Динамический диапазон цифровых аудио трактов. Что такое динамический диапазон (DR) и его влияние на качество звучания

"Чистые тоны субъективно воспринимаются громкими или тихими в зависимости от силы (интенсивности) звука. Сила звука (обозначаемая обычно символом I ) связана со звуковым давлением квадратичной зависимостью.

Это значит, что изменение силы звука пропорционально соответствующему изменению величины звукового давления, возведенному в квадрат (I пропорционально р2). Так, рост звукового давления в 2 раза влечет увеличение силы звука в 4 раза, при росте звукового давления в 3 раза сила звука возрастает в 9 раз и т.д. Сила звука определяется потоком той звуковой энергии, которая при распространении в пространстве проходит ежесекундно через каждый квадратный метр плоскости, перпендикулярной к направлению распространения волны. Измеряют силу звука в Вт/м.

Человеческий слух по восприятию звуков разной силы ограничен. Человек начинает слышать при силе звука, превышающей или равной некоторой величине, называемой порогом слышимости (или слуховым порогом). Более слабые звуки слухового ощущения не вызывают. При увеличении силы звука достигается нормальная слышимость, а затем при еще больших амплитудах звуковых колебаний к воспринимаемому звуку добавляется осязаемое ощущение давления, и, наконец, при дальнейшем росте силы звука раздражение органа слуха становится болезненным.

Так называемый болевой порог ограничивает область Слышимости при больших уровнях интенсивности. Чувствительность человеческого уха зависит от частоты приходящего сигнала, поэтому уровень порога слышимости для разных частот различный.


При смешении из области оптимальной слышимости в сторону низких и высоких звуковых частот чувствительность человеческого уха резко падает. Это видно по поведению кривой порога слышимости вблизи краев диапазона слышимости. А вот болевой порог от частоты зависит слабо.

Звуковое давление, вызывающее у человека болевое ощущение, приблизительно равно 20 Па. На средних частотах звуковое давление, соответствующее болевому порогу, превышает порог слышимости примерно в миллион раз. Поскольку поток энергии звуковой волны с величиной звукового давления связан квадратичной зависимостью, то по силе звука у порога слышимости и болевого отличается в 1011 раз. Это отношение и определяет динамический диапазон слуха. При оценке динамического диапазона применяются специальные единицы измерения, не зависящие от способа вычисления.

Согласно психофизическому закону Вебера-Фехнера слух одинаково оценивает равные относительные изменения силы звука. Другими словами, изменение громкости кажется человеку одинаковым, если сила звука изменилась в одно и то же число раз (или на один и тот же процент относительно своей первоначальной величины), при этом восприятие не зависит от абсолютного уровня силы звука. Так двукратный рост уровня тихого и громкого звука воспринимаются одинаково, хотя абсолютные приращения звукового давления существенно различны.

Минимальное изменение интенсивности звука, воспринимаемое нашим ухом, соответствует изменению звукового давления примерно в 1,12 раза (т.е. на 12%), что соответствует изменению силы звука в 1,25 раза (т.е. на 25%).

Итак, наряду со способностью различать звуки, имеющие уровни, отличающиеся в сотни и тысячи миллионов раз, человеческое ухо хорошо реагирует и на очень малые изменения уровней. Это объясняется логарифмическим законом восприятия. Наши ощущения изменений громкости пропорциональны не изменениям силы звука, а логарифму этих величин.

L=C lg I 2 / I 1,

где

L - кажущееся изменение громкости,

I 1 , I 2 - сила звука соответственно до и после его изменения,

С- коэффициент пропорциональности.

Например, если сила звука изменится в 100 раз, то субъективное ощущение громкости изменится пропорционально 2 (т.к. lg100 = 2); если это изменение- 1000, то громкость возрастет в 3 раза (т.к. lg1000 = 3); рост силы звука в 10000 раз воспринимается как 4-кратное увеличение громкости. Поэтому принято измерять увеличение или уменьшение силы звука в специальных логарифмических единицах- "белах" (Б). Различие величин звуковой энергии (силы звука) в белах: N6 = lg I 2 / I 1 Б.

Иными словами, десятикратное изменение силы звука оценивается одним Белом. Например,

если I 2 = 10/ I 1 то lg I 2 / I 1 = lg10 = 1, т.е. N Б = 1 Б;

если I 2 = 100/ I 1 , то lg100 = 2 и N Б = 2 Б.

Мелкие изменения звуковых уровней измеряют в долях Бела. На практике в основном используется производная от Бела единица измерения, равная десятой части Бела, т.е. децибел (дБ).

Изменение уровня силы звука, выраженное в дБ, равно численному значению десятичного логарифма отношения сравниваемых уровней, умноженному на 10, т.е. N дБ = 10 lg I 2 / I 1 .

Обратимся к примерам.

Пусть N = I 2 / I 1 = 100 (I 2 > I 1 - усиление ), тогда N дБ = 10 lg100 = 10*2 = 20 дБ.

Пусть N = I 2 / I 1 = 1/100 (I 2 < I 1 - ослабление), тогда N дБ = 10 lg0,01 = 10·(-2) = -20 дБ.

Из этих примеров видно, что рост уровня выражается в децибелах положительным числом, а уменьшение - отрицательным.

Оценка изменений интенсивности звука в логарифмических единицах удобна еще и потому, что она дает возможность весь слышимый диапазон звуковых колебаний изобразить графически.

Громкостью называют субъективное качество, определяющее силу слухового ощущения, вызываемого звуком у слушателя. Громкость не может быть определена только величиной силы звука, так как она зависит от частотного состава звукового сигнала, от условий его восприятия и длительности воздействия. В акустике для количественной оценки громкости применяют метод субъективного сравнения измеряемого звука с эталонным, в качестве которого применяется синусоидальный тон частоты 1000 Гц. В процессе сравнения уровень эталонного тона изменяют до тех пор, пока эталонный и измеряемый звуки станут казаться равногромкими.

Как уже было сказано выше, чувствительность слуха зависит от частоты звукового сигнала. Порог слышимости, изображенный графически, представляет собой кривую, опускающуюся ниже всего в области частот 3000-4000 Гц и поднимающуюся к краям звукового диапазона. Из этой формы кривой следует, что для равногромкого ощущения интенсивность высоких и низких частот должна быть выше, чем средних.


Для практической работы важно помнить, что кривые равной громкости, как бы, выпрямляются с ростом общей громкости прослушивания. Другими словами, частотная зависимость слуха в большей степени сказывается при тихом прослушивании, чем при громком. Это важно учитывать, если, например, музыка, записанная при высоких уровнях громкости, будет прослушиваться тихо. В этом случае может возникнуть кажущееся изменение соотношений между частотными составляющими музыкального произведения. Так, при малой громкости прослушивания, из-за ослабления чувствительности слуха на низких и отчасти на высоких частотах звучание может казаться обедненным, лишенным сочности, естественности. Весьма желательно поэтому, чтобы в студиях звукозаписи громкоговорители работали с одинаковым уровнем громкости: это уменьшит возможность ошибок при субъективной оценке качества звучания.

Практически уровень громкости измеряется и настраивается в студиях при помощи специального электроакустического прибора – шумомера.

Примерные уровни громкости некоторых типичных звуковых источников приведены в таблице


Громкость зависит от условий, в которых звук воспринимается слушателем. Здесь, в первую очередь, следует учитывать эффект звуковой маскировки, напомнив, что в реальных условиях акустический сигнал не существует в условиях абсолютной тишины. Вместе с ним на слух воздействуют те или иные посторонние шумы, затрудняющие слуховое восприятие и, как в таких случаях говорят, маскирующие, в определенной степени, основной сигнал.

Так, при передаче оркестрового произведения из-за маскировки аккомпанементом может стать плохо разборчивой, невнятной партия солиста. Если одновременно существуют два сложных звуковых сигнала (например шум и музыка), возникает эффект взаимной маскировки. При этом, если основная энергия сигналов принадлежит к одной и той же области звуковых частот, то эффект взаимной маскировки будет наиболее сильным.

Речь в записи становится менее разборчивой не только из-за маскирования другими звуками, но и в результате самомаскировки при воспроизведении с громкостью большей, чем она звучит в природе. Этот недостаток в известной мере устраняется компрессированием. При воспроизведении скомпрессированной речевой фонограммы звук воспринимается достаточно громким, в то время как индикатор модуляции может показывать небольшие отклонения."- пишет Б.Я.Меерзон -"Акустические основы звукорежиссуры". Уч. изд. ГИТР

"В настоящее время существует огромное множество различных процессоров для динамической обработки звуковых сигналов - это различного рода компрессоры, гейты, экспандеры, левеллеры, лимитеры, и т.д. и т.п. В этом многообразии нетрудно и запутаться. Какой прибор необходим в конкретной ситуации?

Устройства динамической обработки сигналов применяются в двух случаях - либо в художественных целях, либо для получения более качественного звучания.

Заявляемые для распространённого сейчас носителя (CD) цифры - динамический диапазон в 96дБ - не совсем верны. То есть, если рассматривать их как отношение самого громкого сигнала к уровню шумов в паузе - цифры, безусловно, правильны. Однако это справедливо только для сигналов максимальной амплитуды. Динамический диапазон CD реально составляет величину, существенно меньшую, чем 96дБ.

Динамический же диапазон реальных сигналов может быть гораздо больше - например, для симфонического оркестра он может составлять до 120дБ! И как его “впихнуть” в ограниченный диапазон тракта?

Все устройства динамической обработки можно разделить на два больших класса - по характеру взаимосвязи их коэффициента усиления и уровня входного сигнала.

Если при увеличении уровня входного сигнала коэффициент передачи устройства уменьшается - то это компрессор и/или его разновидности. Такие, как лимитер, левеллер, “дакер”, и др.

Если же при увеличении входного сигнала коэффициент передачи устройства также увеличивается - то это экспандер или гейт.

Компрессор и его производные

Название компрессор происходит от английского глагола “to compress” - сжимать. Как следует из самого названия, компрессор - это устройство для сжатия, в данном конкретном случае - динамического диапазона исходного звукового сигнала.

Основными параметрами компрессии являются: степень компрессии “ratio”, порог срабатывания “threshold”, а также время срабатывания “attack” и время восстановления “release”. Первые две величины отражены на графике компрессии.

На этом рисунке по горизонтали отложено входное напряжение компрессора, выраженное для удобства в децибелах, по вертикали - выходное, а толстая линия - это проходная характеристика компрессора. На этом графике видно, что выходной сигнал - в точности равен входному, до точки срабатывания (начала работы) компрессора - THRESHOLD (порог срабатывания). Начиная с этой точки, выходной сигнал компрессора увеличивается в меньшей степени, чем входной, т.е. осуществляется компрессия. Мерой компрессии служит степень компрессии (RATIO).

Степень компрессии - это отношение величины приращения входного сигнала к величине вызванного им приращения выходного сигнала. (При этом - измеряемые величины должны быть выражены в децибелах!)

RATIO=dUвх(дБ)/dUвых(дБ)

Динамические характеристики компрессоров определяются временами срабатывания ATTACK и восстановления RELEASE.

Время срабатывания (ATTACK) - это промежуток времени между моментом, когда от источника подаётся скачок сигнала с уровнем на 6 дБ выше исходного, и моментом, когда выходной уровень достигает значения на 2 дБ выше установившегося значения выходного сигнала.


Время восстановления (RELEASE) - это промежуток времени между моментом, когда уровень сигнала источника уменьшается на 6 ДБ от исходного, и моментом, когда выходной уровень достигает значения на 2 дБ ниже его установившегося значения.


Естественно, что всё это должно происходить в области уровней входного сигнала, лежащих выше порога срабатывания!

По характеру реакции на входной сигнал все компрессоры можно разделить на две большие группы - с ручным управлением параметрами компрессии, и “автоматизированные”, с той или иной степенью автоматического управления этими параметрами.

В “ручных” - все динамические параметры задаются пользователем. Это обеспечивает очень большую свободу в их выборе, для получения тех или иных необходимых вам художественных результатов. Ведь не секрет, что компрессором можно изменить исходное звучание как угодно, хоть до “полной неузнаваемости”. Вот “ручной” компрессор - как раз и служит именно для этого, для специального преднамеренного изменения характера исходного звучания в нужную вам сторону. В зарубежной литературе этот тип компрессоров часто носит название CREATIVE - “творческий”, “созидательный”.

Соответственно, для их правильного использования - необходима достаточно высокая квалификация, а то ведь вместо улучшения звука можно его непоправимо испортить! Учтите: Перекомпрессированный сигнал исправить в дальнейшем невозможно!

В противоположность этому, в автоматизированных компрессорах - динамические параметры раз и навсегда установлены изготовителем, и их изменение пользователем невозможно. Хотя некоторые серьёзные производители, выпускающие действительно добротную продукцию, в ряде моделей предлагают пользователю на выбор несколько алгоритмов автоматизации, для различных вариантов обработки.


Как правило, большинство автоматизированных компрессоров не изменяют динамические параметры звука сколько-нибудь существенным образом, а только “выравнивают” исходное звучание, делают его более плотным и насыщенным.

Помимо основных, в некоторых моделях компрессоров имеются и некоторые дополнительные устройства, улучшающие их потребительские свойства.

Так, например, для уменьшения заметности момента включения компрессора в работу многие компрессоры имеют так называемый "мягкий порог" (Soft Threshold), обеспечивающий плавное вхождение в режим компрессии. На рисунке изображены проходные характеристики (зависимость уровня выходного сигнала от уровня входного) для двух компрессоров - обычного (ломаная линия 1) и компрессора с "мягким порогом" (кривая 2).

Как видно из рисунка, во втором случае по мере возрастания входного сигнала степень компрессии увеличивается плавно, а не включается скачкообразно, как в обычном компрессоре. Таким образом, удаётся сильно ослабить заметность начала компрессии, сделать этот момент практически неслышным.

Лимитер. В принципе, это не какой-то “отдельный вид” компрессоров, а всего лишь один из частных случаев работы компрессора. Лимитирование отличается от компрессирования, прежде всего степенью компрессии RATIO. Для лимитирования достаточно перевести этот регулятор в положение RATIO=бесконечность:1, при этом - независимо от приращения входного сигнала - уровень сигнала на его выходе увеличиваться не будет. (Естественно, что речь идёт о сигналах, лежащих выше порога срабатывания!) Но... Здесь есть одна тонкость.


Дело в том, что основное предназначение лимитера - защита последующих узлов тракта от перегрузок. Любых, даже малейших. При этом он должен на 100% не допускать превышения, установленного Вами выходного уровня, но абсолютно не трогать сигналы, лежащие ниже порога срабатывания. Отсюда - с неизбежностью следует вывод, что компрессоры с “мягким коленом” - принципиально непригодны для этих целей. Ведь для них само понятие “порога” имеет весьма расплывчатый смысл.

Лимитер, помимо большего RATIO, имеет и принципиально иные динамические характеристики. В самом деле - он должен очень быстро (в идеале - мгновенно!) “съесть” сигнал перегрузки, и столь же быстро вернуться к исходному состоянию. В автоматизированном компрессоре получить это - попросту невозможно.

Де-ессер, де-поппер.

Отличие де-ессера и де-поппера в том, что де-ессер работает на высокочастотных сигналах, убирая “цыканье” и шепелявость. Де-поппер - наоборот, работает в низкочастотной области спектра, убирая “пыханье” и бубнение. В остальном они принципиальных отличий не имеют. Главное отличие этих приборов от остальных устройств динамической обработки - это то, что порог срабатывания в них не фиксированный (ручкой управления THRESHOLD, как обычно), а “плавающий”. Что значит - плавающий? То, что он определяется разностью уровней обрабатываемой части спектра, с одной стороны, и всего остального - с другой стороны. Такое построение обеспечивает нормальное их функционирование, независимо от абсолютных уровней входных сигналов. Т.е. де-ессер постоянно анализирует спектр входного сигнала, и если “видит”, что уровень сигнала в установленной вами полосе превышает допустимое соотношение его и “всего остального”, то он уменьшает уровень сигналов в этой полосе до допустимой (установленной вами) величины.

Экспандер - это “компрессор наоборот”. Название - происходит от английского глагола “to expand” - расширять, растягивать. У него, как ранее уже отмечалось, коэффициент передачи пропорционален уровню входного сигнала, т.е. чем громче входной сигнал - тем громче выходной. Существуют две основных разновидности экспандера - “экспандер вверх” (Upward Expander) и “экспандер вниз” (Downward Expander).

Отличаются они по характеру реагирования на входной сигнал. “Экспандер вверх” - обрабатывает только сигналы, лежащие выше порога его срабатывания, делая громкие - более громкими. Тихие же сигналы, ниже порога срабатывания, он не трогает. В реальной практике почти не встречается, единственное исключение - гитарный бустер.


“Экспандер вниз” - наоборот, не трогает сигналы выше порога срабатывания, а только делает тише сигналы, лежащие ниже этого порога. В принципе, по характеру своего действия на сигнал - это устройство схоже с гейтом, и, как правило, применяется для аналогичных целей, для подавления слабых - но мешающих - сигналов. В этом качестве “экспандер вниз” входит составной частью практически во все шумоподавители (денойзеры).

Гейт - один из самых распространённых приборов динамической обработки. Его название происходит от английского слова “Gate” - клапан, ворота. Основное, “исходное” назначение гейта - отсечка сигналов малого уровня, для которых он и является своеобразным клапаном, не пропуская их на выход.


Динамика обработанного гейтом сигнала - будет отличаться от исходной. Сигналы, лежащие ниже порога срабатывания, будут полностью подавлены. У сигналов же выше порога - атаки будут зависеть от соотношения их исходной скорости и времени открывания гейта, т.е. результирующая - может быть как более “резкая”, так и более плавная. Аналогично - и с процессом затухания сигнала RELEASE. С той только разницей, что затухание исходного сигнала гейтом не удлинить. Можно только укоротить.

Именно это свойство гейта - менять динамику сигналов - как раз и является той главной причиной, по которой гейт получил столь широкое распространение."- написал М.Чернецкий. "Устройства динамической обработки сигналов ". "Звукорежиссёр"

Не так давно мне попался довольно качественный HDCD релиз альбома «Mark Knopfler - Sailing To Philadelphia». Впервые я отметил столь низкий уровень фонового шума и динамический диапазон для музыки с живыми инструментами и голосом. Результат сканирования всего альбома гласил:

Left Right
Peak Amplitude: 0,00 dB 0,00 dB
True Peak Amplitude: 0,64 dBTP 0,58 dBTP
Maximum Sample Value: 8388607 8387420
Minimum Sample Value: -8388608 -8388608
Possibly Clipped Samples: 3 1
Total RMS Amplitude: -15,12 dB -15,20 dB
Maximum RMS Amplitude: -5,75 dB -5,80 dB
Minimum RMS Amplitude: -120,64 dB -123,81 dB
Average RMS Amplitude: -18,90 dB -19,01 dB
DC Offset: 0,00 % 0,00 %
Measured Bit Depth: 24 24
Dynamic Range: 114,89 dB 118,02 dB
Dynamic Range Used: 83,15 dB 82,95 dB
Loudness: -13,48 dB -12,87 dB
Perceived Loudness: -10,61 dB -10,63 dB
ITU-R BS.1770-2 Loudness: -12,72 LUFS

0dB = FS Square Wave
Using RMS Window of 50,00 ms
Account for DC = true

Краткий ликбез

Динамический диапазон - это разница (или соотношение) между самым громким и самым тихим звуком, выраженная в децибелах. Для определения динамического диапазона используют RMS значения, т.е. Root Mean Square - среднеквадратичные, или же, как принято у нас - «действующие» или «эффективные». Действующее значение выбирается потому, что именно оно (в отличие от пикового) напрямую связано с уровнем звукового давления, и, как следствие, воспринимаемой громкости.

Для анализа вышеуказанных характеристик был использован Adobe Audition. В данном случае алгоритм анализа ДД примерно такой: всё аудио разбивается на небольшие участки, именуемые окнами (в данном случае их размер равен 50 мс), затем для каждого такого участка вычисляется среднеквадратичное значение (путем интегрирования). Далее полученное значение соотносится с одним из следующих: 1. Среднеквадратичное значение для синусоиды с максимальной амплитудой и такой же продолжительностью. 2. Меандр с максимальной амплитудой и такой же продолжительностью. Как известно, меандр имеет максимально возможное значение RMS за период (т.к. модуль его амплитуды в любой момент равен максимуму), синусоида же имеет коэффициент 1/(корень из 2), т.е. 0.707 от максимального (или же пикового) значения. Если вы еще раз взглянете на отчет, то увидите, что там за 0 dB RMS взят меандр (square wave). Таким образом, полученные децибелы среднеквадратичного значения имеют опорный уровень (0 dBFS) равный среднеквадратичному значению для меандра.

Также надо отметить, что при расчете RMS может учитываться или не учитываться постоянная составляющая (в некоторых случаях колебания происходят не относительно нулевого значения, а относительно некоторой константы, которая и равна постоянной составляющей). В нашем случае учет постоянной составляющей включен.

После получения RMS значения для каждого окна производится поиск наименьшего и наибольшего значений. Разница между двумя этими значениями - и есть динамический диапазон.

Кроме того, Audition определяет параметр «Dynamic Range Used», который рассчитывается без учета тишины в начале и конце трека, а также без учета других продолжительных участков с тишиной внутри дорожки. Собственно, этот параметр и является наиболее информативным и важным при анализе динамического диапазона.

DVD-Audio

Так вот, сегодня я наконец заполучил DVD-Audio релиз того самого альбома, о котором писал выше. Результаты меня удивили еще больше. Многоканальная дорожка содержала записи с динамическим диапазоном более 100 дБ, хотя значения для отдельных каналов были довольно разными (кстати говоря, Audition показал для фронтальных каналов актуальную разрядность 24 бита, а для остальных - 20). Я решил произвести более детальный анализ записей: вручную выполнил сведение каналов в стерео (с помощью Channel Mixer в foobar2000), а затем проанализировал динамический диапазон 5.1 записи, стерео даунмикса с DVD диска и моего собственного даунмикса.

Результаты для каждого трека/канала приведены в таблице Excel .

Интересно, что динамический диапазон даунмиксов получились совершенно различным (разной была и громкость - у моего даунмикса она была ниже на несколько децибел). Но, так или иначе, например, для 4-го трека во всех трех случаях отмечается широкий динамический диапазон, более 90 дБ.

Но это что касается отдельных параметров. Наиболее же информативной является гистограмма громкости. Она показывает распределение громкости по частоте появления. Т.е. это значения RMS для всех окон, представленные в виде диаграммы, где по вертикали частота появления, по горизонтали уровень громкости. Таим образом можно видеть, какой уровень громкости преобладает в дорожке, насколько велика суммарная продолжительность тихих участков и т.д.

Например, вот гистограммы громкости для моего и DVD стерео даунмикса четвертого трека (правый канал), соответственно:

Высокая частота для громкости с уровнем около ~110 говорит о том, что это скорей всего уровень шумов звукозаписывающего оборудования. В общем же, наиболее интересными являются дорожки с довольно высоким процентом тихих фрагментов. Например, вот диаграмма для моего микса 7-го трека:

Подобный материал гипотетически может помочь выявить различия между 24- и 16-битным аудио. Именно с целью определить возможность выявления таких различий, а также вообще резонность использования 24-битного формата, я искал столь качественные аудиозаписи.

О результатах моих проверок я сообщу в следующих записях.

Добавлено: судя по всему, широкий динамический диапазон - лишь результат обработки записи. Т.е. тихие участки являются либо участками работы шумоподавления, либо фрагментами затухающих звуков (fade-in/fade-out). Реальных же продолжительных во времени звуков со столь низким уровнем (

Эммануэль Дерюти

«Почему музыка стала звучать хуже». «Поклонники жалуются, что Death Magnetic в Guitar Hero звучит лучше, чем на CD». «Даже фанаты хеви-метала считают, что сегодняшняя музыка слишком громкая!» «Dynamic Range Day объявляет новое движение против громкости». «Смерть Hi-Fi»… В прессе и сети растёт движение против «войны за громкость», практики, когда люди пытаются получить максимально возможную громкость в своих треках, чтобы заставить слушателей ощущать их более «горячими» по сравнению с конкурирующими релизами. Согласно этим статьям, неблагоразумные методы мастеринга и, более конкретно, злоупотребление brickwall-ограничителями, ставят музыку под угрозу. В современном производстве не хватает детальности, и оно жертвует качеством ради уровня. Боб Дилан в 2006 году в своём интервью заявил, что «Вы слушаете эти современные альбомы, и они звучат просто по-зверски. У них один звук везде. Нет никакой чёткости и детальности, ни в вокале, ни в чём-то другом. Всё статично».

Но не является ли замечание Дилана отражением извечного конфликта между отцами и детьми? Это был бы не первый случай, когда старая гвардия презирает то, что делает новое поколение. Хотя, верно и то, что многие звукоинженеры присоединяются к обществу, предпочитающему «более динамичную» музыку. Но объективно ли они говорят о том, что такая музыка лучше, или они просто предпочитают какой-то определённый тип звучания? Моё исследование постарается дать ответы на эти вопросы. Мы узнаем, действительно ли стала громче современная музыка, и стало ли в ней меньше динамики. Мы также рассмотрим гипотезу, что громкость может быть стилистическим признаком специфических музыкальных жанров, а не «дурной манерой», мотивированной презренными коммерческими интересами. И, наконец, мы пристально поглядим на печально известный альбом Death Magnetic группы Metallica и выясним, почему многим людям кажется, что он звучит плохо.

Действительно ли теперь музыка стала громче?

Да, это так, и здесь нет никаких сомнений. Давайте возьмём большое количество известных поп-песен, записанных в промежутке между 1969 и 2010 годами, нормализуем их так, чтобы пики стали под 0 dBFS, и измерим значение RMS. Теперь давайте рассортируем все значения согласно году релиза каждой песни. Первая диаграмма (вверху) показывает результаты эксперимента, и они реально возбуждают! Красная линия показывает усреднённые значения RMS для каждого года, а прямоугольники показывают распределение: чем темнее, тем больше песен имеет такой же уровень. Здесь, несомненно, наблюдается постоянный рост среднего уровня между 1982 и 2005 годами, и сегодняшние записи примерно на 5 dB громче, чем было в 70-х.

По общему признанию, RMS даёт только информацию об «электрическом» или «физическом» уровне аудиофайла, но никак не говорит о той громкости, что мы реально воспринимаем. Для этого, согласно нормативным рекомендациям EBU 3341, мы оцениваем «интегрированную громкость». Как видно на второй диаграмме, это значение весьма сильно коррелируется с RMS, и два графика очень похожи друг на друга. Таким образом, второй набор результатов подтверждает первый.

Давайте воспользуемся другими критериями и повторим эксперимент. К примеру, для описания динамического поведения музыки часто используется такой критерий, как крест-фактор. Говоря простыми словами, он показывает разницу между пиковым и RMS-уровнями на протяжении песни. Он является хорошим маркером, позволяющим оценить количество компрессии, применённой к музыке: обычно, чем больше компрессии, тем ниже крест-фактор. Некоторые профессионалы считают аккуратное обращение с крест-фактором залогом успешного мастеринга. В общих словах, опять же, чем ниже крест-фактор, тем громче музыка.

Третья диаграмма показывает эволюцию крест-фактора. Основываясь на тех же самых 4500 песен, этот усреднённый график, начиная с 80-х годов, показывает падение на 3 dB. Это укрепляет нас во мнении, что увеличение громкости, явно начавшееся с 90-х, было порождено компрессией. Нетрудно заметить, что эволюцию крест-фактора можно разделить на три этапа. Первый, с 1969 по 1980-й, показывает увеличение крест-фактора, обусловленное, вероятно, совершенствованием студийного оборудования, улучшением отношения сигнал/шум и, как следствие, расширением его динамического диапазона. С 1980 по 1990-й крест-фактор остаётся довольно устойчивым. Затем, с 1990 по 2010-й – в эпоху войны за громкость – крест-фактор драматически уменьшается.

Наконец, ещё один полезный и информативный критерий – это пропорция сэмплов, после нормализации близко подобравшихся к потолку 0 dBFS. Большая плотность очень громких сэмплов предполагает, что в мастер-копии был клиппинг или использовался цифровой brickwall-ограничитель. Четвёртая диаграмма отслеживает плотность пиковых сэмплов в той же самой коллекции из 4500 треков. Первые две диаграммы показывают, что музыка становится громче; третья указывает, что это происходит, вероятно, в результате компрессии динамического диапазона; а эта иллюстрирует, что компрессия, скорее всего, сопровождалась цифровым brickwall-ограничением.

Что такое динамический диапазон музыки?

Вы удивитесь, но на этот вопрос довольно трудно ответить. Интуитивно, мы чувствуем, что динамический диапазон это некий критерий, показывающий, насколько варьируется уровень в музыкальной композиции. Давайте попробуем материализовать эти догадки. Первая диаграмма сравнивает значения RMS в двух песнях: «Fuk» от Plastikman и «Smells Like Teen Spirit» от Nirvana. Очевидно, что уровень в Smells Like Teen Spirit более подвижен, чем в Fuk. И это не удивляет, поскольку Plastikman приверженец минимал-техно, тогда как для Nirvana характерны мягкие куплеты и громкие припевы.

Однако, результат меняется просто радикально, если для анализа использовать окно не 2 секунды, а 100 миллисекунд. При большем окне музыка Plastikman демонстрирует более стабильный RMS-уровень, но, как Вы видите на второй диаграмме, при меньшем времени интеграции в ней появляются более интенсивные вариации. Это обусловлено громкими и сухими барабанами. Поэтому, если мы хотим объективно измерить «подвижность уровня», то должны тщательно подумать над тем, какой масштаб использовать.

Также есть вопрос по поводу того, как фактически вычислить эту подвижность уровня. Иными словами, как получить цифровое значение, которое было бы мерой «динамического диапазона». Очевидно, мы могли бы измерить полную вертикальную амплитуду кривой RMS в заданном временном масштабе, суммируя амплитуду каждого вертикального движения. На первый взгляд, это даёт идеальную картину: снова посмотрите на первую диаграмму, на которой синяя кривая выглядит более подвижной, чем красная, и имеет большую общую вертикальную амплитуду.

Однако, на практике, этот метод ненадёжен. К примеру, изолированный пик посреди плоской RMS-кривой исказит измерение, давая ложное представление подвижности уровня. Существует более надёжный метод, используемый EBU для оценки диапазона громкости. Он заключается в вычислении распределения значений RMS. Такое распределение показано в третьей диаграмме. Затем мы измерили «разброс» распределения, используя трюк, подобный методу вероятностной выборки из арсенала описательной статистики, оставив только 5% высших значений и 10% низших. Результаты анализа в двухсекундном окне показывают более широкий разброс RMS у Smells Like Teen Spirit.

Давайте теперь изменим масштаб и измерим разброс RMS в окне 0,1 секунды. Итоги эксперимента показаны в четвёртой диаграмме и снова результаты прямо противоположны: разброс в Fuk намного больше, чем в Smells Like Teen Spirit. Теперь, проведём этот же эксперимент с другими размерами окна. Результаты представлены в последней диаграмме. Интересно, что вариации уровня в Smells Like Teen Spirit всегда больше, за исключением окон менее 0,18 секунды. Это как раз тот временной промежуток, где барабаны Fuk оказывают решающее влияние.

То, что изображено на пятой диаграмме, является хорошей кандидатурой на роль измерителя «динамического диапазона» музыки. Теперь предположим, что вместо того, чтобы пользоваться значениями RMS, мы будем иметь дело с некой единицей измерения воспринимаемой громкости, типа той, что упомянута в рекомендации ITU BS 1770. Это и есть тот самый «диапазон громкости». Основы того, как EBU определяет «диапазон громкости» находятся в документе EBU Tech 3342 и объясняются нами в главе «Измерение диапазона громкости по методике EBU».

Теперь остаётся только вопрос, нужно ли вообще использовать такой термин, как «динамический диапазон». Нет никакого официального определения для него, и это понятие можно спутать с динамическим диапазоном носителя записи, который показывает разницу между самым маленьким и самым большим уровнями, с которыми он может работать. Поэтому, в этой статье я не буду говорить о «динамическом диапазоне» музыки. Вместо этого, я буду использовать такие термины, как «RMS-вариабельность» или, в более широком смысле, «динамическая вариабельность». А термин «динамический диапазон» мы оставим для определения отношения сигнал/шум носителя записи. Я буду использовать термин «диапазон громкости» в строгом соответствии с документом EBU 3342 и термин «вариабельность громкости» во всех других случаях, вовлекающих понятие громкости вместо RMS.

HI-FI AUDIO.RU / Александр / отредактировано


При выборе музыкальных дисков (CD) большое, если не решающее, значение для слушателя играет динамический диапазон записи (DR). Именно из-за сознательно суженного (компрессированного) звукорежиссером динамического диапазона записи на CD могут возникнуть претензии к звучанию.

Компрессия по звуковому диапазону применяется все чаще не только на этапе финальной подготовки диска. Любая компрессия DR негативно сказывается на впечатлениях при прослушивании. Если у вас при прослушивании CD остается стойкое ощущение каши и сумбура, "грязного" звука — это признак того, что диск, скорее всего, немилосердно сжат по динамическому диапазону.

Что же такое динамический диапазон и для чего его вообще нужно сжимать?

Динамический диапазон — это диапазон между самыми тихими и самыми громкими звуками на фонограмме. Естественно, чем он больше, тем более тонко и точно будет подан музыкальный материал, где в трехмерном пространстве будет слышно все — от турбуленции воздуха от дирижерской палочки, до выстрела из пушки. Исходя из сказанного, сжимать динамический диапазон не нужно, его сжатие можно воспринимать как уродование звука.

Во многих сложно сочиненных и мастерски исполненных музыкальных произведениях динамический диапазон очень большой и есть места где музыканты играют крайне тихо, а есть, где нарастает экспрессия и музыка грохочет. При прослушивании, в таких композициях устанавливается громкость усилителя достаточно высоко и становятся прекрасно слышны, как самые тихие звуки, так и по мере нарастания, очень громкие.


В переносных устройствах (смартфоны, планшеты) стоят маломощные усилители, которые, сомнительно, что могут все это отыграть в полном диапазоне с приемлемой громкостью. Поэтому стали применять компрессию — самые тихие звуки по громкости подтягивают к самым громким (получается фактически, что начинают шепотом орать), динамический диапазон сужается, но громкость в целом возрастает на 30%, что плюс для мобильных устройств, которые прослушиваются в агрессивной для прослушивания среде (шумная улица, метро). Таким образом, "музыка для мобильников" во всех случаях — это компромисс между качеством и удобством. Производители готовы пожертвовать качеством звучания ради любителей мобильной музыки, но портят в итоге музыку для всех.


На примере альбома группы ZZ Top — уродование звука более поздними релизами. В ремастере 2008 года уже даже не угадываются первоначальные контуры. Щелкните на картинку для отображения в динамике.

Меломаны столкнулись с нелегкой задачей подбора для своих коллекции CD, не изуродованных компрессией динамического диапазона, что сейчас становится сейчас всё более неразрешимой проблемой.

Чтобы определить DR любого музыкального произведения, достаточно установить плагин Dynamic Range Meter измеряющий динамический диапазон в проигрывателе foobar2000. Точнее сказать, он измеряет некий пик-фактор — разницу между пиковыми уровнями и RMS (среднеквадратичным значением уровня звука в альбоме или аудиотреке). Если значение пик-фактора DR фонограммы равно 14 — это великолепный показатель, а выше 15 — близко к фантастике, но следует понимать, что этот показатель будет разным для жанров в которых исполняется музыка.

Так для рок-музыки в целом хороший результат начинается с DR 10. Например, альбом группы Nazareth "Sound Elixir" на CD имеет DR=10 и при этом прекрасно звучит, благодаря использованию электронных инструментов. Для тяжелой музыки этого может быть вполне и достаточно, если музыкантами не были использованы сильные звуковые перепады. Однако, более обширнейший динамический диапазон потребуется для воспроизведения акустических инструментов — гитары, саксофона и тд. В таких случаях порадует разница диапазона от 13 до 15.

В целом большинство добротных CD показывает DR от 11 до 14. При этом встречаются диски имеющие динамический диапазон равный 15 (например, группа Телевизор "Отечество иллюзий" ) и даже 18. Диски с большим DR слушаются с огромным удовольствием — их звучание открытое, естественное, лишенное цифровой сухости и тяжеловесности.

Таблица минимального DR в соответствии с музыкальным стилем.

Так, если звучание диска грязновато, но терпимо, то скорее всего, это компрессированный по динамическому диапазону диск со значением не более 8. С таким значением идут многие ранние концерты группы Nazareth и других — это удручает, так как такая интересная и богатая на инструменты музыка достойна лучшего качества. Искреннее недоумение вызывает, когда априори аудиофильские исполнители выпускают записи своих концертов с сильной компрессией. Например диск Sade "Soldier of Love" выпущенный в 2010 (!) году имеет DR динамического диапазона равный всего лишь 10. При этом, композиции наполнены прекрасным женским вокалом и акустическими инструментами. Здесь компрессия диапазона явно слышна и сильно разочаровывает. Становится непонятно для кого тогда подобные CD выпускаются по-принципу - если для аудиофилов такое качество мало пригодно к прослушиванию, а музыка имеет явно не коммерческий характер.

Сомнительно что сегодня кто-нибудь будет слушать на улице музыку с переносного CD-проигрывателя, когда в мобильной среде вместо несжатых форматов CD давно уже используются музыкальные файлы, в большинстве случаев это не аудиофильские форматы (mp3,AAC), которые так же имеют деструктивную природу и ограничение еще и по частотному диапазону. Тогда возникает разумный вопрос: зачем портить CD по DR и писать диски без компрессии? Ведь здравого смысла коверкать запись на CD для более высокой громкости не просматривается, однако, маркетинговая машина войны за громкость запущена на полную мощность и обратного хода не предвидится. Статистика, к сожалению, свидетельствует, что производитель с каждым годом усиливает компрессию звукового материала, что конечно же негативно сказывается на качестве звучание на аппаратуре класса Hi-Fi.

Действительно, не компрессированный диск на дешевом переносном плеере или смартфоне в силу внешних шумов, которые замаскируют самые тихие звуки, будет звучать "неэффектно", а компрессированное звучание покажется лучше в силу того, что громкость тихих звуков гиперзавышена и находится над внешним шумом. Это схоже с тем, что звукорежиссер озадачился целью, записать диск, который будет звучать отлично на фоне работающего отбойного молотка. Возможно в таких ситуациях это покажется прекрасным, но можно ли серьезно говорить о качестве звучания, если используется глубокая компрессия?

В любом случае, низкокачественное и низкосортное воспроизведение и для высококачественного воспроизведения на хороших Hi-Fi/Hi-End аппаратах компрессированные записи не годятся.

Большинству аудиофилов не важна громкость диска, ее можно выставить любой на усилителе, важна чистота и детальность звучания, и многие другие параметры.

С появлением современных высококлассных усилителей музыка открыла для себя новое измерение, которое добавляет к ней еще одну восхитительную грань — возможность большего вовлечения благодаря аудиофильской прорисовки музыкальных событий. В этом измерении воспринимается не только мелодия, но и каждый звук, который в хорошем тракте поет и восхищает, цепляет за струны души.

Именно поэтому большинство современных дисков после покупки хочется сразу выкинуть, например, альбом Madonna "Handy Candy" . Звук на них ужасно грязный, кашеобразный, давящий на слух. Причина легко определяется при проверке на DR динамического диапазона. На диске он равен удручающему значению 5. Хорошо звучащими дисками можно считать записи имеющие диапазон минимально от 10 и выше. Диапазон CD от DR 8 и ниже вызывает при прослушивании не лучшие ощущения.


Многие предложат в виде панацеи прослушивание виниловых дисков, где компрессия маловероятна, но компрессия маловероятна и на всех оригинальных CD старых выпусков (встречается DR до 18), а современный винил может быть так же компрессирован. Это первый аргумент, а второй происходит из того, что при замере значение DR динамического диапазона современных виниловых дисков он оказывается не очень высоким. Для разных виниловых дисков значение DR равно 12-14. Но остались серьезные подозрения, что нижняя граница определялась не самым тихим звуком, а рокотом и шумом самой виниловой пластинки из за механического характера считывания данных и тогда, вероятно, реальный DR имеет еще худшее значение. При этом не редко можно встретить записи на CD с DR динамического диапазона равным 15, и, кроме того, на диске существенно лучше выполнено разделение каналов и многие другие показатели.




Из вышесказанного можно сделать вывод, что на качество звучания диска CD оказывает большое значения интенсивность компрессии звукового диапазона DR. Как ответ этой ситуации на рынке стали появляться специальные "аудиофильские" диски без компрессии, например компиляция Audiophile World.

Для любознательных: сайт www.dr.loudness-war.info содержит каталог замеренных значений DR большого количества аудио CD дисков.

Слушая музыку, очень часто можно столкнуться с засилием «басов» в записанной фонограмме. Такое положение сложилось в ходе эволюционного развития , когда стремились расширить спектр музыкального произведения как в сторону высоких частот, так и в сторону низких.

Для воспроизведения низкочастотных составляющих спектра звуковых частот нередко используются специальные громкоговорители сабвуферы. Жителям многоквартирных домов порой не дают покоя ритмичные удары, приходящие по стенам и перекрытиям: это «работают барабаны» ударных музыкальных инструментов.

Мы воспринимаем звуки благодаря органам слуха (ушам), а в области низких частот еще и всем телом (за счет так называемой «костной проводимости»). С возрастом диапазон воспринимаемых верхних частот сужается, а в области низких наблюдается подъем, поскольку кости становятся более потными и лучше проводят НЧ-колебания. В результате, пожилой чеповек воспринимает звукочастотный спектр музыкального произведения совсем по-другому, чем молодежь. «Барабаны» начинают раздражать.

Что же делать? Как снова сделать музыку нормальной и «душевной». Для этого можно использовать усилитель со специальной приставкой экспандером (расширителем динамического диапазона), которая, не умаляя значения низких частот в фонограмме, позволяет поднять уровень средних и высоких.

В отличие от темброблока, подъем уровня этих частот происходит в динамическом режиме: чем громче звук, тем больше усиление УМЗЧ. На качество звука несомненно влияет динамический диапазон тракта звукопередачи (отношение наибольшей звуковой мощности к наименьшей). Заявляемый для наиболее распространенных сейчас носителей (CD, DVD и пр.) динамический диапазон звука 96 дБ не совсем такой.

То есть, если рассматривать отношение самого громкого сигнала к уровню шумов в паузе цифра, безусловно, правильная. Однако это справедливо только для сигналов максимальной амплитуды.
Реальные же звуковые сигналы имеют довольно большой пик-фактор, так что от 96 дБ необходимо отнять примерно 15.. .20 дБ. Вот уже осталось менее 80 дБ. Затем необходимо учесть, что в цифровых трактах качество сигналов сильно ухудшается при уменьшении их амплитуды.

И сигнал с уровнем -60 дБ передается всего лишь 6 разрядами цифрового кода, а при этом говорить о сколько-нибудь приличном звучании уже не приходится. Таким образом, динамический диапазон CD реально составляет величину, существенно меньшую, чем 96 дБ. А динамический диапазон реальных сигналов может быть гораздо больше. Например, для симфонического оркестра он может доходить до 120 дБ.

И как его «впихнуть» в ограниченный диапазон тракта? Таким образом, при передаче или во время записи сжатие динамического диапазона необходимо. Оно производится автоматически с помощью специального устройства компрессора или вручную оператором-тонмейстером. Восстановление естественного динамического диапазона на воспроизводящей стороне можно осуществить, если взять устройство с характеристикой, обратной компрессору.Такое устройство называется «экспандером».

Для безыскаженной работы экспандера необходимо, чтобы расширение динамического диапазона осуществлялось по закону, обратному компрессированию. Сохранить эту закономерность трудно, если учесть, что компрессирование часто осуществляется вручную. Из-за этого экспандеры широкого применения не нашли.

Тем не менее, они позволяют расширить динамический диапазон усилителя на 10… 14 дБ при малом уровне искажений, особенно если выбрать кривую регулировки с учетом оптимального слухового восприятия. Такие экспандеры даже при ручном компрессировании заметно улучшают качество воспроизведения.

Структурная схема расширителя динамического диапазона (экспандер)

Принцип действия экспандера поясняет структурная схема на рис.1. Между первым (У 1) и вторым (У2) каскадами усилителя включается делитель, состоящий из постоянного резистора Rc и регулируемого Ri, функции которого выполняет лампа или транзистор (сопротивлением конденсатора Ск на средних и высоких частотах можно пренебречь).

При таком включении делителя коэффициент усиления усилителя зависит от сопротивления Ri, определяющего коэффициент передачи напряжения с первого каскада на второй. Изменение сопротивления Ri осуществляется схемой управления. Сигнал с выхода У1 через дифференцирующую цепочку ДЦ поступает на регулятор ширины динамического диапазона Rд, с него на каскад усиления УЗ экспандера.

Дифференцирующая цепочка предотвращает срабатывание экспандера при пиках напряжения в области басов, обладающих ярко выраженным ударным характером (барабан, контрабас и т.д.). С выхода УЗ сигнал подается на детектор Д, выделяющий постоянное управляющее напряжение, которое через интегрирующую цепочку ИЦ подается на управляющий элемент Ri.

Когда напряжение звуковой частоты на входе усилителя УЗ незначительно, управляющее напряжение близко к нулю, сопротивление Ri мало, и на вход второго каскада У2 сигнал практически не поступает, так как коэффициент передачи делителя Rc-Ri совсем мал. По мере возрастания входного сигнала управляющее напряжение и сопротивление Ri увеличиваются, что приводит к увеличению коэффициента передачи делителя Rc-Ri и коэффициента усиления усилителя.

При максимальных уровнях входных сигналов Ri=max, и коэффициент усиления усилителя достигает предельного значения, что соответствует максимальному расширению динамического диапазона. Регулятор громкости РГ часто устанавливается перед вторым каскадом усиления, чтобы регулирование громкости не вызывало изменения заданного динамического диапазона.

Конденсатор Ск обеспечивает тон- коррекцию в области низких частот при малых уровнях низкочастотного сигнала. Его действие аналогично действию конденсаторов в тон-компенсированных регуляторах громкости, поэтому частотная характеристика экспандера в области низких частот совпадает с кривой чувствительности уха.

АЧХ расширителя динамического диапазона (экспандер)

Постоянная времени нарастания управляющего напряжения на выходе интегрирующей цепочки составляет 0,2…0,3 с, времени спада - 0,5…0.6. Амплитудно-частотные характеристики экспандера, показывающие расширение динамического диапазона, приведены на рис.2.

На низких частотах имеется подъем частотной характеристики, соответствующий особенностям звукового восприятия. Естественно, при возрастании громкости в процессе расширения динамического диапазона уровень уже поднятых басов не должен подниматься в такой же мере, как уровень средних и высоких частот.

Физиологически правильное расширение динамического диапазона с увеличением частоты достигается за счет конденсатора Ск, емкостное сопротивление которого на низких частотах велико. Благодаря тому, что величина максимального расширения динамического диапазона зависит от частоты и быстро уменьшается на частотах ниже 300 Гц, при сравнительно небольшом запасе выходной мощности усилителя получается расширение динамического диапазона порядка 10…12 дБ.

Усилитель с экспандером, описанный я опробовал в нескольких конструкциях (в стереоварианте, в единой конструкции с приемником и пр.). В процессе экспериментов «родился» модернизированный вариант лампового УМЗЧ с экспандером (рис.3). Изменения схемы усилителя коснулись темброблока, оконечного каскада и цепей питания.

Параметры усилителя по отношению к изменились в лучшую сторону, хотя коэффициент усиления УМЗЧ незначительно снизился за счет ультралинейного включения ламп в оконечном каскаде и темброблока, работающего в цепи усиления сигнала. Частотный диапазон УМЗЧ расширен и составляет 20…20000 Гц с неравномерностью около 1,5…2 дБ. Глубина регулировки тембра в области НЧ и ВЧ ±20 дБ.

Лампы оконечного каскада следует выбирать из одной партии. Если есть возможность, лучше отобрать идентичные по параметрам экземпляры, используя измеритель параметров радиоламп. Выходной трансформатор должен быть с симметричными секциями первичной обмотки. Они наматываются на узких каркасах (каждая), которые затем одеваются на сердечник. Вторичные обмотки аналогично.

Можно применить и готовый трансформатор, например, от магнитофона «Дмпро-И» или другой ламповой техники, имеющей двухтактный выходной каскад, построенный по ультралинейной схеме. Такой трансформатор обеспечит удовлетворительное качество звучания, хотя и с немного повышенным коэффициентом искажений из-за неполной симметрии выходного каскада.

Вторичную обмотку обратной связи с большим количеством витков (в трансформаторе от магнитофона «Днтро-1Г) можно использовать, например, для работы с трансляционной линией. Выходные каскады на триодах имеют низкое выходное сопротивление (импеданс), что упрощает выходные трансформаторы и способствует хорошему демпфированию акустических систем.

Это влечет за собой увеличение межвитковой емкости в них и. как следствие, завал частотной характеристики в области высоких частот. Из-за большой разницы в количествах витков эффект демпфирования нагрузки в таких усилителях ослаблен. Попытка соединить положительные качества УМЗЧ с выходом на триодах и пентодах привела к ультралинейной схеме включения ламп.

Действительно, если соединить экранные сетки ламп VL4 и VL5 с их анодами, получим триоды, а с источником анодного питания пентоды. Подключая экранные сетки к части витков первичной обмотки выходного трансформатора Т2, получаем компромиссный вариант со всеми вытекающими последствиями.

Сигналы от различных источников (микрофона, телевизора, радиоприемника или трансляционной линии) выбираются переключателем SA1 и через разделительный конденсатор С1 поступают в цепь управляющей сетки левого (по схеме) триода лампы VL1. Резисторы R1 и R2 служат делителем напряжения, поступающего из трансляционной линии, R3 уменьшает щелчки при коммутации SA1, R4 обеспечивает утечку для управляющей сетки триода.

Резистор R8 определяет режим триода по постоянному току и одновременно является звеном отрицательной обратной связи по току 34, что уменьшает шумы и искажения каскада. Резисторы R5, R6 и R9 в анодной цепи левого триода лампы VL1 служат для согласования входов экспандера и последующего каскада. Конденсаторы С2 и С6 разделительные по постоянному току.

Конденсатор С12 и резистор R22 осуществпяют частотную коррекцию сигнала, необходимую для нормальной работы экспандера. Для уменьшения шорохов, тресков и наводок регулятор громкости перенесен со входа усилителя на вход его второго каскада: перемещением движка потенциометра R10 производится регулировка громкости.

С движка этого потенциометра сигнал поступает на управляющую сетку второго триода VL1, усиливается им и с анодной нагрузки (R12) через разделительный конденсатор С7 подается на темброблок для коррекции. Резистор R11 обеспечивает автоматическое смещение рабочей точки этого триода, а конденсатор С5 устраняет отрицательную обратную связь по току в области высоких частот.

Переменные резисторы R47 и R50 осуществляют изменение АЧХ в области высоких и низких звуковых частот соответственно. С темброблока скорректированный 34-сигнал поступает на управляющую сетку триода VL2a. Утечка сетки осуществляется через резисторы R48, R50, R51. Резистор R20 обеспечивает отрицательное смещение на управляющей сетке этого триода и отрицательную обратную связь по току 34.

Усиленный этим триодом сигнал с резистора анодной нагрузки R21 через конденсатор С17 подается в цепь управляющей сетки триода VL3. Резистор R30 обеспечивает утечку сетки этого триода. R32 и R33 автоматическое смещение на сетке этого триода, а также обратную связь по току 34 и согласование отрицательной обратной связи с выхода УЗЧ (через R44 со вторичной обмотки выходного трансформатора Т2).

Триод VL26 служит фазовращателем: сигналы на нагрузках R35 и R37 равны и противоположны по фазе для обеспечения поочередной работы ламп оконечного каскада, выполненного по так называемой «пушпульной» (англ. Push-pull) двухтактной схеме на пентодах VL4 и VL5. Противофазные сигналы подаются в цепи управляющих сеток пентодов через разделительные конденсаторы С19 и С20. Конденсаторы С21 и С22 устраняют отрицательную обратную связь по току 34 в оконечном каскаде.

Цепочки R42-C23 и R43-C24 выравнивают сопротивления секций первичной обмотки выходного трансформатора Т2 для токов 34 разных частот (при их отсутствии возможен даже междувитковый пробой в обмотках Т2). Ультралинейная схема включения выходных ламп промежуточная между триодным и пентодным включением. Симметричным перемещением отводов по секциям первичной обмотки можно установить наиболее желаемый режим работы каскада.

Чем ближе отводы к анодам ламп, тем качественней звук, но ниже выходная мощность. При самостоятельном изготовлении выходного трансформатора можно сделать ряд симметричных выводов от первичной обмотки Т2 и при настройке их переключать. Выходной трансформатор выполнен на сердечнике Ш 19×33. Обмотка 1-2 содержит 72 витка провода ПЭЛ 00,69 мм, обмотка 3-4 - 800 витков ПЭЛ 00,15 мм, обмотка 5-6-7 800+600 витков ПЭЛ 00,15 мм. обмотка 7-8-9 - 600+800 витков ПЭЛ 00,15 мм. Дроссель фильтра питания рассчитан на ток 150 мА (сердечник Ш 19×28, содержит 3000 витков ПЭЛ 00,2 мм).

Экспандер работает так. В режиме молчания, при замкнутых контактах SA2, между цепью прохождения сигнала и общим проводом включена последовательная цепочка C4-VL7. Эпектронно-оптический индикатор VL7 (лампа 6Е1П) выступает здесь в роли переменного резистора, управляемого амплитудой напряжения усиливаемого сигнала. Характеристика экспандера частотнозависимая.

В области высоких и средних звуковых частот увеличение громкости звука приводит к увеличению динамического сопротивления лампы VL7, что вызывает увеличение уровня усиливаемого сигнала, т.е. чем громче сигнал, тем больше коэффициент усиления УЗЧ. Максимальное расширение составляет 10… 14 дБ (VL7 практически закрыта).

На низких частотах экспандер фактически не работает за счет выбора параметров корректирующей цепочки C12-R22, которая пропускает на управляющую сетку левого (по схеме) триода VL6 только ВЧ и частично СЧ-составляющие (через С12), нижние частоты ослаблены большим сопротивлением R22.
Переменным резистором R46 регулируется глубина расширения динамического диапазона.

Конденсатор С13 разделительный, сравнительно небольшой емкости, чтобы снизить уровень НЧ-составляющих. Катод лампы соединен напрямую с общим проводом, и смещение рабочей точки осуществляется только за счет тока сетки. Правый триод VL6 работает как диод, осуществляя выпрямление переменного напряжения 34.

Следом идет интегрирующая цепочка для сглаживания пульсаций выпрямленного напряжения и обеспечения управления лампой VL7 с соответствующей динамикой. Резистором R29 производится начальная установка режима индикации лампы VL7 «узкий» светящийся сектор без сигнала и нижнем по схеме положении движка R46.

Питание усилителя от сети переменного тока осуществляется через трансформатор Т1 (от старых радиол I класса). Напряжения указаны на схеме, допустимо их отличие до ±10%. Поточнее лишь следует подобрать напряжение накала (6,3 В), особенно при самостоятельной намотке силового трансформатора. Лампа предварительных каскадов VL1 питается от отдельной обмотки накала, между проводами которой включен подстроечный балансировочный резистор R52.

В полностью собранном усилителе с подключенной акустической системой и отключенном экспандере устанавливают максимальную громкость, регуляторы тембра в положение максимальной полосы (подъем низких и высоких частот). Вращением движка R52 на выходе устанавливается минимальный уровень фона переменного тока и шумов.

Накал к другим лампам подводится скрученными между собой проводами (от другой обмотки 6,3 В). Соединение одного из проводов накала с общим проводом осуществляется непосредственно у одной из ламп (экспериментально, по минимуму фона). УЗЧ выполнен на таком же шасси, как в оригинале , с той же расстановкой ламп.Он позволяет почувствовать всю прелесть «мягкого лампового» звука.

Очень приятно звучат женские соло и дуэты, классическая музыка, эстрадные песни. Следует учитывать, что расширение динамического диапазона на 10 дБ означает увеличение мощности в 10 раз. Данный усилитель имеет выходную мощность порядка 12 Вт, поэтому не стоит пытаться «выдавить» из УЗЧ больше, чем он может дать. Кроме роста искажений, ничего «путного» не получится.

Внимание! Радиолюбителям, привыкшим к низковольтным транзисторным устройствам, следует быть особо осторожными при наладке этого усилителя, поскольку его цепи высоковольтные. Перепайку деталей можно осуществлять только при отключенном напряжении питания и спустя 20…30 с, чтобы успели разрядиться электролитические конденсаторы.