоящее время существует огромное количество программ, помогающих пользователю протестировать компьютер, а также получить, обобщить и проанализировать информацию о системе. При схожих назначениях подобные утилиты зачастую довольно сильно различаются по своей реализации, удобству интерфейса, набору инструментов диагностики и функциональности в целом. Среди подобных программ встречаются как узкоспециализированные, предназначенные для детального рассмотрения одной из подсистем компьютера, так и дающие возможность провести диагностику и тестирование системы в целом и всех ее подсистем в отдельности. Зачастую в состав утилит диагностики и мониторинга разработчики включают тестовые модули, позволяющие на основе несложных, а главное — недлительных синтетических тестов составить более полное представление о компьютерной системе и принять продуманное решение, касающееся способов увеличения ее производительности. Да и простой сбор систематизированной подробной информации о системе способен порой открыть пользователю глаза на причины тех или иных проблем, возникающих при работе с ПК.

В данном обзоре сделана попытка описать самые популярные сегодня утилиты диагностики и тестирования, при этом помимо таких требований, как максимально дружественный, удобный и интуитивно понятный интерфейс, обеспечение высокой степени информативности и функциональности, при выборе утилит нами было выдвинуто условие, чтобы программы были бесплатными и доступными для свободного скачивания в Интернете. Итак, нашего внимания удостоились следующие программы:

  • EVEREST Home Edition v. 2.0;
  • SiSoftware Sandra Lite 2005.SR1;
  • PC Wizard 2005;
  • CPU-Z Version 1.28;
  • PCMark04 Build 1.3.0.

Прежде чем приступить к подробному описанию данных утилит, дадим им общую характеристику. Первые две утилиты — EVEREST Ultimate Edition v. 2.0 и SiSoftware Sandra 2005 — во многом схожи. Утилита SiSoftware Sandra 2005 — это классика жанра. Она предоставляет огромный набор инструментов диагностики, позволяя собирать о системе всестороннюю информацию, а кроме того, в ее состав входит ряд тестов, с помощью которых можно сравнить производительность отдельных подсистем компьютера и системы в целом с производительностью эталонных конфигураций.

Утилита EVEREST Ultimate Edition v. 2.0 имеет много общего с утилитой SiSoftware Sandra, особенно в части инструментов сбора информации о системе.

Утилита PC Wizard 2005, так же как и утилиты SiSoftware Sandra 2005 и EVEREST Ultimate Edition v. 2.0, представляет собой диагностическое средство ПК, а кроме того, содержит ряд встроенных бенчмарков, с помощью которых можно оценить производительность отдельных подсистем ПК.

Утилита CPU-Z Version 1.28 предназначена в первую очередь для диагностики работы процессорной подсистемы. Она способна инициализировать практически все существующие сегодня x86-процессоры (включая и процессоры с архитектурой AMD 64) и большинство современных чипсетов.

Утилита PCMark04 — это синтетический бенчмарк, позволяющий проводить довольно подробное тестирование различных подсистем ПК. Этот пакет прежде всего предназначен для проведения экспресс-тестирования ПК в домашних условиях.

EVEREST Home Edition v. 2.0

Утилита EVEREST является преемницей хорошо известной утилиты AIDA32, написанной в свое время Тамасом Миклосом (Tamas Miklos). Как правило, все хорошее быстро прибирают к рукам, что, собственно, и случилось с утилитой AIDA32. Теперь в несколько обновленном варианте эта утилита известна под именем EVEREST и является сегодня одной из наиболее удачных программ диагностики и мониторинга ПК. Она позволяет получить подробнейшую информацию как о компьютере в целом, так и обо всех его подсистемах, а также содержит ряд дополнительных тестов.

Существует три варианта программы EVEREST: EVEREST Corporate Edition, EVEREST Ultimate Edition и EVEREST Home Edition. Для домашних пользователей больше всего подойдет версия EVEREST Home Edition (особенно учитывая то обстоятельство, что она бесплатная).

Давайте подробнее рассмотрим возможности этого программного продукта. Утилита EVEREST Home Edition сравнительно невелика по размеру (2,58 Мбайт). Эта программа имеет традиционный оконный интерфейс и поддерживает русский язык (правда, в этом пункте у программы имеются серьезные недоработки и часть текста отображается в виде нечитаемых символов). Рабочая область программы разделена на два окна: основное информационное и вспомогательное (расположенное слева), в котором, благодаря иерархической структуре, схожей с древовидной структурой каталогов, можно осуществлять выбор того или иного инструмента мониторинга, позволяющего получить исчерпывающую информацию о каком-либо компоненте компьютерной системы (рис. 1).

Рис. 1. Главное окно утилиты EVEREST Home Edition v. 2.0

Кратко рассмотрим, какую же информацию о системе можно получить с помощью утилиты EVEREST Home Edition v. 2.0. При выборе во вспомогательном окне пункта «Компьютер» появляется возможность получить общую информацию о системе, BIOS, состоянии батарей (актуально для ноутбуков или ИБП), информацию системных датчиков аппаратного мониторинга и даже информацию о разгоне процессора, памяти и графического контроллера.

Выбирая другие пункты во вспомогательном окне, можно получить более детальную информацию о составляющих системы — как аппаратных, так и программных.

Категория «Системная плата» позволяет получить подробные сведения о центральном процессоре, чипсете, системной памяти, базовой системе ввода-вывода (BIOS) и собственно о системной плате. Трудно назвать другую утилиту, которая давала бы столь полную информацию!

В категории «Дисплей» предоставляется возможность получить сведения обо всем, что каким-либо образом связано с визуальным (графическим) интерфейсом системы. Здесь содержится полная информация не только о видеокарте и мониторе, но и о настройках рабочего стола.

В категории «Мультимедиа» содержится информация о мультимедийных возможностях системы. Здесь перечислены все установленные звуковые и видеокодеки, MCI-устройства (Media Control Interface) и, конечно же, аудиоустройства.

Категория «Хранение данных» включает много полезных сведений о дисковой подсистеме компьютера, предоставляя данные об используемых устройствах хранения информации, об их логической и физической структуре, и, что весьма полезно, отображает информацию SMART жестких дисков системы, если, конечно, эта технология поддерживается имеющимися HDD. Кроме того, в этой категории отображаются такие характеристики жестких дисков, как скорость вращения шпинделя, объем буфера, среднее время поиска, время раскрутки, средняя задержка раскрутки, количество пластин в диске и даже физические размеры и вес жесткого диска.

Категория «Сеть» позволяет получить сведения обо всем, что каким-либо образом связано с сетевым интерфейсом. Здесь можно найти информацию о сетевом контроллере и скорости установленного сетевого соединения, текущую статистику этого соединения (количество полученных и переданных байт), сведения о настройках TCP/IP и сетевом окружении.

Категория «DirectX» дает пользователю возможность получить подробнейшую информацию об установленной версии DirectX, а именно об имеющихся в системе файлах и динамических библиотеках DirectX и их настройках при работе с видео, звуком, музыкой и интерфейсами ввода-вывода.

Категория «Устройства» предоставляет информацию об установленных в системе устройствах, при этом сведения о них можно получить как в традиционном для системы Windows виде, так и в более детальном, позволяющем получить представление о физическом интерфейсе устройств и об используемых ими системных ресурсах.

Последний пункт, который можно увидеть во вспомогательном окне, — «Тест». Здесь можно запустить один из трех тестов, оценивающих пропускную способность подсистемы памяти: чтение из памяти, запись в память и задержка памяти. При этом результаты теста выводятся в виде диаграммы и сравниваются с результатами, полученными в других конфигурациях.

Еще одной интересной особенностью утилиты EVEREST Home Edition v. 2.0 является возможность создания отчетов по заранее заданному сценарию. Таким образом, можно заранее определить, какие именно данные включать в генерируемый отчет и в каком формате его создавать.

SiSoftware Sandra Lite 2005.SR1

Давно и хорошо известная утилита SiSoftware Sandra теперь стала по-настоящему универсальной программой, позволяющей работать с широким спектром современных компьютерных систем, начиная от платформ Pocket PC ARM (КПК и смартфоны) и заканчивая платформами Win64 IA64 (системы на базе Itanium/Itanium2), AMD 64 (системы на базе процессоров AMD Athlon 64/Athlon 64 FX/Opteron) и, конечно же, наиболее распространенной сегодня платформой Win32 x86.

Утилита SiSoftware Sandra является своего рода образцом информационно-диагностического программного обеспечения. Сущность и предназначение этой программы отражены в ее названии: Sandra — это вовсе не женское имя, а сокращение от System ANalyser, Diagnostic and Reporting Assistant. Данное программное обеспечение выпускается в нескольких версиях, которые различаются условиями лицензии, а проще говоря, ценой и, как следствие, функциональностью. В нашем обзоре мы уделим внимание лишь бесплатной версии (Lite), предназначенной для личного использования и не требующей регистрации. Данная утилита поддерживает русскоязычный интерфейс, причем, в отличие от EVEREST Home Edition, без всяких «глюков».

SiSoftware Sandra Lite 2005 имеет традиционный оконный интерфейс (рис. 2).

Рис. 2. Главное окно утилиты SiSoftware Sandra Lite 2005

Все инструменты мониторинга и диагностики программы поделены на пять категорий согласно их целевому назначению:

  • мастера (Wizard Modules);
  • информационные модули (Information Modules);
  • бенчмаркинговые модули (Benchmarking Modules);
  • просмотровые модули (Listing Modules);
  • тестовые модули (Testing Modules).

Кратко рассмотрим инструменты диагностики и мониторинга, предоставляемые в распоряжение пользователя утилитой SiSoftware Sandra Lite 2005.

  • мастер добавления модулей — позволяет добавлять новые модули в состав утилиты;
  • мастер мониторинга окружения;
  • мастер обобщенного индекса производительности — проводит тестирование основных подсистем компьютера: процессорной (арифметическая производительность и мультимедийная производительность), подсистемы памяти, дисковой подсистемы и сетевого интерфейса, на основе чего выставляется обобщенный индекс производительности. Но наибольший, на наш взгляд, интерес вызывает графическое представление результатов в виде пятиугольной матрицы покрытия, которая позволяет наглядно оценить производительность тестируемой системы в сравнении с другими конфигурациями (рис. 3). При этом у пользователя есть возможность самому составить эталонную конфигурацию компьютерной системы, производительность которой он хотел бы сравнить со своим ПК;
  • мастер стресс-тестирования (Burn-in Wizard) — позволяет проверить компьютерную систему на выносливость путем многократного циклического запуска тестов (которые можно найти в категории «Бенчмаркинговые модули»). Немаловажно, что можно обеспечить защиту системы от последствий таких жестких нагрузок, задав условие прекращения теста при перегреве или ошибках, при этом критические температуры и предельные параметры работы систем охлаждения (скорость вращения вентиляторов охлаждения) также могут быть определены пользователем. Кроме того, имеется возможность выбора тестов, которые будут запускаться, и количества запусков, причем можно даже задавать приоритет данного приложения;
  • мастер обновлений — позволяет производить онлайн-обновления версии утилиты;
  • мастер увеличения производительности — запускает все активные информационные модули и на основе полученной информации дает советы по оптимизации и модернизации системы, способствующие повышению производительности компьютерной системы. Отметим, что полностью доверять всем советам не стоит, хотя мастер выдает и довольно полезные советы, особенно касающиеся возможности отключения различных служб;
  • мастер составления отчетов — помогает сохранять полученную информацию в наиболее удобном для пользователя формате, а кроме того, предоставляет возможность выбрать место доставки полученного отчета.

В категории «Информационные модули» можно найти инструменты, позволяющие получить исчерпывающую информацию практически обо всех аппаратных и программных компонентах компьютерной системы.

Категория «Бенчмаркинговые модули» включает ряд хорошо известных и довольно часто цитируемых синтетических тестов, позволяющих оценить производительность наиболее важных компьютерных подсистем (за исключением видеоподсистемы). Эта категория содержит следующие тестовые утилиты:

  • арифметический тест процессора (CPU Arithmetic Benchmark) — позволяет оценить производительность выполнения арифметических вычислений и операций с плавающей запятой в сравнении с другими эталонными компьютерными системами;
  • мультимедийный тест процессора (CPU Multi-Media Benchmark) — дает возможность оценить производительность системы в работе с мультимедийными данными при использовании поддерживаемых процессором наборов SIMD-инструкций в сравнении с другими эталонными компьютерными системами;
  • тест съемных/флэш-накопителей (Removable Storage/Flash Benchmark) — дает возможность оценить производительность системы (скорость чтения, записи и удаления, на основе чего вычисляется обобщенный индекс) при работе со съемными накопителями в сравнении с другими эталонными компьютерными системами;
  • тест файловой системы (File System Benchmark) — позволяет определить производительность дисковой (файловой) подсистемы компьютера в сравнении с другими эталонными компьютерными системами;
  • тест CD-ROM/DVD (CD-ROM/DVD Benchmark) — дает возможность оценить производительность оптических приводов (CD-ROM/DVD) в сравнении с другими эталонными компьютерными системами;
  • тест пропускной способности памяти (Memory Bandwidth Benchmark) — позволяет определить пропускную способность подсистемы памяти (связка «процессор — чипсет — память») при выполнении целочисленных операций и операций с плавающей запятой в сравнении с другими эталонными компьютерными системами;
  • тест кэша и памяти (Cache & Memory Benchmark) — дает возможность определить пропускную способность подсистемы памяти (связка «процессор — кэш — чипсет — память») в сравнении с другими эталонными компьютерными системами;
  • тест пропускной способности сети (Network/LAN Bandwidth Benchmark) — позволяет определить пропускную способность сетевого соединения с выбранным узлом сети.

Кроме того, среди тестовых модулей можно найти две тестовые утилиты, оценивающие скорость работы Интернета. Первая из них — «Тест соединения с Интернетом» (Internet Connection Benchmark) — позволяет оценить скорость соединения с Интернет-провайдером, а вторая — «Тест скорости с Интернетом» (Internet Peerage Benchmark) — скорость соединения с различными Интернет-сайтами. Отметим также, что по результатам каждого проведенного теста пользователю даются рекомендации по повышению производительности системы.

Модули категории «Тестовые модули» в версии Lite недоступны, да и предоставляемая ими информация (сведения об используемых устройствами системных прерываниях, о распределении ресурсов системной памяти и т.п.) будет, пожалуй, полезна в основном продвинутым пользователям и профессионалам.

В категории «Просмотровые модули» предоставляется доступ к инструментам просмотра наиболее важных системных файлов, определяющих конфигурацию системной среды. Однако в версии Lite большинство модулей данной категории недоступно для пользователей.

PC Wizard 2005

Утилита PC Wizard 2005 во многом напоминает утилиту EVEREST Home Edition и предназначена прежде всего для сбора информации о ПК. Однако, в отличие от программ EVEREST Home Edition и SiSoftware Sandra Lite 2005, русскоязычным интерфейсом она не обладает. Программа имеет оконный интерфейс, а рабочая область программы разделена на два окна: информационное и вспомогательное (расположенное слева), в котором можно осуществлять выбор того или иного инструмента мониторинга (рис. 4).

Во вспомогательном окне программы имеется пять вкладок: Hardware; Configuration; System Files; Resources и Benchmark, группирующие информационные модули по тематике. Первая вкладка (Hardware) позволяет получить доступ к информации, касающейся аппаратной части ПК. Выбирая пиктограммы System Summary, Mainboard, Processor, Video, IO Ports и т.д., можно получить доступ к соответствующей подробной информации.

Вкладка Configuration позволяет получить доступ к информационным модулям, отображающим информацию об операционной системе, Web-браузере, установленных приложениях, службах и т.д.

Вкладка System Files дает возможность просмотреть (но не изменить) различные системные файлы.

Вкладка Resources позволяет просмотреть информацию об используемых прерываниях и контроллерах, установленных в системе.

Вкладка Benchmark содержит достаточно большое количество простейших синтетических тестов, позволяющих оценить производительность отдельных подсистем ПК: процессора, кэша L1, кэша L2, кэша L3, памяти в целом, жесткого диска, оптического привода, видеокарты, а также компрессию аудиофайлов в MP3-формат.

CPU-Z v. 1.28

Утилита CPU-Z — это небольшая и не требующая установки программа с удобным интерфейсом, предоставляющая пользователю доступ к информации, сгруппированной по категориям.

Первая вкладка — CPU — как нетрудно догадаться, содержит подробнейшую информацию о центральном процессоре компьютерной системы (рис. 5). В этом окне отображается информация о процессорном ядре, а также сведения о текущем напряжении питания, частоте системной шины, FSB, установленном множителе процессора и текущей тактовой частоте процессорного ядра. Здесь же можно найти данные о размере кэша первого (L1), второго (L2) и третьего (L3) уровней.

Вторая вкладка — Cache — содержит более подробную информацию о структуре и рабочих параметрах кэш-памяти.

Вкладка Mainboard включает информацию, касающуюся материнской платы (сведения о производителе системной платы, название чипсета, название микросхемы южного моста, название используемого чипа контроллера ввода-вывода (Super I/O) и т.д.).

На вкладке Memory можно получить сведения об оперативной памяти: о ее размере, установленных таймингах, а также о текущей частоте памяти.

На вкладке SPD отображается информация о каждом установленном модуле памяти (производитель, тип памяти, а также содержимое SPD-таблицы).

И последняя вкладка — About — помимо традиционной информации об авторе позволяет сохранять отчет в HTML-документе.

Еще один полезный инструмент, который поставляется совместно с утилитой CPU-Z, — это тест Latency, с помощью которого можно определить латентность памяти.

PCMark04 Build 1.3.0

В отличие от всех рассмотренных ранее утилит, PCMark04 компании Futuremark Corporation ориентирована именно на тестирование ПК. В состав данной утилиты входят разнообразные синтетические тесты, позволяющие протестировать процессорную подсистему ПК, подсистему памяти, графическую подсистему и производительность жесткого диска. Пожалуй, из доступных для домашнего пользователя утилит тестирования PCMark04 — наиболее универсальное и в то же время очень мощное средство.

Итак, утилита PCMark04 позволяет оценить производительность ПК в целом (System), рассчитывая некий интегральный результат производительности, производительность процессорной подсистемы (CPU), производительность памяти (Memory), производительность графической подсистемы (Graphics) и производительность подсистемы хранения данных (HDD).

Отметим, что утилита PCMark04 выпускается в нескольких вариантах: бесплатная версия PCMark04 Free и две коммерческие версии PCMark04 Professional и PCMark04 Business Edition.

Свободная версия дает возможность выполнять тесты ПК в целом с выводом итогового результата и возможностью просмотра деталей итогов теста, а версии PCMark04 Professional и PCMark04 Business Edition, кроме того, позволяют проводить отдельные тесты памяти, графической подсистемы, жесткого диска и создавать собственный сценарий тестирования (подбирать тесты и количество прогонов).

Для корректной работы утилита PCMark04 требует, чтобы в системе были установлены следующие приложения:

  • Internet Explorer 6;
  • Media Player 9;
  • Media Encoder 9;
  • DirectX 9.0.

Более того, корректная работа этого тестового пакета обеспечивается лишь для операционной системы Windows XP.

Работа с утилитой очень проста. После запуска программы мы попадаем в главное диалоговое окно (рис. 6). В простейшем случае остается лишь нажать кнопку Run PCMark и дождаться результатов тестирования.

В главном диалоговом окне программы можно также просмотреть информацию о системе, нажав на кнопку Details…, а для создания сценария тестирования необходимо нажать на кнопку Select… (рис. 7).


производительности системы в целом
и отдельных ее подсистем

Всего утилита PCMark04 включает 44 теста, из которых 10 используется для измерения общей производительности системы, 7 — для измерения производительности процессора, 16 — для измерения производительности памяти, 7 — для измерения производительности графической подсистемы и 4 — для измерения производительности жесткого диска.

Важно, что утилита PCMark04 была специально разработана для тестирования домашних компьютеров, и в этом смысле подбор задач и методика расчета интегрального результата тестирования основываются на предположении, что компьютер используется в домашних условиях (Home PC Usage).

Типичные задачи, решаемые с помощью утилиты PCMark04, и их весовые коэффициенты представлены в таблице.

Исходя из типичных задач, выполняемых на домашнем ПК, в утилите PCMark04 используются тесты, приоритет которых является средним и высоким. В бенчмарке применяются утилиты сторонних производителей: Crypto+ 5.0 для шифрования файлов, вирусный сканер компании F-Secure, программа Grammar Parser v4 для проверки орфографии, Havok physics engine v 2.1 для работы с графикой и т.д.

При тестировании общей производительности системы используется 13 тестов, причем три пары тестов запускаются в многопоточном режиме. Порядок запуска тестов показан на рис. 8.

Как видите, в тестах на измерение интегральной производительности всей системы в целом отсутствуют тесты, измеряющие производительность жесткого диска. То есть необходимо учитывать, что и для ПК с высокопроизводительным жестким диском, и для ПК с медленным диском интегральный результат производительности будет примерно одинаковым.

Интегральный результат производительности рассчитывается как среднее геометрическое от результатов (времени выполнения) отдельных задач:

PCMark Score = 66 x (File Compression x File Encryption x File Decompression x Image Processing x File Decryption x Virus Scanning x Grammar Check x Audio Conversion x Web Page Rendering x WMV Video Compression x DivX Video Compression x Physics and 3D x Graphics Memory) 1/13 .

При тестировании процессора используется девять тестов, причем две пары тестов запускаются в многопоточном режиме. Порядок запуска тестов показан на рис. 9.

Как видите, набор тестов в данном случае схож с набором тестов, используемых при измерении интегральной производительности системы в целом, за исключением Virus Scanning, Grammar Check, Physics and 3D и Graphics Memory.

Обобщенный результат тестирования процессора рассчитывается как геометрическое среднее по формуле:

CPU Score = 110 x (File Compression x File Encryption x File Decompression x Image Processing x File Decryption x Grammar Check x Audio Conversion x WMV Video Compression x DivX Video Compression) 1/9 .

Для тестирования памяти применяется набор тестов, который позволяет получить результат, не зависящий от производительности всех остальных подсистем ПК. Подсистема памяти ПК включает оперативную (основную) память, кэш процессора первого уровня (L1) и кэш процессора второго уровня (L2). Набор используемых тестов включает чтение, запись и копирование блоков данных памяти и произвольный доступ к данным. В зависимости от размера блока данных задействуется либо основная память, либо кэш L1, либо кэш L2. Перед запуском каждого очередного теста производится процедура очистки кэша. При операциях чтения, записи и копирования используются блоки данных размером 4 и 8 Мбайт, что позволяет задействовать основную память, а также блоки данных размером 4 и 192 Кбайт, что дает возможность задействовать кэш-память первого и второго уровней соответственно. Каждый тест памяти производится непрерывно в течение 5 секунд, а в качестве результата применяется скорость передачи данных, выраженная в мегабайтах в секунду (Мбайт/с).

При произвольном доступе к памяти используются данные размером 64 байт, причем сам доступ производится в пределах 4 и 8 Мбайт, что позволяет задействовать основную память, или в пределах 4 и 192 Кбайт, что позволяет задействовать кэш первого и второго уровней.

Обобщенный результат производительности памяти рассчитывается по формуле:

Memory Score = 0,9 x {Read 8M x Read 4M x ((Read 192k + Read 4k)/2) x Write 8M x Write 4M x ((Write 192k + Write 4k)/2) x Copy 8M x Copy 4M x ((Copy 192k + Copy 4k)/2)) x Random Access 8M x Random Access 4M x ((Random access 192k + Random access 4k)/2)} 1/12 .

При тестировании графической подсистемы ПК применяется набор тестов, позволяющий минимизировать влияние всех остальных подсистем ПК на итоговый результат. В тестировании используются как 2D-, так и 3D-тесты.

Набор 2D-тестов включает тесты, измеряющие производительность типичных оконных операций, видеопамяти и производительность при воспроизведении видеофайлов.

Набор 3D-тестов включает тесты, измеряющие скорость заполнения и обработки полигонов. Скорость заполнения — это скорость прорисовки текстур на 3D-объектах. Скорость заполнения измеряется в миллионах текселей в секунду (MTexels/s) (текселем называется элемент текстуры (набор пикселов)). Скорость обработки полигонов определяет производительность видеокарты при воспроизведении трехмерных примитивов — треугольников. Скорость обработки полигонов измеряется в миллионах треугольников в секунду (MTriangles/s).

Обобщенный результат производительности графической подсистемы рассчитывается по формуле:

Graphics score = 0,5 x transparent windows + 0,4 x ((video memory 16 lines + video memory 32 lines)/2) + 0,6 x ((fill rate single texture + fill rate multitexture)/2) + 50 x ((polygon throughput single light + polygon throughput multiple lights)/2).

При тестировании производительности жесткого диска используется набор четырех тестов, созданных на основе утилиты RankDisk от компании Intel. Эти тесты включают измерение времени загрузки операционной системы Windows XP, время загрузки приложений (Microsoft Word, Adobe Acrobat Reader 5, Windows Media Player, 3DMark 2001SE, Leadtek Winfast DVD, Mozilla Internet Browser), типичные операции копирования файлов (объем копируемых файлов 400 Мбайт) и измерение загрузки жесткого диска при таких задачах, как открытие документа Word, проверка орфографии, сохранение и закрытие документа, архивирование и разархивирование файлов с использованием архиватора Winzip и т.д.

Обобщенный результат производительности рассчитывается по формуле:

HDD Score = (XP Startup Trace x 120) + (Application Load trace x 180) + (File Copy Trace x 28) + (General Usage x 265).

В заключение описания тестовой утилиты PCMark04 еще раз подчеркнем, что она является сегодня одной из лучших для проведения экспресс-тестирования ПК в домашних условиях. Впрочем, нельзя не отметить и недостаток этой утилиты, который является своеобразным следствием экспресс-тестирования. Речь идет о плохой повторяемости результатов, что неизбежно при столь коротком времени тестирования. Поэтому, чтобы обеспечить хоть сколь-нибудь приемлемую достоверность результата, получаемого с помощью утилиты PCMark04, необходимо повторить тест минимум пять раз и рассматривать усредненный результат тестирования.

Первым, что стоит выяснить, если ваш компьютер «захворал» – это характер заболевания, ведь причиной может быть как программная, так и аппаратная часть. И если с программными ошибками вы можете разобраться самостоятельно, следуя нашим советам из , то с аппаратными неисправностями вам придется обращаться в сервис или самостоятельно заменять неисправные элементы ПК.

1 Неисправность ОЗУ


В утилите MemTest86+, предназначенной для проверки работоспособности модулей оперативной памяти, тестирование осуществляется из операционной среды DOS, а не из Windows

Если признаки неполадки указывают на неисправность модулей оперативной памяти, достаточно запустить тест memtest86+ , с USB-флешки или загрузочного CD-диска. Если на синем интерфейсе работающей утилиты появляются красные сообщения об ошибках – неисправные модули памяти следует заменить. Что характерно, при легких повреждениях ОЗУ, ошибки могут проявляться не сразу, а в процессе работы системы при выполнении требовательных для оперативной памяти задач: например таких, как распаковка больших архивов.

2 Диагностика HDD

Если программы «подвисают» при операциях с файлами, есть вероятность, что это вызвано проблемами с жестким диском. В этом случае необходимо выполнить проверку HDD с помощью встроенной в Windows утилиты Checkdisk. Запустить ее можно зайдя в «Мой компьютер», щелкнув правой кнопкой по соответствующему разделу HDD, выбрав пункт «Свойства» и вкладку «Сервис» надать на кнопку «Выполнить проверку».

Также при подозрении на проблемы с жестким диском, необходимо проверить вывод информации встроенной утилиты диагностики S.M.A.R.T. Чтобы это сделать воспользуйтесь бесплатной утилитой «Speccy» .

3 Перегрев компонентов системы

Самый простой метод определить, что ваш компьютер перегревается – зайти в BIOS (или UEFI-интерфейс на современных материнских платах) и в разделе «Health» или «Power» посмотреть на показатели температуры CPU и чипсета. Если значения превышают 50-60°C в состоянии покоя – значит проблема скорее всего в перегреве.

Также информацию о температуре можно узнать с помощью уже упомянутой утилиты «Speccy», которая показывает температуру всех со всех датчиков вашего компьютера, включая процессор, память, материнскую плату и видеочип.

Чтобы исправить положение, как правило, чаще всего достаточно просто почистить компоненты ПК от пыли с помощью баллончика со сжатым воздухом и пылесоса. Если компьютер на гарантии и опломбирован, то можно продуть радиаторы охлаждения сжатым воздухом через вентиляционные отверстия. В редких случаях, если компьютер прослужил несколько лет, имеет смысл отсоединить радиатор и заменить термопасту центрального процессора и видеоплаты. Как правило, это необходимо сделать через 3 года эксплуатации ПК.

4 Неисправность материнской платы


Если на конденсаторах материнской платы заметны следы электролита, то ее лучше сразу заменить на новую

Сложнее всего диагностировать проблемы, вызванные выходом из строя элементов материнской платы. В этом случае вам поможет ее физический осмотр. Если на поверхности наблюдаются следы температурного воздействия (изменение цвета покрытия) или на сечении конденсаторов имеются пятна электролита – лучше такую плату сразу заменить. Если же физический осмотр материнской платы не помог, но вы уверены именно в ее неисправности, попробуйте по возможности подключить к ней гарантированно рабочие компоненты (CPU, оперативную память, блок питания) с другого ПК, чтобы проверить ее работоспособность.

Хорошие возможности по диагностике аппаратных проблем, предоставляет загрузочный диск Ultimate Boot CD . Записав его на CD-диск или USB-флешку, вы можете в любое время загрузить его и провести диагностику отдельных систем вашего ПК.

5 Не забываем про резервные копии

Прежде чем начать пытаться исправить состояние компьютера, настоятельно рекомендуем сделать резервные копии данных и перенести персональную информацию с системного раздела. Также желательно активировать создание точек восстановления операционной системы. В ОС Windows 8 это делается через расширенное меню «Свойства системы»: сочетание клавиш Win+X -> Система -> Дополнительные параметры системы -> Защита системы. В этой вкладке включите защиту системного диска и затем нажмите кнопку «Создать». После этого при загрузке системы вы сможете нажав кнопку F8 попасть в меню восстановления системы и воспользоваться созданной контрольной точкой.

6 Что можно сделать самим?

В случае поломки любой аппаратной части, если устройство на гарантии вам следует отнести его в сервис. В противном случае, максимум что вы сможете исправить самостоятельно – заменить модули памяти и жесткий диск, а также пропылесосить и продуть компоненты системного блока сжатым воздухом в случае перегрева. С остальными проблемами лучше обратиться к специалистам.

ФОТО: компании-производители; diosmic, Gewoldi, ermingut, ludinko/Istockphoto.com

Обидно когда в самый неподходящий момент ваш компьютер выдал какой-то звук или сообщение и вместо привычного рабочего стола вы видите синий или черный экран с буквами и цифрами. А принеся системник в сервис местный умелец ловко лезет в него, что-то ковыряет и о чудо, он заработал!!! Во многих ответах на вопросы этого блога, можно было увидеть совет — понести компьютер в сервисный центр на диагностику. Оказывается если подходить к вопросу диагностики с умом — это под силу практически каждому и на дому! Так вот, такими простыми чудесами мы сегодня и займемся.

Прежде всего, думаю не лишним будет заглянуть во внутрь системного блока типичного компьютера, чтобы разобраться где и чего там установлено. Не спешите раскручивать ваш системник, а изучите внутреннее устройство компьютера на базовом уровне из этой статьи:

1 - блок питания, 2 - материнская плата, 3 - процессор, 4 - память, 5 - видеоадаптер, 6 - жесткий диск, 7 - оптический привод

Все манипуляции. которые будут описаны в этой статье «как произвести диагностику компьютера» касаются устройства «типичного» системного блока, ваш компьютер может иметь отличия не описанные здесь, если Вы не уверены что правильно поняли смысл действия и его результат, не производите самостоятельно никаких манипуляций. Все процедуры разборки и сборки системного блока описанные в этой статье «как произвести диагностику компьютера» могут проводиться только на ПОЛНОСТЬЮ обесточеном оборудовании. Автор статьи «как произвести диагностику компьютера» не несет никаких гарантий за производимые вами действия и их последствия.

как произвести диагностику компьютера?

А теперь для тех кто не испугался и кому нечего терять продолжим.

Диагностика компьютера начинается с его включения, т.к. все выключенные компьютеры ведут себя одинаково, как исправные так и нет. Для включения системного блока мы должны проверить, что он подключен к исправной розетке с напряжением соответствующем рабочему диапазону блока питания, на блоке питания выключатель переведен с состояние «вкл» или «on»,

Имейте в виду, что на некоторых блоках питания выключатель отсутствует, тогда достаточно того, что в него вставлен кабель питания

на передней панели системного блока нажимаем клавищу Power и ждем… Итак, что должно произойти при включении исправного компьютера? Должен загореться индикатор подачи напряжения (как правило — зеленая «лампочка»), вентиляторы системы охлаждения производят начальный старт, выполняется тестирование устройств материнской платы и всего что к ней подключено и выдается результат диагностики в виде одного писка динамика, что и значит — «все включилось нормально».

Только это не наш случай. При наличии неисправностей блоке питания в зависимости от степени повреждений при нажатии ка кнопку Power, чаще всего ничего не происходит (компьютер не включается) или лампочка питания загорается, но никакие вентиляторы не шумят и диагностика не проходит т.е. в ответ тишина. Вот тут нам и пригодится наш инструмент. Отключаем системный блок от сети, поворачиваем к себе задом к «лесу» передом и откручиваем два винта на правой от вас крышке, затем тянем ее на себя и снимаем. Если у вас не типичный конструктив корпуса, ознакомьтесь с инструкцией по его вскрытию, все действия должы происходить без чрезмерных усилий. Теперь все внутренности системного блока перед нами. Для удобства проведения дальнейших действий системный блок желательно положить на бок открытой стороной вверх. Находим блок к которому в виде «жмута» сходятся все провода, это и есть блок питания, снаружи к нему подключается кабель питания, надеюсь сейчас он отключен. Проверяем что все разъемы поключены надежно, вставлены до «упора» и не имеют люфтов, если неконтакт обнаружился устраняем его плотно дожав соединение, может понадобиться некоторое усилие. Подключаем на место кабель питания и производим повторную попытку включения. Если изменений никаких, то отключаем питание и начинаем производить отключение блока питания для дальнейшей диагностики. Обратите внимание, что разъемы подключаемые к материнской плате (самая большая плата в компьютере) имеют защелки которые перед выниманием разъема необходимо открыть, делается это нажатием на верхнюю часть защелки. Покачивая разъем из стороны в сторону тянем за соединение, если защелка открылать, то разъем должен выйти из гнезда. Затем отсоединяем разъемы подключенные к накопителям: жесткому диску и приводу, на старых компьютерах еще могут быть подключены накопители FDD 3,5″ на этих разъемах тоже присутствуют защелки, так что не тяните сильно, не открыв защелку.

Сбрасываем BIOS и тестируем материнскую плату

Теперь настала очередь материнской платы и процессора. Отсоединяем от материнской платы интерфейсные кабели IDE (широкий плоский 40-80 жильный кабель), SATA (красные, желтые или черные, шириной около 1 см), питание вентиляторов стоящих на корпусе (вентилятор процессора оставляем подключенным), откручиваем винты и открываем защелки, которые держат платы установленные в разъемы материнской платы, снимаем память раздвинув держатели памяти в сторону от модуля и тянем их на себя. Вот мы почти разобрали компьютер. Страшно? Еще как, сейчас самый ответственный момент, если чуда не произойдет, то ремонт может оказаться очень дорогим. Теперь нужно подсоединить всего два разъема от блока питания к материнской плате: основной 24-х контактный и 4-х контактный дополнительного питания процессора. Больше ничего подключать не нужно, после этого подключаем кабель питания и производим попытку включения. Если вы услышали длинные сигналы из динамика материнской платы то вам повезло, есть шанс что все не так запущено, по крайней мере материнская плата и процессор включились. хотя это еще не значит что они абсолютно исправны. Для тех у кого запустился вентилятор процессора, но в ответ тишина воспользуемся попыткой сбросить настройки BIOS в заводские. Ищем на материнской плате батарейку, похожа на монету серебристого цвета, диаметром 18-20 мм, а рядом с ней перемычку с подписью JBAT, если такой не находите, достаете книжку от материнской платы и ищете раздел Clear CMOS, там должна быть указана перемычка для обнуления настроек БИОС. Как правило перемычка должна стоять в положении 1-2, а для того чтобы обнулить настройки ее нужно перевести в противоположное положение, например в 2-3 и произвести кратковременное включение системного блока 3-4 секунды, а затем выключить. После этого вернуть перемычку в начальное положение и снова произвести попытку включения. Если звуковые сигналы появились, можно производить постепенную сборку системного блока. Иначе у нас остался последний шанс, проверить не пропал ли контакт в процессорном разъеме.

Разбираемся с процессором (как произвести диагностику компьютера)

Для этого нам нужно снять вентилятор с процессора вместе с радиатором. Процессоры Интел и АМД имеют различные системы крепления радиатора к процессору. В случае с процессорами Интел имеющие разъем S775, S1155/56 нам потребуется плоская отвертка и нужно повернуть против часовой стрелки на 90 градусов пластиковые столбики, которые держат радиатор. После чего он должен вынуться с небольшим усилием. В случае с процессором АМД нужно повернуть рычажок, движением вверх, с одной из сторон возле радиатора на 180 градусов и ослабить прижимную пластину, после чего освободить защелки удерживающие радиатор в прижатом положении и снять радиатор. С одной из сторон разъема имеется металлический рычаг прижимающий процессор к разъему, его нужно открыть плотно прижать процессор и снова защелкнуть на место. Иногда возникает неконтакт процессора в разъеме, это действие помагет его устранить. Конструкция системы охлаждения процессора может отличаться от стандартной в таком случае вам придется ознакомиться с инструкцией по снятию и установке вашей системы охлаждения процессора. Чтобы сделать окончательный вывод о неработоспособности материнской платы, к ней необходимо подключить заведомо исправный блок питания и совместимый, рабочий процессор, если самодиагностика платы «молчит», то причина именно в ней. Если возраст материнской платы превышает 5 лет, то скорее всего вам предстоит раскошелиться не только на замену материнской платы, но и процессора с оперативной памятью, хотя вариант с материнской платой Б/У тоже могут предложить.

Вставляем память и видеокарту (как произвести диагностику компьютера)

Надеемся, что после наших манипуляций, самодиагностика отработала и вы услышали «победный» писк говорящий о том что материнская плата обнаружила отсутствующие модули памяти в разъемах. Пришло время установить их на место. Если модули памяти или разъем покрыты пылью, то ее очень желательно удалить и проследить, чтобы она не попала в разъем для модулей памяти. Контакты на модулях памяти можно очистить с помощью обычного ластика, если к ним приклеились частички грязи. Только осторожно, не соскребите ластиком электронные компоненты припаянные к модулю и внимательно осмотрите сам модуль памяти, нет ли на нем следов отломанных компонентов или перегрева. Чтобы установить память на место, нужно развести в стороны защелки сориентировать модуль, чтобы прорезь на модуле совпадала с выступом внутри разъема, установить его в защелки и прижать одновременно с двух сторон к разъему, так чтобы защелки закрылись. Затем проверьте как плотно вошел модуль в разъем и нет ли люфтов. Избегайте чрезмерных усилий при установке модулей, чтобы излишне не согнуть материнскую плату иначе возможно возникновение внутренних трещин в электрических дорожках платы, что приведет к ее неработоспособности. После установки модулей повторно включаем системный блок. Что-то должно измениться в характере писка платы. Если вы услышали новый звук длинный и три коротких сигнала, или один длинный в случае если на борту материнской платы имеется встроенный видеоадаптер, то имеем уже 4 потенциально исправных компонента: блок питания, материнскую плату, процессор и память. Если вы услышали тишину после установки памяти или характер звукового сигнала не изменился (длинный повторяющийся писк), то память не работоспособна и ее необходимо заменить. На всякий случай стоит попробовать установить модуль в другой разъем или поменять порядок установленных модулей, но такая операция может ничего и не дать. После установки памяти необходимо вставить видеоадаптер на место, это может быть разъем AGP или PCI-E 16x, при необходимости подключить дополнительное питание к видеоадаптеру (8-ми или 6-ти пиновый разъем), подключить монитор и дождаться появления видеосигнала на мониторе. Если после установки видеоадаптера сигнал на мониторе не появился и характер звукового сигнала имеет «вид» один длинный три коротких или полная тишина, то причина неисправности скорее всего в видеоадаптере. Если у вас тот случай когда имеется и встроенный адаптер и внешний в виде платы, то можно вернуть работоспособность компьютеру не подключая внешний в случае его неработоспособности.

Надеемся что изображение все-таки появилось и мы можем постепенно продолжать собирать наш разобранный системник. Если вы знаете объем памяти модулей памяти и их суммарный объем соответствует тому что написала программа тестирования БИОС, значит мы на верном пути. Если БИОС увидел только половину или объем только одного модуля, значит стоит вычислить тот модуль объем которого не виден, путем поочередного вынимания модулей памяти. Только не забываем выключать компьютер перед любыми манипуляциями. Не оставляйте неработающий модуль в матернской плате, замените его на новый, совместимый с вашей материнской платой, или продолжайте работать без него если оставшийся объем вас устраивает.

Подключаем накопители (как произвести диагностику компьютера)

А мы переходим к следующему этапу сборки, подключению накопителей. Накопители на жестком диске или в простонародье — «винчестеры», бывают нескольких стандартов, чаще всего встречаются жесткие диски стандарта SATA или IDE. Визуально их можно отличить по ширине разъема для подключения интерфейсного кабеля: IDE широкий 40-ка контактный, SATA — небольшой разъем около 12 мм в виде вытянутой буквы Г с 7-ю контактами на ножке. Рядом с интерфейсным разъемом находится разъем для подключения питания, 4-х контактный прямоугольный с двумя срезанными углами у дисков стандарта IDE и плоский многоконтактный похожий на интерфейсный, только длиннее (23 мм) у дисков SATA. Подключить нужно оба разъема, интерфейсный поключаем к кабелю ведущему к материнской плате, разъем питания к соответствующему разъему от БП. К интерфейсному кабелю IDE может быть подключено два устройства, но при этом требуется дополнительное конфигурирование устройства с помощью перемычек, находящихся рядом с интерфейсным разъемом, здесь мы эту тему рассмотривать не будем, если вы ничего не меняли в порядке подключения устройств, то все что от Вас требуется это вставить кабели в разъемы так как они были подкючены до разборки. Все вышесказанное относительно жестких дисков справедливо и для оптических приводов. После подключения необходимо включить компьютер и проверить пределились ли BIOS-ом наши устройства. Для этого нужно войти в BIOS нажатием клавиши DEL при загрузке компьютера, зайти в раздел Standard CMOS Features или MAIN , в зависимости от производителя программы BIOS.

Подсвеченные строки показывают, как должна выглядеть запись о правильно определенных дисковых устройствах.

Подсвеченные строки показывают, как должна выглядеть запись о правильно определенных дисковых устройствах. Только названия устройств должны быть те, что установлены в Ваш компьютер. Если записи о дисковых устройствах не появились, то это может свидетельствовать о неисправности приводов или дисков, или неисправности интерфейсных кабелей, которыми эти устройства подключены. Стоит перепроверить так-же плотность и надежность подключения разъемов питания. Жесткий диск при включении должен издавать негромкий высокий звук раскручивающегося электродвигателя, при этом если к нему приложить руку будет ощущаться легкая вибрация. Оптический привод, при подаче питания, должен моргать светодиодом на передней панели устройства. Отсутствие признаков подачи питания также свидетельствует о неисправности приводов. Для тех у кого дисковые устройства определились правильно продолжим.

Настало время попытаться загрузить компьютер. Если причина была в каком-либо неконтакте, то в результате наших процедур мы могли его устранить. Если загрузка прошла успешно, то на этом можете и остановиться, а для тех у кого проблема с загрузкой ОС осталась стоит дождаться следующей статьи, о программной диагностике компьютера.

Омельченко Руслан

GD Star Rating
a WordPress rating system

Ремонтируем компьютер сами, или как провести диагностику компьютера? , 4.9 out of 5 based on 35 ratings

Все большее количество автолюбителей в ремкомплект включают различные приборы для диагностики своего автомобиля. Это позволяет сэкономить время и деньги на дорогостоящие ремонты, увереннее чувствовать себя за рулем во время дальних путешествий.

Особенно важно правильно выбрать тип диагностического устройства, освоить методику компьютерной диагностики и применения ее результатов.

Что такое компьютерная диагностика транспортного средства

Компьютерная диагностика автомобиля предполагает подключение к ТС через определенный интерфейс персонального компьютера и последующее определение неисправного узла.

Попробуем по частям рассмотреть предыдущее определение.

Автомобиль

Современный автомобиль это не только колеса, кузов, двигатель и другие механические части. С точки зрения электрика – это сложный электронный комплекс оборудования.

Если разбить все электрооборудование автомобиля на отдельные элементы, оно включает:

  • систему управления двигателем;
  • блок управления тормозной системой (ABS);
  • блок управления системой защиты водителя (подушки безопасности – SRS);
  • систему управления кузовом (блок комфорта, кондиционер, управление световыми приборами и т.д.);
  • систему защиты автомобиля от несанкционированного доступа (сигнализация, иммобилайзер);
  • блок связи (CAN-шина);
  • дополнительное оборудование.

По существу, каждый их этих блоков представляет микрокомпьютер, в котором есть датчики и исполнительные устройства. Например, в блоке управления двигателем есть датчики коленвала, распредвала, расходомер и другие. В качестве исполнительных устройств – инжекторы, регулятор холостого хода и прочие. Управление ведется непосредственно блоком управления конкретного механизма.

Все блоки связаны между собой шиной данных, которая осуществляет согласованную работу узлов автомобиля.

Каждый из блоков имеет подключение к диагностическому разъему. По нему можно:

  • собирать данные о неисправности отдельных элементов схемы;
  • производить оперативный контроль в процессе работы устройств (угол опережения зажигания, время впрыска и т.д);
  • перепрограммировать отдельные блоки.

Интерфейс

Собственно это и оборудование для диагностики. Оно включает:

  • диагностический разъем;
  • кабель для подсоединения к диагностическому прибору;
  • диагностическое устройство;
  • систему команд согласования с компьютером (протоколы обмена).

Компьютер

Обычно для самостоятельной диагностики автомобилей используют ноутбуки, планшеты, смартфоны (не следует забывать, что современный телефон это тот же персональный компьютер).

В некоторых профессиональных и полупрофессиональных приборах для диагностики интерфейс и компьютер совмещены в отдельный блок.

Компьютерная диагностика авто выполняет следующие функции:

  • считывание кодов ошибок отдельных устройств автомобиля;
  • стирание ошибок;
  • расшифровку кодов ошибок (не все диагностические устройства);
  • оперативный контроль систем автомобиля в реальном времени (проще говоря, на заведенном двигателе измерение углов зажигания, потребления топлива и т.д.);
  • привязку некоторых замененных узлов (не все диагностические устройства);
  • перепрограммирование (прошивку) устройств автомобиля (профессиональные диагностические устройства).

Как выбирать приборы для диагностики автомобилей своими руками

При выборе приборов для самостоятельной диагностики автомобилей следует руководствоваться следующими соображениями:

1. Маркой автомобиля, который вы хотите обслуживать .

Автомобили до 2000-го года выпуска подключаются к OBD-разъему только через переходник, если подключаются вообще.

В автомобилях 2000-2005 г.в. возможна неполная диагностика, нет смысла покупать навороченную диагностику.

Если вы планируете производить компьютерную диагностику для нескольких автомобилей, следует остановить выбор на универсальном приборе. В сопроводительной документации диагностических устройств обычно указывается, для каких автомобилей они предназначены. Есть одномарочные (обычно дилерские) приборы для диагностики автомобилей.

Очень профессиональное, простое в пользовании и недорогое диагностическое устройство автомобилей VAG-группы (AUDI, VW, SEAT, SKODA), в русской версии именуемое «Вася диагност».

2. Уровнем своей компетентности .

Нет смысла покупать оборудование для диагностики автомобилей через компьютер, если у вас нет ноутбука. В этом случае можно приобрести адаптер для Android или диагностику со встроенным дисплеем.

Также не рационально приобретать профессиональный Launch, если не умеете заниматься перепрошивкой, а то таких бед можно натворить!

3. Решаемыми задачами .

Если вы планируете проводить диагностику автомобиля своими руками с помощью смартфона в качестве тестера для определения неисправного узла в процессе эксплуатации, возможно, вам подойдет простенький ELM327 адаптер:

Если вы решили регулярно заниматься ремонтом своего и соседских авто, лучше приобрести AUTOCOM.

Что нужно для диагностики автомобиля через ноутбук или смартфон

После того, как вы определились с выбором и приобрели прибор для диагностики автомобилей своими руками, необходимо установить программное обеспечение.

Не всегда это просто. Следует четко следовать прилагаемым к устройству инструкциям. Бывает, после неграмотной установки обеспечения, даже деинсталлировав программу и почистив реестры, заново на этот диск она уже «не ляжет».

При проведении компьютерной диагностики автомобиля крайне желательно иметь простой мультиметр (тестер). Если диагностика показала на неисправность какого-то узла, не надо сразу спешить покупать новый. Возможно, есть обычный обрыв электропроводки, идущей к нему.

Для того, чтобы полностью владеть информацией об автомобиле, необходимо иметь принципиальную электрическую схему. Ее можно найти в руководстве по ремонту и эксплуатации конкретного автомобиля.

Также есть компьютерные программы, в которых содержаться такие данные. Наиболее популярные – AUTODATA, TOLERANCE, ELSA. Их также желательно установить на компьютер, если есть определенные знания в электротехнике.

Более дорогие диагностические устройства это делают. Необходимо перейти в этот режим и в точности следовать всем инструкциям программы.

  • не следует на 100% доверять компьютерной диагностике, иногда она не дает сведений о неисправности узла, а неисправность присутствует;
  • будьте внимательными при подключении диагностических сканеров, имеются случаи неправильного питания в OBD-разъеме;
  • хранить дорогое диагностическое устройство в автомобиле не следует, там повышенная влажность;
  • во время проведения диагностических работ летом остерегайтесь попадания прямых солнечных лучей на корпус самого сканера и ноутбука;
  • не рекомендуется подключать диагностическое устройство к автомобилю при включенном зажигании.

Видео — как провести диагностику автомобиля самому:

Может заинтересовать:


Уникальный автомобильный сканер Scan Tool Pro

Шаг 1. Подтверждение факта наличия неисправности

Шаг 2. Внешний осмотр

Шаг 3.

Шаг 4

Шаг 5

Шаг 6. Локализация неисправности на уровне подсистемы или цилиндра

Шаг 7 Ремонт

Шаг 8


2 Порядок диагностики электронных систем автомобиля. Традиционные методы диагностики. Диагностика современных автомобилей.

До того как электронные системы начали широко применяться на автомобилях, их электрооборудование состояло из нескольких достаточно простых и независимых систем, питаемых непосредственно от аккумуляторной батареи. Большинство электрических цепей обычно состояло из выключателя, управляющего электродвигателем или иным исполнительным механизмом, иногда через реле. Так как компонентов немного, неисправности легко определялись электрослесарем даже на незнакомых ранее моделях автомобилей. Простые по конструкции элементы проверялись с помощью контрольной лампы или мультиметра (вольтметр, амперметр, омметр в одном корпусе). Более сложные элементы, такие, как реле, проверялись подстановкой в цепь заведомо исправного такого же элемента.

Быстрое распространение в 80-х годах более сложных электронных систем

управления двигателем создало потребность в новых методиках диагностики, новом диагностическом оборудовании, значительном объеме сервисной информации. Большое количество различных типов ЭБУ приводит к потребности обеспечить быстрый доступ к технической информации по каждой конкретной модели автомобиля. Для удовлетворения этих потребностей были разработаны новые диагностические средства: бортовые (устанавливаемые на автомобиле, являющиеся частью ЭБУ) и небортовые. Условно их можно подразделить на три категории:

Стационарные (стендовые) диагностические системы. Они не подключаются к бортовому ЭБУ и, таким образом, независимы от бортовой диагностической системы автомобиля. Эти устройства обычно диагностируют системы впрыска – зажигания, их часто называют-мотор- тестерами. По мере усложнения автомобильной электроники расширяются и функциональные возможности стационарных систем, т. к. теперь необходимо диагностировать не только управление двигателем, но и тормозные системы, активную подвеску и т.д.;__

Бортовое диагностическое программное обеспечение, которое позволяет индицировать неисправности соответствующими кодами. Программное обеспечение ЭБУ содержит процедуры, которые записывают в память регистратора коды неисправностей. При обнаружении неисправности ЭБУ включает и выключает в определенной последовательности световой индикатор на приборном щитке. Световой сигнал можно расшифровать по справочным таблицам кодов неисправностей;

Бортовое диагностическое программное обеспечение, для доступа к которому требуется специальное дополнительное диагностическое устройство. Портативный диагностический тестер (сканер) подключается через специальный разъем на автомобиле к конкретному ЭБУ или всей электронной системе. Контролируемые параметры и коды неисправностей считываются непосредственно с ЭБУ и интерпретируются специалистами сервиса.


3 Пошаговый порядок проведения диагностики

Диагностика неисправностей в электронных системах управления автомобиля проводится обычно в такой последовательности.

Шаг 1. Подтверждение факта наличия неисправности Требуется убедиться, что неисправность реально существует. Если водитель неверно интерпретирует нормальные реакции автомобиля в каких-то обстоятельствах, ему следует это объяснить. Полезным источником информации является сам водитель (владелец) у которого надо уточнить условия возникновения неисправности.

Шаг 2. Внешний осмотр и проверка узлов, блоков и систем автомобиля Проведение осмотра и предварительной проверки при диагностике необходимо. По оценкам экспертов, 10-30% неисправностей на автомобиле выявляются таким путем. До проведения диагностики неисправностей в системе управления двигателем важно устранить очевидные неисправности, такие как: утечка топлива, масла, охлаждающей жидкости;

Трещины или неподключения вакуумных шлангов;

Коррозия контактов аккумуляторной батареи;

Нарушение электрических соединений в контактных разъемах;

Необычные звуки, запахи, дым;

Засорение воздушного фильтра и воздуховода (при длительном простое

автомобиля зверьки могут делать там гнезда или запасы корма).

Шаг 3. Проверка технического состояния подсистем

· Проверка уровня и качества моторного масла.

· Уровня охлождающей жидкости

· Уровень топлива

· Напряжение АКБ и др.

Шаг 4 . Работа с сервисной документацией. Считывание диагностических кодов.

По оценкам производителей, до 30% случаев неисправностей автомобилей обнаруживается и исправляется на основе информации в виде указаний, предположений, диагностических карт в руководствах по техническому обслуживанию и ремонту. Перед использованием документации следует точно знать: модель год выпуска тип двигателя и трансмиссии, постоянная или не постоянная несправность.

Шаг 5 . Просмотр параметров с помощью сканера.

Шаг 6. Локализация неисправности на уровне подсистемы или цилиндра Это наиболее трудоемкая часть диагностирования, т. к. необходимо выполнить следующие процедуры:

Разобраться с диагностическими картами и технической документацией;

Просмотреть изменение коэффициентов коррекции подачи топлива,

сделанные ЭБУ при разных режимах работы двигателя;

Произвести анализ состава выхлопных газов;

Шаг 7 Ремонт Шаг 8 Проверка после ремонта и стирание кодов ошибок из памяти ЭБУ.

4 Поиск неисправностей. Считывание кодов неисправностей

При поиске неисправностей следует придерживаться следующих принципов.

Принцип 1. Обедненная топливовоздушная смесь (ТВ-смесь) чаще является

причиной ухудшения ездовых характеристик, чем богатая. Обедненная ТВ-смесь:

Горит медленно с высокой температурой;

Может вызывать обратную вспышку;

Обычно возникает при утечке вакуума.

Богатая ТВ-смесь:

Горит быстро и с пониженной температурой;

Увеличивает расход топлива, выхлопные газы становятся черными;

Может привести к закоксованию свечей, ездовые характеристики при этом

ухудшаются.

Принцип 2. Сначала всегда проверяется выходной сигнал контролируемого

устройства. Если выходной сигнал контролируемого устройства (например, катушки зажигания) нормальный, то питание, “земля” и само контролируемое устройство исправны, Если выходной сигнал не соответствует норме, то входной сигнал, питание, “земля” или само контролируемое устройство могут быть неисправны. Естественно, не следует заменять контролируемое устройство, не убедившись в исправности питания.

Принцип 3. В первую очередь проверяются.подсистемы, характеристики

которых должны ухудшаться по мере эксплуатации. До проведения дорогостоящих диагностических работ следует убедиться в исправности или заменить подсистемы с ограниченным сроком службы. К таковым относятся: топливный и воздушный фильтры, свечи, бегунок и крышка распределителя, высоковольтные провода и т. п.

Принцип 4. Проверяются разъемы и соединители, их контакты не должны

быть погнуты или окислены.

Принцип 5. Измеряется напряжение питания на контактах контролируемого

устройства. На выводе, подключенном к “земля”, напряжение не должно превышать 0,2 В.

Принцип 6. В двигатель должно подаваться чистое топливо в достаточном

количестве. Засоренные фильтры, согнутые шланги способны вызывать ухудшение ездовых характеристик, часто непостоянное. Измерением только давления топлива в системе не обойтись, следует убедиться еще в его нормальном расходе через форсунки.

Во время обычной эксплуатации автомобиля бортовой компьютер

периодически тестирует электрические и электронные системы и Их компоненты. При обнаружении неисправности контроллер компьютера переходит в аварийный режим работы, подставляя подходящее значение параметра вместо того, которое дает неисправный блок. Например, если контроллер обнаружит неисправность в цепи датчика температуры охлаждающей жидкости, программа установит резервное значение температуры, рассчитанное для работы двигателя в штатном режиме (обычно для 80 °С), и будет использовать это значение при реализации управляющих алгоритмов, чтобы автомобиль оставался на ходу. Резервное значение будет записано в память ЭБУ как аварийное.

Водитель информируется о неисправности с помощью контрольной лампы CHECK ENGINE (или светодиода), расположенной на панели приборов (рис. 1). Микропроцессор ЭБУ заносит специфический код неисправности в КАМ память. КАМ (Кеер Аlive Меmогу) память способна сохранять информацию при отключении питания ЭБУ. Это обеспечивается подключением микросхем КАМ памяти отдельным кабелем к аккумуляторной батарее или применением малогабаритных подзаряжаемых аккумуляторов, размещенных на печатной плате ЭБУ.


5 Бортовые диагностические системы второго поколения. Основные сведения о стандарте OBD-II.

Разработка требований и рекомендаций по стандарту ОВD-II велась под эгидой ЕРА (Environmental Protection Agency - агентство по защите окружающей среды при правительстве США) при участии САRВ и SАЕ (society of Automotive Engeneers - Международное общество автомобильных инженеров). Стандарт ОВD-II предусматривает более точное управление двигателем трансмиссией, каталитическим нейтрализатором и т. д. Доступ к системной информации бортового ЭБУ можно осуществлять не только специализированными, но и универсальными сканерами. С 1996 г. все продаваемые в США автомобили стали соответствовать требованиям ОВD-II

В Европе аналогичные документы традиционно принимаются с запаздыванием по отношению к США. Тем не менее аналогичные правила ЕОВD (European On Board Diagnostic) вступили в силу и в Европе с 1 января 2000 г.

С применением стандартов ЕОВD и ОВD-II процесс диагностики электронных систем автомобиля унифицируется, теперь можно один и тот же сканер без специальных адаптеров использовать для тестирования автомобилей всех марок.

Требования стандарта ОВD-II предусматривают:

Стандартный диагностический разъем;

Стандартное размещение диагностического разъема;

Стандартный протокол обмена данными между сканером и автомобильной

бортовой системой диагностики;

Стандартный список кодов неисправностей;

Сохранение в памяти ЭБУ кадра значений параметров при появлении кода

ошибки (“замороженный” кадр);

Мониторинг бортовыми диагностическими средствами компонентов, отказ

которых может привести к увеличению токсичных выбросов в окружающую среду;

Доступ как специализированных, так и универсальных сканеров к кодам

ошибок, параметрам, “замороженным” кадрам, тестирующим процедурам и т. д.;

Единый перечень терминов, сокращений, определений, используемых для элементов электронных систем автомобиля и кодов ошибок.

Обмен информацией между сканером и автомобилем производится согласно международному стандарту ISO1941 и стандарту SAE J1850. Стандарт J1979 устанавливает список кодов ошибок и рекомендуемую практику программных режимов работы для сканера.

В соответствии с требованиями ОВD-II бортовая диагностическая система должна обнаруживать ухудшение работы средств до очистки токсичных выбросов. Например, индикатор неисправности Malfunction Indicator Lamp - МIL (аналог прежней Check Engine) включается при увеличении содержания СО или СН в токсичных выбросах на выходе каталитического нейтрализатора более чем в 1,5 раза по сравнению с допустимыми значениями. Такие же процедуры применяются и к другому оборудованию, неисправность которого может привести к увеличению токсичных выбросов.


6 Проверка бортовой диагностической системы OBD-П в испытательном ездовом цикле.

Диагностические мониторы системы ОВD-П реализуют свои тесты один раз за поездку. Поэтому до испытательной поездки (до или после ремонта) автомеханик должен проверить работоспособность диагностической системы в ездовом цикле.

В зависимости от температурных и дорожных условий производители рекомендуют различные испытательные ездовые циклы для своих автомобилей. В таблице 4 приведен пример испытательного цикла для проверки готовности бортовой диагностической системы ОВD-П к тестированию, Во время проведения теста подпрограмма DE независимо от результата маркирует флагом в памяти ЭБУ каждый отработавший монитор. Эти флаги затем считываются сканером и выясняется, какие из мониторов отработали, а какие нет. Функционирование неотработавших мониторов должно быть восстановлено.

Этапы и операции испытательного ездового цикла

1. Прогрев двигателя до 82 °С (180 °F)

2. Холостой ход

3. Ускорение до 45 миль/час дроссельная заслонка открыта на четверть

4. Постоянное положение дроссельной заслонки, скорость 30-40 миль/час

5. Скорость 20-45 миль/час, дросельая заслонка открыта не полностью

6. Сброс газа до холостого хода

7. Ускорение до 55 миль/час дроссельная заслонка открыта наполовину

8. Постоянное положение дроссельной заслонки, скорость 40-60 миль/час

Время операции

1-Не менее 2 - 4 мин. 3- 45 сек. 4 - 10 сек. 5 - 1 мин. 6 - 4 мин.

7- 10 сек 8 - 10 сек. 9 - 80 сек

Какие мониторы


1 Автомобильные диагностические сканеры.

Сканер - это портативный компьютер с миниатюрным дисплеем на жидких кристаллах, способный обмениваться информацией с компьютером ЭБУ автомобиля по соединительному кабелю. Сканер - это диагностический тестер, который получает доступ к внутрисистемной информации ЭБУ и выдает эту информацию на дисплей. Другие диагностические средства имеют доступ только к внеишим входным и выходным сигналам различных устройств автомобиля. Стандартный сканер обеспечивает:

Доступ к кодам регистратора неисправностей;

Доступ к текущей информации в ЭБУ;

Запись параметров во время ездовых испытаний;

Испытательное управление исполнительными механизмами.

2 Достоинства сканеров.

Сканер обеспечивает:

Простой, надежный и наглядный способ индикации кодов неисправностей;

Доступ к текущей информации в ЭБУ (потоку цифровых параметров в

реальном масштабе времени);

Возможность получения диагностической информации время ездовых

испытаний;

Инициацию процедур самотестирования, испытательного управления и

других специальных функций, запрограмированных в ЭБУ.

3 Ограниченные возможности сканеров

Сканер проверяет входные и выходные параметры электрических цепей и информирует оператора об их величине. Таким образом, сканер всего лишь фиксирует наличие или отсутствие неисправностей в каком-либо узле, но не позволяет определять причины неисправности, которых может быть много для одних и тех же значений контролируемых параметров. Непонимание или неправильная интерпретация кодов неисправностей, полученных, со сканера, являются общей проблемой диагностирования. Иногда электромеханик, получив со сканера код неисправности датчика, предполагает, что датчик неисправен и заменяет его. Но далеко не всегда это решение правильное

4 Международныйстандарт IS09141.

С конца 80-х годов используется международный стандарт ISO 9141, определяющий протокол обмена информацией через последовательный интерфейс между ЭБУ и диагностическим тестером (сканером). Стандарт устанавливает единую, методологию доступа к внутрисистемным данным, к кодам неисправностей, регламентирует испытательное (инструктивное) управление системами автомобиля с помощью сканера. Но при этом не предусматривается совместимость программного обеспечения, диагностических процедур, кодов неисправностей и диагностических разъемов, т. к. достичь такой совместимости для всех моделей современных автомобилей пока не предоставляется возможным.

Стандарт ISO 9141 устанавливает, что сканер должен обмениваться информацией с ЭБУ по одному проводу (К-линия) или по двум проводам (К- и L- линии) диагностического разъема. Линия К Двунаправленная и передает данные в обе стороны, линия L однонаправленная и используется только при установлении связи между ЭБУ сканером, затем линия L переходит в состояние логической единицы. К разъему должны также подключаться «масса» автомобиля и напряжение питания от аккумуляторной батареи.

5 Передача информации от ЭБУ к сканеру и ее представление на дисплее сканера.

После подключения сканера к диагностическому разъему автомобиля

электромеханик может наблюдать на дисплее сканера в цифровом виде значения сигналов с датчиков на входах ЭБУ и выходные сигналы с ЭБУ, передаваемые исполнительным механимам. Каждый наблюдаемый сигнал называется диагностическим параметром или просто параметром. Параметры передаются сканеру последовательно один за другим, пока все не будут выведены на дисплей, затем процесс повторяется. Весь набор параметров от начала до конца называется кадром. Передача информации от ЭБУ к сканеру называется потоком цифровых параметров в реальном времени. Кроме параметров, ЭБУ может передавать в сканер коды неисправностей (ошибок). Размер кадра или число параметров зависят от производителя автомобиля, модели, года выпуска, двигателя, топливной системы, типа зажигания и т.д. Устаревшие автомобили с карбюраторными двигателями помимо кодов неисправностей могут выдавать 12-18 параметров.

6 Работа с потоком цифровых параметров.

На современных автомобилях с помощью сканера можно получить доступ к

большому (часто избыточному) объему информации. Поэтому при работе со сканером важно правильно выбрать масштаб дисплея и упорядочить информацию о параметрах в зависимости от характера изменения ездовых качеств и характара диагностируемой проблемы. Как правило, имеется возможно разбивать параметры на группы и просматривать их в таком виде. Состав групп определяется по «умолчанию», но может изменяться пользователем в соответствии с характером решаемой задачи. Типичная последовательность операций со сканером при жалобах на ухудшение ездовых качеств автомобиля следующая:

Подсоединить сканер, включить зажигание без запуска двигателя и получить параметры от ЭБУ;

Получить коды ошибок и неисправностей и записать их для использования в дальнейшем;

Запустить двигатель, получить параметры от ЭБУ.

7 Запись данных (работа в режиме снимка).

Для записи данных сканер подключают к диагностическому разъему автомобиля и устанавливают связь с ЭБУ. Затем проводят ездовые испытания так, чтобы спровоцировать появл симптома неисправности, на которую имелись жалобы. Когда симптом проявится (например, в виде толчков или рывков) сканере следует нажать кнопку синхронизации записи. Некоторые модели сканеров позволяют программировать автоматическое включение синхронизации записи параметров при появлении кода неисправности. Сканер работает таким образом, что производит запись снимка, даже в тех случаях когда, имеется небольшое запаздывание между временем появления симптом и началом записи.

После установки режима записи параметров сканер постоянно заносит системные данные в свою память. На большинстве сканеров в память помещается около 100 кадров параметров. При поступлении очередного кадра ранее записанная информация стирается из памяти. По сигналу «синхронизация записи» сканер компилирует (размещает) данные в памяти таким образом, что 75-80% кадров в снимке соответствуют ситуации до нажатия кнопки синхронизации (или до появления кода ошибки), остальные кадры соответствуют данным этого события. После фиксации снимка обновление данных прекращается.

8 Программные картриджи.

Современные программные картриджи обеспечивают работу сканера, в режиме помощи (контекстной справки), что ускоряет обнаружение и устранение неисправностей на автомобиле. В справке приведена хорошо организованная информация по диагностике, устранению неисправностей, кодам ошибок, симптомам ухудшения ездовых качеств и т.д. Справочная система программного картриджа содержит описания и пошаговые инструкции по выполнению алгоритмов из диагностических карт, разработанных производителями автомобилей. Это не позволяет оператору пренебречь частью необходимых этапов. Так как вся стандартная информация выводится на дисплей сканера, нет необходимости искать что-либо в сервисной документации.

Имеются программные картриджи, поддерживающие многооконный режим работы, т.е., например, можно свернуть окно диагностической программы, выполнить ряд тестов для цепей или компонентов и снова вернуться к диагностической последовательности. Некоторые программы предназначены только для пошагового мониторинга тестов компонентов автомобиля.

9 Компьютерные сканеры.

Сканер имеет небольшой по размеру дисплей, просматривая данные на нем не всегда удобно, даже используя прокрутку кадра. Обычно имеется возможность подключения сканера к пенальному компьютеру через последовательный порт для переноса данных. Специальное программное обеспечение позволяет просматривать данные со сканера в табличном и графическом виде на мониторе компьютера, сохранять их, создавать базы данных по обслуживаемым автомобилям.

Большинство программ реализуют показ данных со сканера на персональный компьютер в табличном или графическом виде. В табличном виде (табл. 3) значения параметров представлены, как на дисплее сканера, но организованы в столбцы по кадрам. Имеется возможность горизонтальной и вертикальной прокруток. В графическом виде (рис. 2) значения параметров нанесена график относительно оси времени в соответствии с номерами кадров. Такой способ позволяет наглядно представить до 100 кадров одновременно. Для перемещения между кадрами и точно считываются значений параметров используется визир (прямая вертикальная линия).

10 Диагностическая программа «Мотор-Тестер».

Программа МТ предназначена для диагностики двигателя внутреннего сгорания автомобилей, оснащенных системами электронного управления впрыском топлива. Программа используется для проведения технического обслуживания и ремонта автомобилёй на станциях технического обслуживания, автосервиса владельцем автомобиля при наличии компьютера типа IBM PC. При установке программы на портативный компьютер ее можно использовать и при ездовых испытаниях.

Программа «Мотор-Тестер» считывает и обрабатывает данные с электронного блока управления (ЭБУ) автомобиля через вставляемый адаптер, обеспечивает возможность сохранять, просматривать и распечатывать полученную информацию, а также управлять исполнительными механизмами двигателя.

Программа позволяет:

Отображать в динамике все контролируемые параметры ЭБУ, просматривать как в цифровом, так и в графическом виде до 7 параметров одновременно;

Управлять исполнительными механизмами двигателя в процессе отображения интересующих параметров;

Определять значения параметров в необходимый момент времени, т. к. система записи и просмотра поступающей информации, снабжена набором визиров;

Получать сведения об ошибках ЭБУ, паспортах ЭБУ, двигателя, калибровок, таблицах коэффициентов топливоподачи;

Проводить, испытания по определению частоты вращения коленвала, механических потерь, скорости прогрева двигателя и другие, в зависимости от типа ЭБУ;

Создавать и вести базу данных о владельцах автомобилей, а также персональные базы данных для каждого автомобиля по проведенным диагностикам, сохранять в базе данных графики параметров;

Благодаря удобному интерфейсу легко управлять процессом диагностики автомобиля.


1 Электронные измерительные приборы для диагностики электрооборудования автомобилей. Автомобильные осциллографы.

Автомобильный Осциллограф - это двухмерный электронный вольтметр, который показывает, как напряжение изменяется во времени. Многие годы осциллографы применялись в автосервисе для контроля первичных и вторичных цепей зажигания, а также некоторых устройств системы электроснабжения автомобиля, теперь используют портативные автомобильные осциллографы для наблюдения низко уровневых сигналов в электронных цепях управления. Осциллограф - универсальное средство при поиске непостоянных (нерегулярных) неисправностей.

Современный автомобильный осциллограф - это сложный электронный измерительный прибор, частично выполняющий и функции компьютерного мотор- тестера. Например, осциллограф Fluke-98, который показан на рис. 1 может работать в режиме запоминающего осциллографа, мультиметра, с помощью кабелей с дополнительными преобразователями измеряет температуру, давление, ток, напряжение во вторичной цепи зажигания и т. д. В памяти Fluke-98 хранятся характерные осциллограммы сигналов (шаблоны) для различных компонентов электрооборудования автомобилей. Это позволяет автоматически тестировать (проверять на работоспособность) различные элементы электрооборудования и электроники по образцовым сигналам (по шаблонам). Так проверяются различные датчики, система электроснабжения, полупроводниковые элементы, относительная компрессия в цилиндрах и т.п.

2 Логические пробники.

Логический пробник - это относительно простой прибор, электронный аналог контрольной лампы. Контрольная лампа имеет низкое входное сопротивление, ее применение может привести к выходу из строя элементов в высокоомных микроэлектронных схемах.

Логический пробник имеет высокое входное сопротивление, оказывающее влияния на тестируемые электрические цепи применяется для безопасного тестирования низковольтных поточных цепей. Два провода соединяют прибор с внешним источником питания, например с аккумуляторной батареей, а подключается к исследуемой цепи. Пробник и исследуемая электрическая цепь должны иметь общую землю «массу». На корпусе пробника располагается 3 светодиода (красный, зеленый, желтый), некоторые модели снабжены звуковым сигналом.

Логический пробник может информировать пользователя о наличии напряжения только в определенной зоне значений, и его диагностические возможности ограничены. Но он быстро позволяет проверить цепь на наличие напряжения по отношению к «массе». Например, при незапуске двигателя с помощью логического пробника можно быстро проверить напряжение на катушке зажигания, на топливном насосе и на других элементах.

3 Автомобильные цифровые мультиметры.

Автомобильный цифровой мультиметр - это цифровой тестер многосегментным дисплеем на жидких кристаллах, с высоким входным сопротивлением Цифровой мультиметр является неотъемлемой частью диагностического оборудования. Выполняет функции нескольких измерительных приборов, измеряй силу тока, напряжение, частоту, длительность импульса.

Мультиметр удобен для проверки состояния электрических цепей, но для проверки их функционирования он обычно н применяется. На цифровом дисплее мультиметра применяется только низкая скорость обновления информации, что связано с особенностями человеческого зрения. Т.к. человеческий пй различает быстрое изменение цифр на дисплее, мультиметр показывает только средние или фиксированные значения электрических сигналов с низкой кадровой частотой обновления диапазон (обычно не более 4-х Гц).

Некоторые модели автомобильных мультиметров имеют аналоговый дисплей (помимо цифрового) и обладают возможностью записи минимального и максимального значений контролируемого сигнала. Имеется возможность обновлять показания 40 раз в секунду. Но на некоторых моделях мультиметров аналоговый дисплей работает на той же частоте, что и цифрой.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-26