Открытые проблемы в области распознавания речи. Лекция в Яндексе

Свойства объектов отличаются своим качеством и измеряются с помощью различных органов восприятия или измерительных приборов в различных единицах измерения.

Результатом измерения является снижение неопределенности в наших знаниях о значении свойств объекта. Значения свойств конкретизируются путем их сопоставления определенным градациям соответствующих измерительных шкал: номинальных, порядковых или отношений.

В номинальных шкалах отсутствуют отношения порядка, начало отсчета и единица измерения.

На порядковых шкалах определены отношения "больше – меньше", но отсутствуют начало отсчета и единица измерения.

На шкалах отношений определены отношения порядка, все арифметические операции, есть начало отсчета и единица измерения.

Можно представить себе, что шкалы образуют оси координат некоторого абстрактного многомерного пространства, которое будем называть "фазовым пространством".

В этом фазовом пространстве каждый конкретный объект представляется определенной точкой, имеющей координаты, соответствующие значениям его свойств по осям координат, т.е. градациям описательных шкал.

Оси координат фазового пространства в общем случае не являются взаимно-перпендикулярными шкалами отношений, т.е. в общем случае это пространство неортонормированное, более того – неметрическое. Следовательно, в нем в общем случае не применима Евклидова мера расстояний, т.е. не действует Евклидова метрика. Применение этой меры расстояний корректно, если одновременно выполняются два условия:

1. Все оси координат фазового пространства являются шкалами отношений.

2. Все оси координат взаимно-перпендикулярны или очень близки к этому.

1.3.2.1.2. Признаки и обобщенные образы классов

Обобщенные образы классов формализуются (кодируются) путем использования классификационных шкал и градаций, которые могут быть тех же типов, что и описательные, т.е. номинальные, порядковые и отношений.

Сама принадлежность конкретных объектов к данному классу определятся либо человеком-учителем, после чего фиксируется в обучающей выборке, либо самой системой автоматически на основе кластерного анализа конкретных объектов.

1.3.2.1.3. Обучающая выборка и ее репрезентативность по отношению к генеральной совокупности. Ремонт (взвешивание) данных

Рассмотрим, как зависит степень достоверности выводов о генеральной совокупности от объема обучающей выборки.

Если обучающая выборка включает все объекты генеральной совокупности, т.е. они совпадают, то достоверность выводов будет наиболее высокой (при всех прочих равных условиях).

Если же обучающая выборка очень мала, то вряд ли на ее основе могут быть сделаны достоверные выводы о генеральной совокупности, т.к. в этом случае в обучающую выборку могут даже не входить примеры объектов всех или подавляющего большинства классов.

Под репрезентативностью обучающей выборки будем понимать ее способность адекватно представлять генеральную совокупность, так что изучение самой генеральной совокупности можно корректно заменить исследованием обучающей выборки.

Но репрезентативность зависит не только от объема, но и от структуры обучающей выборки, т.е. от того, насколько полно представлены все категории объектов генеральной совокупности (классы) и от того, насколько полно они описаны признаками.

Взвешивание данных или ремонт обучающей выборки это операция, в результате которой частное распределение объектов по классам в обучающей выборке максимально, на сколько это возможно, приближается либо к частотному распределению генеральной совокупности (если оно известно из независимых источников), либо к равномерному.

В системе "Эйдос" режим взвешивания данных реализован.

1.3.2.1.4. Основные операции: обобщение и распознавание

Сразу необходимо отметить, что операция обобщения реализуется далеко не во всех моделях систем распознавания (например, в методе k-ближайших соседей), а в тех, в которых оно реализуется, – это делается по-разному.

Обычно, пока не реализовано обобщение нет возможности определить ценность признаков для решения задачи идентификации.

Например, если у нас есть 10 конкретных мячей разного размера и цвета, состоящих из разных материалов и предназначенных для разных игр, и мы рассматриваем их как совершенно независимые друг от друга объекты, наряду с другими, то у нас нет возможности определить, какие признаки являются наиболее характерными для мячей и наиболее сильно отличают их от этих других объектов. Но как только мы сформируем обобщенные образы "мяч", "стул", и т.д., сразу выясниться, что цвет мяча и материал, из которого он сделан, не является жестко связанными с обобщенным образом класса "мяч", а наиболее существенно то, что он круглый и его можно бросать или бить во время игры.

Распознавание – это операция сравнения и определения степени сходства образа данного конкретного объекта с образами других конкретных объектов или с обобщенными образами классов, в результате которой формируется рейтинг объектов или классов по убыванию сходства с распознаваемым объектом.

Ключевым моментом при реализации операции распознавания в математической модели является выбор вида интегрального критерия или меры сходства , который бы на основе знания о признаках конкретного объекта позволил бы количественно определить степень его сходства с другими объектами или обобщенными образами классов.

В ортонормированном пространстве, осями которого являются шкалы отношений, вполне естественным является использовать в качестве такой меры сходства Евклидово расстояние. Однако, такие пространства на практике встречаются скорее как исключение из правила, а операция ортонормирования является довольно трудоемкой в вычислительном отношении и приводит к обеднению модели, а значит ее не всегда удобно и целесообразно осуществлять.

Поэтому актуальной является задача выбора или конструирования интегрального критерия сходства, применение которого было бы корректно и в неортонормированных пространствах. Кроме того, этот интегральный критерий должен быть устойчив к наличию шума, т.е. к неполноте и искажению как в исходных данных, так и самой численной модели.

Требование устойчивости к наличию шума математически означает, что результат применения интегрального критерия к сигналу, состоящему только из белого шума, должен быть равным нулю. Это значит, что в качестве интегрального критерия может быть применена функция, используемая при определении самого понятия "белый шум", т.е. свертка, скалярное произведение, корреляция.

Такой интегральный критерий предложен в математической модели системно-когнитивного анализа и реализован в системе "Эйдос".

1.3.2.1.5. Обучение с учителем (экспертом) и самообучение (кластерный анализ)

Причем, если описательные характеристики могут формироваться с помощью информационно-измерительной системы автоматически, то классификационные – представляют собой результат вообще говоря неформализуемого процесса оценки степени принадлежности данных объектов к различным классам, который осуществляется человеком-экспертом или, как традиционно говорят специалисты по распознаванию образов, "учителем". В этом случае не возникает вопроса о том, для формирования обобщенного образа каких классов использовать описание данного конкретного объекта.

Обучение без учителя или самообучение – это процесс формирования обобщенных образов классов, на основе обучающей выборки, содержащей характеристики конкретных объектов, причем только в описательных шкалах и градациях.

Поэтому этот процесс реализуется в три этапа:

1. Кластерный анализ объектов обучающей выборки, в результате которого определяются группы наиболее сходных их них по их признакам (кластеры).

2. Присвоение кластерам статуса обобщенных классов, для формирования обобщенных образов которых используются конкретные объекты, входящие именно в эти кластеры.

3. Формирование обобщенных образов классов, аналогично тому, как это делалось при обучении с учителем.

1.3.2.1.6. Верификация, адаптация и синтез модели

Верификация модели – это операция установления степени ее адекватности (валидности) путем сравнения результатов идентификации конкретных объектов с их фактической принадлежностью к обобщенным образам классов.

Различают внутреннюю и внешнюю, интегральную и дифференциальную валидность.

Внутренняя валидность – это способность модели верно идентифицировать объекты обучающей выборки.

Если модель имеет низкую внутреннюю валидность, то модель нельзя считать удачно сформированной.

Внешняя валидность – это способность модели верно идентифицировать объекты, не входящие в обучающую выборку.

Интегральная валидность – это средневзвешенная достоверность идентификации по всем классам и распознаваемым объектам.

Дифференциальная валидность – это способность модели верно идентифицировать объекты в разрезе по классам.

Адаптация модели – это учет в модели объектов, не входящих в обучающую выборку, но входящих в генеральную совокупность, по отношению к которой данная обучающая выборка репрезентативна.

Если моделью верно идентифицируются объекты, не входящие в обучающую выборку, то это означает, что эти объекты входят в генеральную совокупность, по отношению к которой данная обучающая выборка репрезентативна. Следовательно, на основе обучающей выборки удалось выявить закономерности взаимосвязей между признаками и принадлежностью объектов к классам, которые действуют не только в обучающей выборке, но имеют силу и для генеральной совокупности.

Адаптация модели не требует изменения классификационных и описательных шкал и градаций, а лишь объема обучающей выборки, и приводит к количественному изменению модели .

Синтез (или повторный синтез – пересинтез) модели – это учет в модели объектов, не входящих ни в обучающую выборку, ни в генеральную совокупность, по отношению к которой данная обучающая выборка репрезентативна.

Это объекты с новыми, ранее неизвестными закономерностями взаимосвязей признаков с принадлежностью этих объектов к тем или иным классам. Причем и признаки, и классы, могут быть как те, которые уже были отражены в модели ранее, так и новые. Пересинтез модели приводит к ее качественному изменению.

1.3.2.2. Проблема распознавания образов

Простейшим вариантом распознавания является строгий запрос на поиск объекта в базе данных по его признакам, который реализуется в информационно-поисковых системах. При этом каждому полю соответствует признак (описательная шкала), а значению поля – значение признака (градация описательной шкалы). Если в базе данных есть записи, все значения заданных полей которых точно совпадают со значениями, заданными в запросе на поиск, то эти записи извлекаются в отчет, иначе запись не извлекается.

Более сложными вариантами распознавания является нечеткий запрос с неполнотой информации , когда не все признаки искомых объектов задаются в запросе на поиск, т.к. не все они известны, и нечеткий запрос с шумом , когда не все признаки объекта известны, а некоторые считаются известными ошибочно. В этих случаях из базы данных извлекаются все объекты, у которых совпадает хотя бы один признак и в отчете объекты сортируются (ранжируются) в порядке убывания количества совпавших признаков. При этом при определении ранга объекта в отсортированном списке все признаки считаются имеющими одинаковый "вес" и учитывается только их количество.

Однако:

– во-первых, на самом деле признаки имеют разный вес, т.е. один и тот же признак в разной степени характерен для различных объектов ;

– во-вторых, нас могут интересовать не столько сами объекты, извлекаемые из базы данных прецедентов по запросам, сколько классификация самого запроса , т.е. отнесение его к определенной категории, т.е. к тому или иному обобщенному образу класса.

Если реализация строгих и даже нечетких запросов не вызывает особых сложностей, то распознавание как идентификация с обобщенными образами классов, причем с учетом различия весов признаков представляет собой определенную проблему.

Обучение осуществляется путем предъявления системе отдельных объектов, описанных на языке признаков, с указанием их принадлежности тому или другому классу. При этом сама принадлежность к классам сообщается системе человеком – Учителем (экспертом).

В результате обучения распознающая система должна приобрести способность:

1. Относить объекты к классам, к которым они принадлежат (идентифицировать объекты верно).

2. Не относить объекты к классам, к которым они не принадлежат (неидентифицировать объекты ошибочно).

Эта и есть проблема обучения распознаванию образов, и состоит она в следующем:

1. В разработке математической модели, обеспечивающей: обобщение образов конкретных объектов и формирование обобщенных образов классов; расчет весов признаков; определение степени сходства конкретных объектов с классами и ранжирование классов по степени сходства с конкретным объектом, включая и положительное, и отрицательное сходство.

2. В наполнении этой модели конкретной информацией, характеризующей определенную предметную область.

1.3.2.3. Классификация методов распознавания образов

Идентификация и прогнозирование часто практически ничем друг от друга не отличаются по математическим моделям и алгоритмам. Основное различие между ними состоит в том, что при идентификации признаки и состояния объекта относятся к одному времени, тогда как при прогнозировании признаки (факторы) относятся к прошлому, а состояния объекта – к будущему.

Это означает, что системы распознавания образов с успехом могут применяться не только для решения задач идентификации, но и прогнозирования.

1.3.2.5. Роль и место распознавания образов в автоматизации управления сложными системами

1.3.2.5.1. Обобщенная структура системы управления

Автоматизированная система управления состоит из двух основных частей: объекта управления и управляющей системы (рисунок 71).

Управляющая система осуществляет следующие функции:

– идентификация состояния объекта управления;

– выработка управляющего воздействия исходя из целей управления с учетом состояния объекта управления и окружающей среды;

– оказание управляющего воздействия на объект управления.

Рисунок 71 . Обобщенная схема рефлексивной системы управления
активными объектами

1.3.2.5.2. Место системы идентификации в системе управления

Распознавание образов есть не что иное, как идентификация состояния некоторого объекта. Автоматизированная система управления АСУ), построенная на традиционных принципах, может работать только на основе параметров, закономерности связей которых уже известны, изучены и отражены в математической модели. В итоге АСУ, основанные на традиционном подходе, практически не эффективны с активными многопараметрическими слабодетерминированными объектами управления, такими, например, как макро– и микро– социально-экономические системы в условиях динамичной экономики "переходного периода", иерархические элитные и этнические группы, социум и электорат, физиология и психика человека, природные и искусственные экосистемы и многие другие.

Поэтому, в состав перспективных АСУ, обеспечивающих устойчивое управление активными объектами в качестве существенных функциональных звеньев должны войти подсистемы идентификации и прогнозирования состояний среды и объекта управления, основанные на методах искусственного интеллекта (прежде всего распознавания образов), методах поддержки принятия решений и теории информации.

1.3.2.5.3. Управление как задача, обратная идентификации и прогнозированию

Кратко рассмотрим вопрос о применении систем распознавания образов для принятия решений об управляющем воздействии. Очевидно, что применение систем распознавания для прогнозирования результатов управления при различных сочетаниях управляющих факторов позволяет рассмотреть и сравнить различные варианты управления и выбрать наилучшие из них по определенным критериям. Однако, этот подход на практике малоэффективен, особенно если факторов много, т.к. в этом случае количество сочетаний их значений может быть чрезвычайно большим.

Если в качестве классов распознавания взять целевые и иные будущие состояния объекта управления, а в качестве признаков – факторы, влияющие на него, то в модели распознавания образов может быть сформирована количественная мера причинно-следственной связи факторов и состояний.

Это позволяет по заданному целевому состоянию объекта управления получить информацию о силе и направлении влияния факторов, способствующих или препятствующих переходу объекта в это состояние, и, на этой основе, выработать решение об управляющем воздействии.

Задача выбора факторов по состоянию является обратной задачей прогнозирования, т.к. при прогнозировании, наоборот, определяется состояние по факторам.

Факторы могут быть разделены на следующие группы:

– характеризующие предысторию объекта управления и его актуальное состояние управления;

– технологические (управляющие) факторы;

– факторы окружающей среды;

Таким образом, системы распознавания образов могут быть применены в составе АСУ в подсистемах:

– идентификации состояния объекта управления;

– выработки управляющих воздействий.

Это целесообразно в случае, когда объект управления представляет собой сложную или активную систему.

Кластеризация – это операция автоматической классификации, в ходе которойобъекты объединяются в группы (кластеры) таким образом, что внутри групп различия между объектами минимальны, а между группами – максимальны. При этом в ходе кластеризации не только определяется состав кластеров, но и сам их набор и границы.

Поэтому вполне обоснованно считается, что методы кластерного анализа используются в большинстве случаев тогда, когда нет каких-либо априорных гипотез относительно классов, т.е. исследование находится на первой эмпирической стадии: описательной.

Существует большое количество различных алгоритмов кластеризации, которые обычно связаны с полным перебором объектов и весьма трудоемки в вычислительном отношении, здесь же мы упомянем лишь о трех из них:

– объединение (древовидная класт ризация);

двухвходовое объединение;

– метод K средних .

Рассмотрим кратко эти алгоритмы (описание взято с сайта http://StatSoft.ru) .

1.3.2.6.1. Древовидная кластеризация

Древовидная диаграмма (диаграмму (рисунок 72) начинается с конкретных объектов (в левой части диаграммы). Теперь представим себе, что постепенно (очень малыми шагами) вы "ослабляете" ваш критерий о том, какие объекты являются уникальными, а какие нет. Другими словами, вы понижаете порог, относящийся к решению об объединении двух или более объектов в один кластер.

В результате, вы связываете вместе всё большее и большее число объектов и агрегируете (объединяете ) все больше и больше кластеров, состоящих из все сильнее различающихся элементов. Окончательно, на последнем шаге все объекты объединяются вместе.

1.3.2.6.2. Двухвходовое объединение

Исследователь может кластеризовать конкретные образы наблюдаемых объектов для определения кластеров объектов со сходными признаками.

Он может также кластеризовать признаки для определения кластеров признаков, которые связаны со сходными конкретными объектами.

В двувходовом алгоритме эти процессы осуществляются одновременно.

1.3.2.6.3. Метод K средних

В этом методе принадлежность объектов к кластерам определяется таким образом, чтобы:

– минимизировать изменчивость (различия) объектов внутри кластеров;

– максимизировать изменчивость объектов между кластерами.

Контрольные вопросы

1. Основные понятия и определения, связанные с системами распознавания образов.

2. Признаки и образы конкретных объектов, метафора фазового пространства.

3. Признаки и обобщенные образы классов.

4. Обучающая выборка и ее репрезентативность по отношению к генеральной совокупности. Ремонт (взвешивание) данных.

5. Основные операции: обобщение и распознавание.

6. Обучение с учителем (экспертом) и самообучение (кластерный анализ).

7. Верификация, адаптация и синтез модели.

8. Проблема распознавания образов.

9. Классификация методов распознавания образов.

10. Применение распознавания образов для идентификации и прогнозирования. Сходство и различие в содержании понятий "идентификация" и "прогнозирование".

11. Роль и место распознавания образов в автоматизации управления сложными системами.

12. Обобщенная структура системы управления.

13. Место системы идентификации в системе управления.

14. Управление как задача, обратная идентификации и прогнозированию.

15. Методы кластерного анализа.

16. Метод кластеризации: "Древовидная кластеризация".

17. Метод кластеризации: "Двувходовое объединение".

18. Метод кластеризации: "Метод K средних".

1. Луценко Е.В. Теоретические основы и технология адаптивного семантического анализа в поддержке принятия решений (на примере универсальной автоматизированной системы распознавания образов "ЭЙДОС-5.1"). - Краснодар: КЮИ МВД РФ, 1996. - 280с.

2. Луценко Е. В.Автоматизированный системно-когнитивный анализ в управлении активными объектами (системная теория информации и ее применение в исследовании экономических, социально-психологических, технологических и организационно-технических систем): Монография (научное издание). – Краснодар:КубГАУ. 2002. – 605 с.

20 Проблема распознавания образов

Человеческий мозг, так же как и мозг животных, с самого рождения и на протяжении всей жизни ежеминутно решает задачи распознавания образов. Ребенок или детеныш животного с первых минут своего появления на свет узнает пищу, мать, ее голос, окружающие предметы. По мере взросления ребенок учится узнавать свои игрушки, комнату, дом, множество необходимых предметов, лица друзей, их речь, музыку, буквы, слова, книги и т.д.

В своей повседневной жизни человек настолько легко справляется с задачами распознавания, что это считается само собой разумеющимся. Между тем, попытки моделирования на компьютерах этих высокоинтеллектуальных функций наталкиваются на весьма серьёзные трудности.

Для того чтобы человек сознательно воспринял информацию, она должна пройти довольно длительный цикл предварительной обработки. Рассмотрим на примере восприятия зрительного образа:

1. Вначале свет попадает в глаз. Пройдя через всю оптическую систему фотоны попадают на сетчатку (слой светочувствительных клеток). Здесь происходит первый этап обработки информации. У млекопитающих, сразу за светочувствительными клетками находится обычно два слоя нервных клеток, которые выполняют сравнительно несложную обработку.

2. По зрительному нерву информация поступает в головной мозг, в так называемые "зрительные бугры".

3. Далее зрительная информация поступает в отделы мозга, которые уже выделяют из неё отдельные составляющие (горизонтальные, вертикальные, диагональные линии; контуры; области светлого, темного, цветного). До этих пор можно без труда смоделировать работу мозга применяя различные графические фильтры.

4. Постепенно образы становятся все более сложными и размытыми, но графический образ пройдет еще долгий путь, прежде чем достигнет уровня сознания. Причём на уровне сознания к образу могут примешаться еще звуки, запахи и вкусовые ощущения.

В целом проблема распознавания образов состоит из двух частей: обучения и распознавания. Обучение осуществляется путём показа отдельных объектов с указанием их принадлежности тому или другому образу. В результате обучения распознающая система должна приобрести способность реагировать одинаковыми реакциями на все объекты одного образа. За обучением следует процесс распознавания новых объектов, который характеризует действия уже обученной системы.

Круг задач, которые могут решаться с помощью распознающих систем, чрезвычайно широк. Сюда относятся не только задачи распознавания зрительных и слуховых образов, но и задачи распознавания сложных процессов и явлений, возникающих, например, при выборе целесообразных действий руководителем предприятия или выборе оптимального управления технологическими, экономическими, транспортными или военными операциями.

В настоящее время наибольших успехов удалось добиться в распознавании зрительных образов, таких как печатные символы. Не вызывает сомнений полезность известных программ распознавания текстовой информации – FineReader и CuneiForm . Функции обнаружения и распознавания военных объектов противника уже давно закладываются в бортовые компьютеры ракет, самолетов, кораблей и подводных лодок.

Какие идеи и принципы могут быть заложены в основу распознающих систем? Первое, что приходит в голову, – действовать "с позиции грубой силы": заложить в компьютер как можно больше известных образов-шаблонов и сравнивать их с поступающими для распознавания неизвестными образами. Однако этот путь сразу заводит в тупик. Предположим, что зрительное изображение считывается с помощью стандартной системы светочувствительных элементов – 32 позиции по ширине и 48 по высоте, т.е. всего 1536 элементов. Но даже на такой грубой сетке можно воспринять порядка 10 460 возможных образов. Хранить в памяти такое число шаблонных изображений и осуществлять с ними сравнение поступающих на вход образов невозможно.

Поэтому на практике системы распознавания на первой стадии обязательно обрабатывают изображение и выделяют характерные признаки, качественные или количественные. Таким образом, количество информации для распознавания существенно уменьшается.

Следующая идея, которая обычно используется в распознающих системах, – это идея обучения. Она является обязательным элементом многих современных интеллектуальных систем.

Процесс распознавания состоит в том, что система распознавания на основании сопоставления апостериорной информации относительно каждого поступившего на вход системы объекта или явления с априорным описанием классов принимает решение о принадлежности этого объекта (явления) к одному из классов. Правило, которое каждому объекту ставит в соответствие определенное наименование класса, называют решающим правилом. В литературе, посвященной распознаванию образов, утвердилось мнение, что суть проблемы распознавания заключается в определении решающих правил, нахождении в признаковом пространстве таких границ (решающих границ), придерживаясь которых признаковые пространства оптимальным образом, например с точки зрения минимизации ошибок распознавания, подразделяются на области, соответствующие классам. Так, в сказано, что в отыскании таких решающих правил на основании заданных описаний классов и заключается проблема распознавания.

При определении решающих правил (решающих границ в признаковом пространстве) в зависимости от объема исходной априорной информации рассматриваются следующие ситуации:

1. Количество исходной информации достаточно для того, чтобы путем ее анализа и непосредственной обработки определить решающие правила (системы распознавания без обучения, см. рис. 1.4).

2. Количество исходной информации недостаточно для определения решающих правил на основе ее непосредственной обработки, в связи с чем реализуется процедура обучения (обучающиеся системы распознавания, см. рис. 1.5).

В ситуациях 1 и 2 задача отыскания решающих правил базируется на том, что алфавит классов объектов и априорный словарь признаков, предназначенных для их описаний, известны. Рассматривается также и такая ситуация, когда словарь признаков известен, но неизвестен алфавит классов. При этом, однако, определен некоторый набор правил, в соответствии с которыми на основании процедуры самообучения находится искомый алфавит классов. Затем определяются решающие правила (самообучающиеся системы, см. рис. 1.6).

Исторически сложилось так, что первые теоретические исследования и прикладные работы в области распознавания базировались на том, что признаковое пространство известно, известен также и алфавит классов. В этих условиях проблема распознавания действительно может трактоваться как проблема определения в некотором смысле наилучших решающих границ (решающих правил). В настоящее время часто при построении распознающих устройств имеет место ситуация, когда известны и алфавит классов, и словарь признаков. Однако в общем случае при построении реальных систем распознавания, требующих разработки специальных измерительных средств и целых измерительных комплексов, исходить из того, что алфавит классов и словарь признаков априорно известны, к сожалению, не приходится.

Назначение систем распознавания - получить информацию, необходимую для принятия определенных решений, о принадлежности неизвестного объекта (явления) к тому или иному классу. Именно так обстоит дело в системах медицинской и технической диагностики, геологической разведки, метеорологического прогноза, криминалистике, системах распознавания целей и т. п. Поэтому системы распознавания, являясь частью системы управления (автоматической или автоматизированной), должны строиться с учетом обеспечения наиболее эффективного использования всего набора допустимых решений. Этот факт накладывает на построение систем распознавания следующие ограничения.

1. При прочих равных условиях повышение эффективности принимаемых решений следует связывать со степенью детализации определения или назначения либо характера распознаваемого объекта или явления. Степень детализации определяется количеством классов, на которое подразделено множество объектов или явлений. Так, если система управления располагает m различными решениями, то в алфавите классов системы распознавания, учитывая сказанное, целесообразно предусмотреть m+1 классов. Тогда, если распознанный объект относится к классу Ω 1 принимается решение l 1 , если к классу Ω 2 - решение h и т. д., если же объект относится к классу Ω m +1 , решение не принимается.

2. Эффективность принимаемых системой управления решений при прочих равных условиях (в том числе, естественно, при заданном алфавите классов) зависит от точности определения принадлежности распознаваемого объекта или явления к соответствующему классу. Точность же определения или ошибка распознавания при заданном по точности априорном описании классов определяется размерностью и информативностью признакового пространства, объемом и качеством апостериорной информации о значениях признаков (параметров), которыми характеризуется распознаваемый объект. Иначе говоря, расширение алфавита классов, увеличивающее степень детализации определения назначения либо характера распознаваемого объекта (явления), при неизменном словаре признаков увеличивает ошибку распознавания.

Пусть заданы три класса Ω 1 , Ω 2 и Ω 3 объектов распределениями f 1 (х), f 2 (x),f 3 (x) априорными вероятностями появления объектов соответствующих классов P(Ω 1)=P(Ω 2)=P(Ω 3)=P, а также потерями c 11 = c 22 = с 33 = 0 и с 12 = с 21 = c 13 = с 31 = с 23 = с 32 = с.

На рис. 2.1 представлены законы распределений. Средний (байесовский) риск (см. § 4.2)

Положим теперь, что объекты, относящиеся к классам Ω 1 и Ω 2 , решено объединить в один класс Ω 4 , описание которого

Средний риск в данном случае в предположении неизменности границы b составит

Из сравнения величин Rã 1 и Rã 2 видно, что Rã l >Rã 2 на величину

Следовательно, при заданном признаковом пространстве и прочих равных условиях уменьшение числа классов приводит

Рис. 2.1

к уменьшению ошибок распознавания и, наоборот, при увеличении числа классов системы распознавания в целях поддержания на заданном уровне или даже уменьшения среднего риска (вероятности ошибочных решений) надо расширять словарь признаков (естественно, при прочих равных условиях). В то же время расширение признакового пространства в целях уменьшения ошибок распознавания сопряжено с увеличением числа технических измерительных средств, каждое из которых обеспечивает определение соответствующего признака или группы признаков. Это, в свою очередь, требует увеличения затрат на построение системы распознавания. На величину же затрат в реальных условиях, как правило, накладываются те или другие ограничения.

Таким образом, стремление по возможности наиболее эффективно использовать набор возможных решений системы управления приводит к необходимости увеличения алфавита классов до m+1. Однако естественная ограниченность ресурсов, ассигнованных на построение измерительных средств системы распознавания или системы распознавания в целом, приводит к тому, что по мере увеличения алфавита классов ошибки распознавания растут, а это уменьшает эффективность использования возможных решений. Только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков системы, базирующийся на исходных данных относительно набора возможных решений и величины ресурсов, отпущенных на создание измерительной аппаратуры, реализующей словарь признаков, позволяет обеспечить решение задачи построения системы распознавания оптимальным образом.

Итак, в общем случае при построении систем распознавания приходится иметь дело со следующей ситуацией. Создается некоторая система управления, реализующая то или другое управление в зависимости от результатов оценки, существенных свойств, характера, назначения объекта или явления, его распознавания. Система управления располагает конечным числом решений. Составляющая эффективности управлений, зависящая от функционирования системы распознавания, обусловливается двумя факторами. Первый фактор связан со степенью детализации распознавания объектов или явлений, наибольшее значение которой будет в том случае, если число классов, содержащихся в алфавите классов системы распознавания, равно количеству возможных решений (плюс единица - последний класс, объекты которого не распознаются). Второй фактор - точность решения задачи распознавания. Естественно, чем она выше, тем меньше вероятность принять решение, не соответствующее особенностям данного объекта или явления. Например, применить не адекватную заболеванию стратегию лечения в случае использования системы медицинской диагностики; применить не по назначению данное средство противодействия в случае использования системы распознавания целей и т. п. Однако при заданном словаре признаков увеличение алфавита классов уменьшает точность решения задачи распознавания. Увеличение же словаря признаков в общем случае связано с разработкой новой или использованием существующей измерительной аппаратуры, что влечет за собой увеличение расходов на построение системы распознавания.

Таким образом, суть проблемы распознавания состоит в разработке таких алфавита классов и словаря признаков, которые в условиях ограниченных ресурсов на построение системы распознавания обеспечивают максимальную эффективность системы управления, принимающей соответствующее решение в зависимости от результатов решения задачи распознавания. При этом, безусловно, выбирая словарь признаков и определяя алфавит классов, следует находить наилучшие решающие правила, решающие границы между классами. Однако в общем случае не в этом состоит проблема распознавания, как не важна и как подчас не сложна задача определения оптимальных решающих правил, обеспечивающих в условиях заданных алфавита классов и словаря признаков наибольшую точность распознавания . Более того, при построении логических систем распознавания, использующих либо алгоритмы распознавания, основанные на методах алгебры логики, либо структурных (лингвистических) систем (см. гл. 8), решающие правила вообще не определяются.

Таким образом, нет достаточных оснований считать справедливым суждение о том, что проблема распознавания состоит в определении решающих правил (решающих границ).

Конец работы -

Эта тема принадлежит разделу:

Общая характеристика проблемы распознавания объектов и явлений

В а скрипкин.. методы распознавания.. общая характеристика проблемы распознавания объектов и явлений..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Качественное описание задачи распознавания i
Распознавание образов (объектов, сигналов, ситуаций, явлений или процессов) - едва ли не самая распространенная задача, которую человеку приходится решать практически ежесекундно от первого до посл

Основные задачи построения систем распознавания
Рассмотренный в § 1.1 пример свидетельствует о том, что распознавание сложных объектов и явлений требует создания специальных систем распознавания - сложных динамических систем, сос

Экспертные системы распознавания
Рассмотренная классификация систем распознавания и принципы их функционирования отражают современное состояние вопроса. Все виды систем распознавания базируются на строго формализов

Постановка задачи распознавания
Пусть задано множество объектов или явлений Ω={w1 ..., ..., wz}, а также множество возможных решений L={l1, ..., lk}, которые могут

Метод решения задачи распознавания
Рассмотренная постановка проблемы распознавания позволяет определить последовательность задач, возникающих при разработке системы распознавания, предложить их формулировки и возможн

Системы распознавания без обучения
Построение систем распознавания без обучения возможно при наличии полной первоначальной априорной информации, которая представляет собой совокупность: 1) сведений о том, какова есте

Обучающиеся системы распознавания
Использование методов обучения для построения систем распознавания необходимо в случае, когда отсутствует полная первоначальная априорная информация. Ее объем позволяет подразделить

Самообучающиеся системы распознавания
На практике иногда приходится сталкиваться с необходимостью построения распознающих устройств в условиях, когда провести классификацию объектов либо невозможно, либо по тем или другим соображениям

Некоторые сведения из теории статистических решений
Рассмотрим основные результаты теории статистических решений на следующем примере. Пусть совокупность объектов подразделена на классы Ω1 и Ω2, а дл

Критерий Байеса
Критерий Байеса - правило, в соответствии с которым стратегия решений выбирается таким образом, чтобы обеспечить минимум среднего риска. Применение критерия Байеса целесообразно в с

Минимаксный критерий
При построении систем распознавания возможны такие ситуации, когда априорные вероятности появления объектов соответствующих классов неизвестны. Минимизировать значение среднего риск

Критерий Неймана-Пирсона
При построении некоторых систем распознавания могут быть неизвестны не только априорные вероятности появления объектов соответствующих классов, но и платежная матрица (1.7). В подоб

Процедура последовательных решений
Ранее предполагалось, что решение о принадлежности распознаваемого объекта w соответствующему классу Ωi, i=l, ..., m, принимается после измерения всей совокупности

Регуляризация задачи распознавания
В соответствии со стратегией Байеса, если у распознаваемого объекта со измеренное значение признака х = х0 , то

Рабочего словаря признаков
В § 5.1 был рассмотрен один из возможных методов выбора пространства признаков системы распознавания, обеспечивающий в пределах выделенных ресурсов максимальное значение критерия ка

Сравнительная оценка признаков
Выше были рассмотрены достаточно общие методы выбора совокупности признаков, которые целесообразно и доступно использовать при построении системы распознавания. Однако на практике д

Изображающие числа и базис
Булева функция считается заданной, если можно указать значения истинности этой функции при всех возможных комбинациях значений истинности входящих в нее элементов. Таблицу, которая

Восстановление булевой функции по изображающему числу
Рассмотрим методы, позволяющие переходить от задания булевой функции в виде изображающего числа к явному выражению ее через элементы. Дизъюнктивная нормальная форма (ДНФ).

Зависимость и независимость высказываний
Условия независимости. Поскольку каждая булева функция может иметь два значения истинности, n булевых функций могут образовывать 2n комбинаций значений истинности. По опр

Булевы уравнения
Решение многих задач, связанных с распознаванием объектов, может быть сведено к нахождению решений булевых алгебраических уравнений с одним (или более) неизвестным. Примером булева

Замена переменных
Понятие замены переменных в алгебре логики аналогично понятию замены переменных в обычной алгебре. Если А, В, С, ... - элементарные высказывания и совершается замена переменных, то,

Решение логических задач распознавания
В логических системах распознавания классы и признаки объектов рассматриваются как логические переменные. Чтобы подчеркнуть эту особенность, для обозначения классов и признаков введ

Решение задач распознавания при большом числе элементов
Приложение изложенных в предыдущих параграфах методов построения сокращенного базиса и решения логических задач существенно ограничивается объемом памяти ЭВМ и их быстродействием. Т

Алгоритм построения сокращенного базиса
В § 7.1 было показано, как с помощью ЭВМ, опираясь на сокращенный базис b´ [А1, А2, ...Ω1, Ω2,...], находить

Распознавание объектов в условиях их маскировки
Маскировка - один из основных методов снижения эффективности разведки противника в общем комплексе мероприятий по противодействию. Решение проблемы маскировки требует привлечения, с

Распознавание в условиях противодействия
Рассмотрим задачу распознавания объектов в условиях, когда противник может препятствовать как выявлению отдельных признаков объектов, так и сознательно изменять свою тактику в отнош

Алгоритмы распознавания, основанные на вычислении оценок
Логические алгоритмы распознавания, рассмотренные выше, в ряде случаев не позволяют получить однозначное решение о принадлежности распознаваемого объекта к определенному классу. Ю.

Общая характеристика структурных методов распознавания
Во многих случаях апостериорная информация о распознаваемых объектах или явлениях содержится в записях соответствующих сигналов (электрокардиограмм, энцефалограмм, отраженных от цел

Основные элементы аппарата структурных методов распознавания
Говоря о средстве описания объектов в терминах непроизводных элементов и их отношений, употребляют понятие язык. Правила этого языка, определяющие способы построения объекта из непр

Реализация процесса распознавания на основе структурных методов
Для распознавания неизвестного объекта на основе структурных методов необходимо прежде всего найти его непроизводные элементы и отношения между ними, а затем с помощью синтаксическо

Постановка задачи оптимизации процесса распознавания
Прежде всего покажем, что с увеличением числа признаков, используемых при распознавании, вероятность правильного распознавания неизвестных объектов также увеличивается. Вер

Алгоритм управления процессом распознавания
Рассмотренные понятия позволяют построить алгоритм управления процессом распознавания в виде правила последовательного поиска решений, обеспечивающего разработку оптимального плана

Частные подходы к принятию решений при распознавании
Решение задачи оптимизации распознавания в рассмотренной постановке требует наличия определенных данных. Когда они отсутствуют, приходится пользоваться частными подходами к пр

Алгебраический подход к задаче распознавания
Выше рассмотрены алгоритмы распознавания: детерминированные алгоритмы, основанные на проведении в признаковом пространстве решающей границы (границы, разделяющей классы и представля

Эффективность вероятностных систем распознавания
Чтобы оценить эффективность вероятностных систем распознавания на основе математического моделирования, можно использовать метод статистических испытаний. Для проведения таких испыт

Эффективность логических систем распознавания
При построении логических систем распознавания приходится сталкиваться с ситуацией, когда значения истинности элементов А1..., Аn, выражающих признаки объектов

Обзор существующих методов распознавания образов

Л.П. Попова , И.О. Датьев

Способность "распознавать" считается основным свойством человеческих существ, как, впрочем, и других живых организмов. Распознавание образов - раздел кибернетики, разрабатывающий принципы и методы классификации, а также идентификации предметов, явлений, процессов, сигналов, ситуаций - всех тех объектов, которые могут быть описаны конечным набором некоторых признаков или свойств, характеризующих объект.

Образ представляет собой описание объекта. Образы обладают характерным свойством, проявляющимся в том, что ознакомление с конечным числом явлений из одного и того же множества дает возможность узнавать сколь угодно большое число его представителей.

В теории распознавания образов можно выделить два основных направления:

    изучение способностей к распознаванию, которыми обладают человеческие существа и другие живые организмы;

    развитие теории и методов построения устройств, предназначенных для решения отдельных задач распознавания образов в определенных прикладных областях.

Далее в статье описываются проблемы, принципы и методы реализации систем распознавания образов, связанные с развитием второго направления. Во второй части статьи рассматриваются нейросетевые методы распознавания образов, которые могут быть отнесены к первому направлению теории распознавания образов.

Проблемы построения систем распознавания образов

Задачи, возникающие при построении автоматических систем распознавания образов, можно обычно отнести к нескольким основным областям. Первая из них связана с представлением" исходных данных, полученных как результаты измерений для подлежащего распознаванию объекта. Это проблема чувствительности . Каждая измеренная величина является некоторой "характеристикой образа или объекта. Допустим, например, что образами являются буквенно-цифровые символы. B таком случае, в датчике может быть успешно использована измерительная сетчатка, подобно приведенной на рис. 1(а). Если сетчатка состоит из n-элементов, то результаты измерений можно представить в виде вектора измерений или вектора образа ,

где каждый элемент xi, принимает, например, значение 1, если через i-ю ячейку сетчатки проходит изображение символа, и значение 0 в противном случае.

Рассмотрим рис. 2(б). B этом случае образами служат непрерывные функции (типа звуковых сигналов) переменной t. Если измерение значений функций производится в дискретных точках t1,t2, ..., tn, то вектор образа можно сформировать, приняв x1= f(t1),x2=f(t2),... , xn = f(tn).

Рисунок 1. Измерительная сетчатка

Вторая проблема распознавания образов связана с выделением характерных признаков или свойств из полученных исходных данных и снижением размерности векторов образов. Эту проблему часто определяют как проблему предварительной обработки и выбора признаков .

Признаки класса образов представляют собой характерные свойства, общие для всех образов данного класса. Признаки, характеризующие различия между отдельными классами, можно интерпретировать как межклассовые признаки. Внутриклассовые признаки, общие для всех рассматриваемых классов, не несут полезной информации с точки зрения распознавания и могут не приниматься во внимание. Выбор признаков считается одной из важных задач, связанных с построением распознающих систем. Если результаты измерений позволяют получить полный набор различительных признаков для всех классов, собственно распознавание и классификация образов не вызовут особых затруднений. Автоматическое распознавание тогда сведется к процессу простого сопоставления или процедурам типа просмотра таблиц. B большинстве практических задач распознавания, однако, определение полного набора различительных признаков оказывается делом исключительно трудным, если вообще не невозможным. Из исходных данных обычно удается извлечь некоторые из различительных признаков и использовать их для упрощения процесса автоматического распознавания образов. B частности, размерность векторов измерений можно снизить с помощью преобразований, обеспечивающих минимизацию потери информации.

Третья проблема, связанная с построением систем распознавания образов, состоит в отыскании оптимальных решающих процедур, необходимых при идентификации и классификации. После того как данные, собранные о подлежащих распознаванию образах, представлены точками или векторами измерений в пространстве образов, предоставим машине выяснить, какому классу образов эти данные соответствуют. Пусть машина предназначена для различения M классов, обозначенных w1, w2, ... ..., wm. B таком случае, пространство образов можно считать состоящим из M областей, каждая из которых содержит точки, соответствующие образам из одного класса. При этом задача распознавания может рассматриваться как построение границ областей решений, разделяющих M классов, исходя из зарегистрированных векторов измерений. Пусть эти границы определены, например, решающими функциями d1(х),d2(x),..., dm(х). Эти функции, называемые также дискриминантными функциями, представляют собой скалярные и однозначные функции образа х. Если di (х) > dj (х), то образ х принадлежит классу w1. Другими словами, если i-я решающая функция di(x) имеет наибольшее значение, то содержательной иллюстрацией подобной схемы автоматической классификации, основанной на реализации процесса принятия решения, служит приведенная на рис. 2 (на схеме «ГР» - генератор решающих функций).

Рисунок 2. Схема автоматической классификации.

Решающие функции можно получать целым рядом способов. B тех случаях, когда о распознаваемых образах имеются полные априорные сведения, решающие функции могут быть определены точно на основе этой информации. Если относительно образов имеются лишь качественные сведения, могут быть выдвинуты разумные допущения о виде решающих функций. B последнем случае, границы областей решений могут существенно отклоняться от истинных, и поэтому необходимо создавать систему, способную приходить к удовлетворительному результату посредством ряда последовательных корректировок.

Объекты (образы), подлежащие распознаванию и классификации с помощью автоматической системы распознавания образов, должны обладать набором измеримых характеристик. Когда для целой группы образов результаты соответствующих измерений оказываются аналогичными, считается, что эти объекты принадлежат одному классу. Цель работы системы распознавания образов заключается в том, чтобы на основе собранной информации определить класс объектов с характеристиками, аналогичными измеренным у распознаваемых объектов. Правильность распознавания зависит от объема различающей информации, содержащейся в измеряемых характеристиках, и эффективности использования этой информации.

      Основные методы реализации систем распознавания образов

Распознаванием образов называются задачи построения и применения формальных операций над числовыми или символьными отображениями объектов реального или идеального мира, результаты, решения которых отражают отношения эквивалентности между этими объектами. Отношения эквивалентности выражают принадлежность оцениваемых объектов к каким-либо классам, рассматриваемым как самостоятельные семантические единицы.

При построении алгоритмов распознавания классы эквивалентности могут задаваться исследователем, который пользуется собственными содержательными представлениями или использует внешнюю дополнительную информацию о сходстве и различии объектов в контексте решаемой задачи. Тогда говорят о “распознавании с учителем”. В противном случае, т.е. когда автоматизированная система решает задачу классификации без привлечения внешней обучающей информации, говорят об автоматической классификации или “распознавании без учителя”. Большинство алгоритмов распознавания образов требует привлечения весьма значительных вычислительных мощностей, которые могут быть обеспечены только высокопроизводительной компьютерной техникой.

Различные авторы (Ю.Л. Барабаш , В.И. Васильев , А.Л. Горелик, В.А. Скрипкин , Р. Дуда, П. Харт , Л.Т.Кузин , Ф.И. Перегудов, Ф.П. Тарасенко , Темников Ф.Е., Афонин В.А., Дмитриев В.И. , Дж. Ту, Р. Гонсалес , П. Уинстон , К. Фу , Я.З. Цыпкин и др.) дают различную типологию методов распознавания образов. Одни авторы различают параметрические, непараметрические и эвристические методы, другие – выделяют группы методов, исходя из исторически сложившихся школ и направлений в данной области.

В то же время, известные типологии не учитывают одну очень существенную характеристику, которая отражает специфику способа представления знаний о предметной области с помощью какого-либо формального алгоритма распознавания образов. Д.А.Поспелов выделяет два основных способа представления знаний :

    Интенсиональное представление - в виде схемы связей между атрибутами (признаками).

    Экстенсиональное представление - с помощью конкретных фактов (объекты, примеры).

Необходимо отметить, что существование именно этих двух групп методов распознавания: оперирующих с признаками, и оперирующих с объектами, глубоко закономерно. С этой точки зрения ни один из этих методов, взятый отдельно от другого, не позволяет сформировать адекватное отражение предметной области. Между этими методами существует отношение дополнительности в смысле Н.Бора , поэтому перспективные системы распознавания должны обеспечивать реализацию обоих этих методов, а не только какого–либо одного из них.

Таким образом, в основу классификации методов распознавания, предложенной Д.А.Поспеловым , положены фундаментальные закономерности, лежащие в основе человеческого способа познания вообще, что ставит ее в совершенно особое (привилегированное) положение по сравнению с другими классификациями, которые на этом фоне выглядят более легковесными и искусственными.

Интенсиональные методы

Отличительной особенностью интенсиональных методов является то, что в качестве элементов операций при построении и применении алгоритмов распознавания образов они используют различные характеристики признаков и их связей. Такими элементами могут быть отдельные значения или интервалы значений признаков, средние величины и дисперсии, матрицы связей признаков и т. п., над которыми производятся действия, выражаемые в аналитической или конструктивной форме. При этом объекты в данных методах не рассматриваются как целостные информационные единицы, а выступают в роли индикаторов для оценки взаимодействия и поведения своих атрибутов.

Группа интенсиональных методов распознавания образов обширна, и ее деление на подклассы носит в определенной мере условный характер:

– методы, основанные на оценках плотностей распределения значений признаков

– методы, основанные на предположениях о классе решающих функций

– логические методы

– лингвистические (структурные) методы.

Методы, основанные на оценках плотностей распределения значений признаков. Эти методы распознавания образов заимствованы из классической теории статистических решений, в которой объекты исследования рассматриваются как реализации многомерной случайной величины, распределенной в пространстве признаков по какому-либо закону. Они базируются на байесовской схеме принятия решений, апеллирующей к априорным вероятностям принадлежности объектов к тому или иному распознаваемому классу и условным плотностям распределения значений вектора признаков. Данные методы сводятся к определению отношения правдоподобия в различных областях многомерного пространства признаков.

Группа методов, основанных на оценке плотностей распределения значений признаков, имеет прямое отношение к методам дискриминантного анализа. Байесовский подход к принятию решений и относится к наиболее разработанным в современной статистике так называемым параметрическим методам, для которых считается известным аналитическое выражение закона распределения (в данном случае нормальный закон) и требуется оценить лишь небольшое количество параметров (векторы средних значений и ковариационные матрицы).

К этой группе относится и метод вычисления отношения правдоподобия для независимых признаков. Этот метод, за исключением предположения о независимости признаков (которое в действительности практически никогда не выполняется), не предполагает знания функционального вида закона распределения. Его можно отнести к непараметрическим методам .

Другие непараметрические методы, применяемые тогда, когда вид кривой плотности распределения неизвестен и нельзя сделать вообще никаких предположений о ее характере, занимают особое положение. К ним относятся известные метод многомерных гистограмм, метод “k-ближайших соседей, метод евклидова расстояния, метод потенциальных функций и др., обобщением которых является метод, получивший название “оценки Парзена”. Эти методы формально оперируют объектами как целостными структурами, но в зависимости от типа задачи распознавания могут выступать и в интенсиональной и в экстенсиональной ипостасях.

Непараметрические методы анализируют относительные количества объектов, попадающих в заданные многомерные объемы, и используют различные функции расстояния между объектами обучающей выборки и распознаваемыми объектами. Для количественных признаков, когда их число много меньше объема выборки, операции с объектами играют промежуточную роль в оценке локальных плотностей распределения условных вероятностей и объекты не несут смысловой нагрузки самостоятельных информационных единиц. В то же время, когда количество признаков соизмеримо или больше числа исследуемых объектов, а признаки носят качественный или дихотомический характер, то ни о каких локальных оценках плотностей распределения вероятностей не может идти речи. В этом случае объекты в указанных непараметрических методах рассматриваются как самостоятельные информационные единицы (целостные эмпирические факты) и данные методы приобретают смысл оценок сходства и различия изучаемых объектов.

Таким образом, одни и те же технологические операции непараметрических методов в зависимости от условий задачи имеют смысл либо локальных оценок плотностей распределения вероятностей значений признаков, либо оценок сходства и различия объектов.

В контексте интенсионального представления знаний здесь рассматривается первая сторона непараметрических методов, как оценок плотностей распределения вероятностей. Многие авторы отмечают, что на практике непараметрические методы типа оценок Парзена работают хорошо. Основными трудностями применения указанных методов считаются необходимость запоминания всей обучающей выборки для вычисления оценок локальных плотностей распределения вероятностей и высокая чувствительность к непредставительности обучающей выборки.

Методы, основанные на предположениях о классе решающих функций. В данной группе методов считается известным общий вид решающей функции и задан функционал ее качества. На основании этого функционала по обучающей последовательности ищется наилучшее приближение решающей функции. Самыми распространенными являются представления решающих функций в виде линейных и обобщенных нелинейных полиномов. Функционал качества решающего правила обычно связывают с ошибкой классификации.

Основным достоинством методов, основанных на предположениях о классе решающих функций, является ясность математической постановки задачи распознавания, как задачи поиска экстремума. Решение этой задачи нередко достигается с помощью каких-либо градиентных алгоритмов. Многообразие методов этой группы объясняется широким спектром используемых функционалов качества решающего правила и алгоритмов поиска экстремума. Обобщением рассматриваемых алгоритмов, к которым относятся, в частности, алгоритм Ньютона, алгоритмы перцептронного типа и др., является метод стохастической аппроксимации. В отличие от параметрических методов распознавания успешность применения данной группы методов не так сильно зависит от рассогласования теоретических представлений о законах распределения объектов в пространстве признаков с эмпирической реальностью. Все операции подчинены одной главной цели - нахождению экстремума функционала качества решающего правила. В то же время результаты параметрических и рассматриваемых методов могут быть похожими. Как показано выше, параметрические методы для случая нормальных распределений объектов в различных классах с равными ковариационными матрицами приводят к линейным решающим функциям. Отметим также, что алгоритмы отбора информативных признаков в линейных диагностических моделях, можно интерпретировать как частные варианты градиентных алгоритмов поиска экстремума.

Возможности градиентных алгоритмов поиска экстремума, особенно в группе линейных решающих правил, достаточно хорошо изучены. Сходимость этих алгоритмов доказана только для случая, когда распознаваемые классы объектов отображаются в пространстве признаков компактными геометрическими структурами. Однако стремление добиться достаточного качества решающего правила нередко может быть удовлетворено с помощью алгоритмов, не имеющих строгого математического доказательства сходимости решения к глобальному экстремуму .

К таким алгоритмам относится большая группа процедур эвристического программирования, представляющих направление эволюционного моделирования. Эволюционное моделирование является бионическим методом, заимствованным у природы. Оно основано на использовании известных механизмов эволюции с целью замены процесса содержательного моделирования сложного объекта феноменологическим моделированием его эволюции.

Известным представителем эволюционного моделирования в распознавании образов является метод группового учета аргументов (МГУА). В основу МГУА положен принцип самоорганизации, и алгоритмы МГУА воспроизводят схему массовой селекции. В алгоритмах МГУА особым образом синтезируются и отбираются члены обобщенного полинома, который часто называют полиномом Колмогорова-Габора. Этот синтез и отбор производится с нарастающим усложнением, и заранее нельзя предугадать, какой окончательный вид будет иметь обобщенный полином. Сначала обычно рассматривают простые попарные комбинации исходных признаков, из которых составляются уравнения решающих функций, как правило, не выше второго порядка. Каждое уравнение анализируется как самостоятельная решающая функция, и по обучающей выборке тем или иным способом находятся значения параметров составленных уравнений. Затем из полученного набора решающих функций отбирается часть в некотором смысле лучших. Проверка качества отдельных решающих функций осуществляется на контрольной (проверочной) выборке, что иногда называют принципом внешнего дополнения. Отобранные частные решающие функции рассматриваются далее как промежуточные переменные, служащие исходными аргументами для аналогичного синтеза новых решающих функций и т. д. Процесс такого иерархического синтеза продолжается до тех пор, пока не будет достигнут экстремум критерия качества решающей функции, что на практике проявляется в ухудшении этого качества при попытках дальнейшего увеличения порядка членов полинома относительно исходных признаков.

Принцип самоорганизации, положенный в основу МГУА, называют эвристической самоорганизацией, так как весь процесс основывается на введении внешних дополнений, выбираемых эвристически. Результат решения может существенно зависеть от этих эвристик. От того, как разделены объекты на обучающую и проверочную выборки, как определяется критерий качества распознавания, какое количество переменных пропускается в следующий ряд селекции и т. д., зависит результирующая диагностическая модель.

Указанные особенности алгоритмов МГУА свойственны и другим подходам к эволюционному моделированию. Но отметим здесь еще одну сторону рассматриваемых методов. Это - их содержательная сущность. С помощью методов, основанных на предположениях о классе решающих функций (эволюционных и градиентных), можно строить диагностические модели высокой сложности и получать практически приемлемые результаты. В то же время достижению практических целей в данном случае не сопутствует извлечение новых знаний о природе распознаваемых объектов. Возможность извлечения этих знаний, в частности знаний о механизмах взаимодействия атрибутов (признаков), здесь принципиально ограничена заданной структурой такого взаимодействия, зафиксированной в выбранной форме решающих функций. Поэтому максимально, что можно сказать после построения той или иной диагностической модели - это перечислить комбинации признаков и сами признаки, вошедшие в результирующую модель. Но смысл комбинаций, отражающих природу и структуру распределений исследуемых объектов, в рамках данного подхода часто остается нераскрытым.

Логические методы . Логические методы распознавания образов базируются на аппарате алгебры логики и позволяют оперировать информацией, заключенной не только в отдельных признаках, но и в сочетаниях значений признаков. В этих методах значения какого-либо признака рассматриваются как элементарные события.

В самом общем виде логические методы можно охарактеризовать как разновидность поиска по обучающей выборке логических закономерностей и формирование некоторой системы логических решающих правил (например, в виде конъюнкций элементарных событий), каждое из которых имеет собственный вес. Группа логических методов разнообразна и включает методы различной сложности и глубины анализа. Для дихотомических (булевых) признаков популярными являются так называемые древообразные классификаторы, метод тупиковых тестов, алгоритм “Кора” и другие. Более сложные методы основываются на формализации индуктивных методов Д.С.Милля. Формализация осуществляется путем построения квазиаксиоматической теории и базируется на многосортной многозначной логике с кванторами по кортежам переменной длины .

Алгоритм “Кора”, как и другие логические методы распознавания образов, является достаточно трудоемким, поскольку при отборе конъюнкций необходим полный перебор. Поэтому при применении логических методов предъявляются высокие требования к эффективной организации вычислительного процесса, и эти методы хорошо работают при сравнительно небольших размерностях пространства признаков и только на мощных компьютерах.

Лингвистические (синтаксические или структурные) методы. Лингвистические методы распознавания образов основаны на использовании специальных грамматик порождающих языки, с помощью которых может описываться совокупность свойств распознаваемых объектов . Грамматикой называют правила построения объектов из этих непроизводных элементов.

Если описание образов производится с помощью непроизводных элементов (подобразов) и их отношений, то для построения автоматических систем распознавания применяется лингвистический или синтаксический подход с использованием принципа общности свойств. Образ можно описать с помощью иерархической структуры подобразов, аналогичной синтаксической структуре языка. Это обстоятельство позволяет применять при решении задач распознавания образов теорию формальных языков. Предполагается, что грамматика образов содержит конечные множества элементов, называемых переменными, непроизводными элементами и правилами подстановки. Характер правил подстановки определяет тип грамматики. Среди наиболее изученных грамматик можно отметить регулярные, бесконтекстные и грамматики непосредственно составляющих. Ключевыми моментами данного подхода являются выбор непроизводных элементов образа, объединение этих элементов и связывающих их отношений в грамматики образов и, наконец, реализация в соответствующем языке процессов анализа и распознавания. Такой подход особенно полезен при работе с образами, которые либо не могут быть описаны числовыми измерениями, либо столь сложны, что их локальные признаки идентифицировать не удается и приходится обращаться к глобальным свойствам объектов.

Например, Е.А. Бутаков, В.И. Островский, И.Л. Фадеев предлагают следующую структуру системы для обработки изображений (рис. 3), использующую лингвистический подход, где каждый из функциональных блоков является программным (микропрограммным) комплексом (модулем), реализующим соответствующие функции.

Рисунок 3. Структурная схема распознающего устройства

Попытки применить методы математической лингвистики к задаче анализа изображений приводят к необходимости решить ряд проблем, связанных с отображением двумерной структуры изображения на одномерные цепочки формального языка.

Экстенсиональные методы

В методах данной группы, в отличие от интенсионального направления, каждому изучаемому объекту в большей или меньшей мере придается самостоятельное диагностическое значение. По своей сути эти методы близки к клиническому подходу, который рассматривает людей не как проранжированную по тому или иному показателю цепочку объектов, а как целостные системы, каждая из которых индивидуальна и имеет особенную диагностическую ценность . Такое бережное отношение к объектам исследования не позволяет исключать или утрачивать информацию о каждом отдельном объекте, что происходит при применении методов интенсионального направления, использующих объекты только для обнаружения и фиксации закономерностей поведения их атрибутов.

Основными операциями в распознавании образов с помощью обсуждаемых методов являются операции определения сходства и различия объектов. Объекты в указанной группе методов играют роль диагностических прецедентов. При этом в зависимости от условий конкретной задачи роль отдельного прецедента может меняться в самых широких пределах: от главной и определяющей и до весьма косвенного участия в процессе распознавания. В свою очередь условия задачи могут требовать для успешного решения участия различного количества диагностических прецедентов: от одного в каждом распознаваемом классе до полного объема выборки, а также разных способов вычисления мер сходства и различия объектов. Этими требованиями объясняется дальнейшее разделение экстенсиональных методов на подклассы:

    метод сравнения с прототипом;

    метод k–ближайших соседей;

    коллективы решающих правил.

Метод сравнения с прототипом. Это наиболее простой экстенсиональный метод распознавания. Он применяется, например, тогда, когда распознаваемые классы отображаются в пространстве признаков компактными геометрическими группировками. В таком случае обычно в качестве точки – прототипа выбирается центр геометрической группировки класса (или ближайший к центру объект).

Для классификации неизвестного объекта находится ближайший к нему прототип, и объект относится к тому же классу, что и этот прототип. Очевидно, никаких обобщенных образов классов в данном методе не формируется.

В качестве меры близости могут применяться различные типы расстояний. Часто для дихотомических признаков используется расстояние Хэмминга, которое в данном случае равно квадрату евклидова расстояния. При этом решающее правило классификации объектов эквивалентно линейной решающей функции.

Указанный факт следует особо отметить. Он наглядно демонстрирует связь прототипной и признаковой репрезентации информации о структуре данных. Пользуясь приведенным представлением, можно, например, любую традиционную измерительную шкалу, являющуюся линейной функцией от значений дихотомических признаков, рассматривать как гипотетический диагностический прототип. В свою очередь, если анализ пространственной структуры распознаваемых классов позволяет сделать вывод об их геометрической компактности, то каждый из этих классов достаточно заменить одним прототипом который, фактически эквивалентен линейной диагностической модели.

На практике, конечно, ситуация часто бывает отличной от описанного идеализированного примера. Перед исследователем, намеревающимся применить метод распознавания, основанный на сравнении с прототипами диагностических классов, встают непростые проблемы. Это, в первую очередь, выбор меры близости (метрики), от которого может существенно измениться пространственная конфигурация распределения объектов. И, во-вторых, самостоятельной проблемой является анализ многомерных структур экспериментальных данных. Обе эти проблемы особенно остро встают перед исследователем в условиях высокой размерности пространства признаков, характерной для реальных задач.

Метод k-ближайших соседей. Метод k-ближайших соседей для решения задач дискриминантного анализа был впервые предложен еще в 1952 году. Он заключается в следующем.

При классификации неизвестного объекта находится заданное число (k) геометрически ближайших к нему в пространстве признаков других объектов (ближайших соседей) с уже известной принадлежностью к распознаваемым классам. Решение об отнесении неизвестного объекта к тому или иному диагностическому классу принимается путем анализа информации об этой известной принадлежности его ближайших соседей, например, с помощью простого подсчета голосов.

Первоначально метод k-ближайших соседей рассматривался как непараметрический метод оценивания отношения правдоподобия. Для этого метода получены теоретические оценки его эффективности в сравнении с оптимальным байесовским классификатором. Доказано, что асимптотические вероятности ошибки для метода k-ближайших соседей превышают ошибки правила Байеса не более чем в два раза.

Как отмечалось выше, в реальных задачах часто приходится оперировать объектами, которые описываются большим количеством качественных (дихотомических) признаков. При этом размерность пространства признаков соизмерима или превышает объем исследуемой выборки. В таких условиях удобно интерпретировать каждый объект обучающей выборки, как отдельный линейный классификатор. Тогда тот или иной диагностический класс представляется не одним прототипом, а набором линейных классификаторов. Совокупное взаимодействие линейных классификаторов дает в итоге кусочно-линейную поверхность, разделяющую в пространстве признаков распознаваемые классы. Вид разделяющей поверхности, состоящей из кусков гиперплоскостей, может быть разнообразным и зависит от взаимного расположения классифицируемых совокупностей.

Также можно использовать другую интерпретацию механизмов классификации по правилу k-ближайших соседей. В ее основе лежит представление о существовании некоторых латентных переменных, абстрактных или связанных каким-либо преобразованием с исходным пространством признаков. Если в пространстве латентных переменных попарные расстояния между объектами такие же, как и в пространстве исходных признаков, и количество этих переменных значительно меньше числа объектов, то интерпретация метода k-ближайших соседей может рассматриваться под углом зрения сравнения непараметрических оценок плотностей распределения условных вероятностей. Приведенное здесь представление о латентных переменных близко по своей сути к представлению об истинной размерности и другим представлениям, используемым в различных методах снижения размерности.

При использовании метода k-ближайших соседей для распознавания образов исследователю приходится решать сложную проблему выбора метрики для определения близости диагностируемых объектов. Эта проблема в условиях высокой размерности пространства признаков чрезвычайно обостряется вследствие достаточной трудоемкости данного метода, которая становится значимой даже для высокопроизводительных компьютеров. Поэтому здесь так же, как и в методе сравнения с прототипом, необходимо решать творческую задачу анализа многомерной структуры экспериментальных данных для минимизации числа объектов, представляющих диагностические классы.

Алгоритмы вычисления оценок (голосования). Принцип действия алгоритмов вычисления оценок (АВО) состоит в вычислении приоритете (оценок сходства), характеризующих “близость” распознаваемого и эталонных объектов по системе ансамблей признаков, представляющей собой систему подмножеств заданного множества признаков.

В отличие от всех ранее рассмотренных методов алгоритмы вычисления оценок принципиально по-новому оперируют описаниями объектов. Для этих алгоритмов объекты существуют одновременно в самых разных подпространствах пространства признаков. Класс АВО доводит идею использования признаков до логического конца: поскольку не всегда известно, какие сочетания признаков наиболее информативны, то в АВО степень сходства объектов вычисляется при сопоставлении всех возможных или определенных сочетаний признаков, входящих в описания объектов .

Коллективы решающих правил. В решающем правиле применяется двухуровневая схема распознавания. На первом уровне работают частные алгоритмы распознавания, результаты которых объединяются на втором уровне в блоке синтеза. Наиболее распространенные способы такого объединения основаны на выделении областей компетентности того или иного частного алгоритма. Простейший способ нахождения областей компетентности заключается в априорном разбиении пространства признаков исходя из профессиональных соображений конкретной науки (например, расслоение выборки по некоторому признаку). Тогда для каждой из выделенных областей строится собственный распознающий алгоритм. Другой способ базируется на применении формального анализа для определения локальных областей пространства признаков как окрестностей распознаваемых объектов, для которых доказана успешность работы какого-либо частного алгоритма распознавания.

Самый общий подход к построению блока синтеза рассматривает результирующие показатели частных алгоритмов как исходные признаки для построения нового обобщенного решающего правила. В этом случае могут использоваться все перечисленные выше методы интенсионального и экстенсионального направлений в распознавании образов. Эффективными для решения задачи создания коллектива решающих правил являются логические алгоритмы типа “Кора” и алгоритмы вычисления оценок (АВО), положенные в основу так называемого алгебраического подхода, обеспечивающего исследование и конструктивное описание алгоритмов распознавания, в рамки которого укладываются все существующие типы алгоритмов .

Нейросетевые методы

Нейросетевые методы - это методы, базирующиеся на применении различных типов нейронных сетей (НС). Основные направления применения различных НС для распознавания образов и изображений :

    применение для извлечение ключевых характеристик или признаков заданных образов,

    классификация самих образов или уже извлечённых из них характеристик (в первом случае извлечение ключевых характеристик происходит неявно внутри сети),

    решение оптимизационных задач.

Многослойные нейронные сети. Архитектура многослойной нейронной сети (МНС) состоит из последовательно соединённых слоёв, где нейрон каждого слоя своими входами связан со всеми нейронами предыдущего слоя, а выходами - следующего.

Простейшее применение однослойной НС (называемой автоассоциативной памятью) заключается в обучении сети восстанавливать подаваемые изображения. Подавая на вход тестовое изображение и вычисляя качество реконструированного изображения, можно оценить насколько сеть распознала входное изображение. Положительные свойства этого метода заключаются в том, что сеть может восстанавливать искажённые и зашумленные изображения, но для более серьёзных целей он не подходит.

МНС так же используется для непосредственной классификации изображений – на вход подаётся или само изображение в каком-либо виде, или набор ранее извлечённых ключевых характеристик изображения, на выходе нейрон с максимальной активностью указывает принадлежность к распознанному классу (рис. 4). Если эта активность ниже некоторого порога, то считается, что поданный образ не относится ни к одному из известных классов. Процесс обучения устанавливает соответствие подаваемых на вход образов с принадлежностью к определённому классу. Это называется обучением с учителем . Такой подход хорош для задач контроля доступа небольшой группы лиц. Такой подход обеспечивает непосредственное сравнение сетью самих образов, но с увеличением числа классов время обучения и работы сети возрастает экспоненциально. Поэтому для таких задач, как поиск похожего человека в большой базе данных, требует извлечения компактного набора ключевых характеристик, на основе которых можно производить поиск.

Подход к классификации с использованием частотных характеристик всего изображения, описан в . Применялась однослойная НС, основанная на многозначных нейронах.

В показано применение НС для классификации изображений, когда на вход сети поступают результаты декомпозиции изображения по методу главных компонент.

В классической МНС межслойные нейронные соединения полносвязны, и изображение представлено в виде одномерного вектора, хотя оно двумерно. Архитектура свёрточной НС направлена на преодоление этих недостатков. В ней использовались локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными подвыборками (spatial subsampling). Свёрточная НС (СНС) обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, искажениям.

МНС применяются и для обнаружения объектов определённого типа. Кроме того, что любая обученная МНС в некоторой мере может определять принадлежность образов к “своим” классам, её можно специально обучить надёжному детектированию определённых классов. В этом случае выходными классами будут классы принадлежащие и не принадлежащие к заданному типу образов. В применялся нейросетевой детектор для обнаружения изображения лица во входном изображении. Изображение сканировалось окном 20х20 пикселей, которое подавалось на вход сети, решающей принадлежит ли данный участок к классу лиц. Обучение производилось как с использованием положительных примеров (различных изображений лиц), так и отрицательных (изображений, не являющихся лицами). Для повышения надёжности детектирования использовался коллектив НС, обученных с различными начальными весами, вследствие чего НС ошибались по разному, а окончательное решение принималось голосованием всего коллектива.

Рисунок 5. Главные компоненты (собственные лица) и разложение изображения на главные компоненты

НС применяется так же для извлечения ключевых характеристик изображения, которые затем используются для последующей классификации. В , показан способ нейросетевой реализации метода анализа главных компонент. Суть метода анализа главных компонент заключается в получении максимально декореллированных коэффициентов, характеризующих входные образы. Эти коэффициенты называются главными компонентами и используются для статистического сжатия изображений, в котором небольшое число коэффициентов используется для представления всего образа. НС с одним скрытым слоем содержащим N нейронов (которое много меньше чем размерность изображения), обученная по методу обратного распространения ошибки восстанавливать на выходе изображение, поданное на вход, формирует на выходе скрытых нейронов коэффициенты первых N главных компонент, которые и используются для сравнения. Обычно используется от 10 до 200 главных компонент. С увеличением номера компоненты её репрезентативность сильно понижается, и использовать компоненты с большими номерами не имеет смысла. При использовании нелинейных активационных функций нейронных элементов возможна нелинейная декомпозиция на главные компоненты. Нелинейность позволяет более точно отразить вариации входных данных. Применяя анализ главных компонент к декомпозиции изображений лиц, получим главные компоненты, называемые собственными лицами , которым так же присуще полезное свойство – существуют компоненты, которые в основном отражают такие существенные характеристики лица как пол, раса, эмоции. При восстановлении компоненты имеют вид, похожий на лицо, причём первые отражают наиболее общую форму лица, последние – различные мелкие отличия между лицами (рис. 5). Такой метод хорошо применим для поиска похожих изображений лиц в больших базах данных. Показана так же возможность дальнейшего уменьшения размерности главных компонент при помощи НС . Оценивая качество реконструкции входного изображения можно очень точно определять его принадлежность к классу лиц.

Нейронные сети высокого порядка. Нейронные сети высокого порядка (НСВП) отличаются от МНС тем, что у них только один слой, но на входы нейронов поступают так же термы высокого порядка, являющиеся произведением двух или более компонент входного вектора . Такие сети так же могут формировать сложные разделяющие поверхности.

Нейронные сети Хопфилда. НС Хопфилда (НСХ) является однослойной и полносвязной (связи нейронов на самих себя отсутствуют), её выходы связаны со входами. В отличие от МНС, НСХ является релаксационной – т.е. будучи установленной в начальное состояние, функционирует до тех пор, пока не достигнет стабильного состояния, которое и будет являться её выходным значением. Для поиска глобального минимума применительно к оптимизационным задачам используют стохастические модификации НСХ .

Применение НСХ в качестве ассоциативной памяти позволяет точно восстанавливать образы, которым сеть обучена, при подаче на вход искажённого образа. При этом сеть “вспомнит” наиболее близкий (в смысле локального минимума энергии) образ, и таким образом распознает его. Такое функционирование так же можно представить как последовательное применение автоассоциативной памяти, описанной выше. В отличие от автоассоциативной памяти НСХ идеально точно восстановит образ. Для избежания интерференционных минимумов и повышения ёмкости сети используют различные методы .

Самоорганизующиеся нейронные сети Кохонена. Самоорганизующиеся нейронные сети Кохонена (СНСК) обеспечивают топологическое упорядочивание входного пространства образов. Они позволяют топологически непрерывно отображать входное n-мерное пространство в выходное m-мерное, m<

Когнитрон. Когнитрон своей архитектурой похож на строение зрительной коры, имеет иерархическую многослойную организацию, в которой нейроны между слоями связаны только локально. Обучается конкурентным обучением (без учителя). Каждый слой мозга реализует различные уровни обобщения; входной слой чувствителен к простым образам, таким, как линии, и их ориентации в определенных областях визуальной области, в то время как реакция других слоев является более сложной, абстрактной и независимой от позиции образа. Аналогичные функции реализованы в когнитроне путем моделирования организации зрительной коры.

Неокогнитрон является дальнейшим развитием идеи когнитрона и более точно отражает строение зрительной системы, позволяет распознавать образы независимо от их преобразований, вращений, искажений и изменений масштаба.

Когнитрон является мощным средством распознавания изображений, однако требует высоких вычислительных затрат, которые на сегодняшний день недостижимы .

Рассмотренные нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений, но при использовании этих методов возникают проблемы распознавания трёхмерных объектов. Тем не менее, данный подход имеет массу достоинств.

      Заключение

В настоящее время существует достаточно большое количество систем автоматического распознавания образов для различных прикладных задач.

Распознавание образов формальными методами как фундаментальное научное направление является неисчерпаемым.

Математические методы обработки изображений имеют самые разнообразные применения: наука, техника, медицина, социальная сфера. В дальнейшем роль распознавания образов в жизни человека будет возрастать еще больше.

Нейросетевые методы обеспечивают быстрое и надёжное распознавание изображений. Данный подход имеет массу достоинств и является одним из наиболее перспективных.

Литература

    Д.В. Брилюк, В.В. Старовойтов. Нейросетевые методы распознавания изображений // /

    Кузин Л.Т. Основы кибернетики: Основы кибернетических моделей. Т.2. - М.: Энергия, 1979. - 584с.

    Перегудов Ф.И., Тарасенко Ф.П. Введение в системный анализ: Учебное пособие. – М.: Высшая школа, 1997. - 389с.

    Темников Ф.Е., Афонин В.А., Дмитриев В.И. Теоретические основы информационной техники. - М.: Энергия, 1979. - 511с.

    Ту Дж., Гонсалес Р. Принципы распознавания образов. /Пер. с англ. - М.: Мир, 1978. - 410с.

    Уинстон П. Искусственный интеллект. /Пер. с англ. - М.: Мир, 1980. - 520с.

    Фу К. Структурные методы в распознавании образов: Пер.с англ. - М.: Мир, 1977. - 320с.

    Цыпкин Я.З. Основы информационной теории идентификации. - М.: Наука, 1984. - 520с.

    Поспелов Г.С. Искусственный интеллект - основа новой информационной технологии. - М.: Наука, 1988. - 280с.

    Ю. Лифшиц, Статистические методы распознавания образов ///modern/07modernnote.pdf

    Бор Н. Атомная физика и человеческое познание. /Пер.с англ. - М.: Мир, 1961. - 151с.

    Бутаков Е.А., Островский В.И., Фадеев И.Л. Обработка изображений на ЭВМ.1987.-236с.

    Дуда Р., Харт П. Распознавание образов и анализ сцен. /Пер.с англ. - М.: Мир, 1978. - 510с.

    Дюк В.А. Компьютерная психодиагностика. - СПб: Братство, 1994. - 365с.

    Aizenberg I. N., Aizenberg N. N. and Krivosheev G.A. Multi-valued and Universal Binary Neurons: Learning Algorithms, Applications to Image Processing and Recognition. Lecture Notes in Artificial Intelligence – Machine Learning and Data Mining in Pattern Recognition, 1999, pp. 21-35.

    Ranganath S. and Arun K. Face recognition using transform features and neural networks. Pattern Recognition 1997, Vol. 30, pp. 1615-1622.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 1. Организация и обучение нейронных сетей с прямыми и обратными связями – Брест:БПИ, 1999, - 260с.

    Vetter T. and Poggio T. Linear Object Classes and Image Synthesis From a Single Example Image. IEEE Transactions on Pattern Analysis and Machine Intelligence 1997, Vol. 19, pp. 733-742.

    Головко В.А. Нейроинтеллект: Теория и применения. Книга 2. Самоорганизация, отказоустойчивость и применение нейронных сетей – Брест:БПИ, 1999, - 228с.

    Lawrence S., Giles C. L., Tsoi A. C. and Back A. D. Face Recognition: A Convolutional Neural Network Approach. IEEE Transactions on Neural Networks, Special Issue on Neural Networks and Pattern Recognition, pp. 1-24.

    Уоссермен Ф. Нейрокомпьютерная техника: Теория и практика, 1992 – 184с.

    Rowley H. A., Baluja S. and Kanade T. Neural Network-Based Face Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 1998, Vol. 20, pp. 23-37.

    Valentin D., Abdi H., O"Toole A. J. and Cottrell G. W. Connectionist models of face processing: a survey. IN: Pattern Recognition 1994, Vol. 27, pp. 1209-1230.

    Документ

    Им составляют алгоритмы распознавания образов . Методы распознавания образов Как отмечалось выше... реальности не существует "экосистемы вообще", а существуют только отдельные... выводы из этого детального обзора методов распознавания мы представили в...

  1. Обзор методов идентификации людей на основе изображений лиц с учетом особенностей визуального распознавания

    Обзор

    ... распознавания человеком слабоконтрастных объектов, в т.ч. лиц. Приведен обзор распространенных методов ... Существует целый ряд методов ... образом , в результате проведенного исследования подготовлена платформа для разработки метода распознавания ...

  2. Имени Глазкова Валентина Владимировна ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕТОДОВ ПОСТРОЕНИЯ ПРОГРАММНЫХ СРЕДСТВ КЛАССИФИКАЦИИ МНОГОТЕМНЫХ ГИПЕРТЕКСТОВЫХ ДОКУМЕНТОВ Специальность 05

    Автореферат диссертации

    Гипертекстовых документов. В главе приведён обзор существующих методов решения рассматриваемой задачи, описание... отсечением наименее релевантных классов // Математические методы распознавания образов : 13-я Всероссийская конференция. Ленинградская обл...

  3. Слайд 0 Обзор задач биоинформатики связанных с анализом и обработкой генетических текстов

    Лекция

    Последовательностей ДНК и белков. Обзор задач биоинформатики как задач... сигналов требует применения современных методов распознавания образов , статистических подходов и... с низкой плотностью генов. Существующие программы предсказания генов не...

Cтраница 2


При обучении распознаванию образов известны некоторые т изображений и их принадлежность образу. Проблема распознавания образов состоит в том, чтобы по тренировочной последовательности построить алгоритм, определяющий значение у для любого набора из области определения функции.  

Распознающая система на основании данных о процессе и внешних воздействий на этот процесс оценивает производственную ситуацию и выдает команды на управление процессом. С проблемой распознавания образов тесно связана проблема создания обучающихся автоматов, которые должны уметь оценивать сложившуюся ситуацию и на основании этого принимать наилучшее решение. Поэтому большая часть задач по обучению автоматов может быть сведена к задачам обучения распознавания образов.  

Есть много действительно серьезных, по-настоящему захватывающих проблем, над которыми работают сейчас тысячи ученых. Это - и проблема распознавания образа, и обработка информации, лингвистические проблемы и многие другие.  

Эффективность решения задачи распознавания в конечном счете определяется тем, насколько эффективно организовано обучение распознающего устройства процедуре классификации. Поэтому основное внимание в проблеме распознавания образов уделяется задаче обучения распознаванию.  

Кажется логичным изучение архитектур, соответствующих нашему пониманию организации и функций мозга. Человеческий мозг представляет существующее доказательство того факта, что решение проблемы распознавания образов возможно. Кажется разумным эмулировать работу мозга, если мы хотим повторить его работу. Однако контраргументом является история полетов; человек не смог оторваться от земли до тех пор, пока не перестал имитировать движения крыльев и полет птиц.  

Использование топографических принципов позволяет создать самую быстродействующую и самую емкую машинную память. Голограммная память разыскивает нужную информацию по законам ассоциации, что свойственно человеческой памяти. Голография может решить проблему распознавания образов, над которой много лет бьются кибернетики. Если голограмме предъявить группу предметов, она мгновенно ответит (путем отождествления) на те из них, изображения которых она хранит. Причем, чем сложнее предмет, тем надежнее голограмма узнает его.  

В четвертой главе излагаются основы теории дискретных самоорганизующихся систем. Определяется количественная мера самоорганизации и самообучения, исследуется поведение случайных автоматов и автоматов, работающих в условиях случайных внешних воздействий. Особое место уделяется проблеме распознавания образов и теории одного класса устройств (так называемых а-персептронов), предназначенных для решения этой проблемы. Рассматриваются некоторые вопросы моделирования условных рефлексов, а также процессов обучения распознаванию смысла и выработки новых понятий.  

На рис. 12.11 представлен пример, в котором в качестве образа выбрана заглавная буква А. Нетрудно видеть, что при сохранении соответствующей емкости памяти уже после нескольких релаксационных шагов из сильно искаженных шумами букв возникает четкий образ, изначально записанный в памяти. Именно в этом и заключается взаимосвязь между ассоциативной памятью изложенного выше типа и проблемой распознавания образа. В настоящее время не существует точных представлений относительно того, каким образом можно было бы обобщить и расширить изложенную выше модель ассоциативной памяти на основе спиновых стекол, чтобы она была применима и к сложной проблеме распознования повернутых или сдвинутых образов. Как показывает пример изображения на рис. 12.11, буква А, перевернутая вверх тормашками, не была бы распознана, так как даже смещение неискаженного образа на несколько узлов решетки (растра) превращает его распознавание в проблему, решение которой выходит за рамки ассоциативных возможностей модели Хопфидда. Будущее покажет, удастся ли решить и этот класс проблем с помощью ассоциативных запоминающих устройств.  

Сложность экологических проблем требует обработки больших массивов данных. Необходимы исследования, направленные на облегчение интерпретации и разумного применения накопленной информации. Существенную помощь в этом могут оказать работы в области искусственного интеллекта, связанные с проблемой распознавания образов. Новейшие достижения микропроцессорной и микрокомпьютерной техники начинают использоваться при конструировании разумных измерительных приборов. Необходимо обратить внимание на организацию, накопление и сбор данных об окружающей среде.  

Как видим, понятие симметрии приобретает поистине глобальный смысл. Впрочем, можно пойти еще дальше и обратить внимание на то, что, по большому счету, мы имеем дело с симметрией всякий раз, когда решаем проблему распознавания образов, проблему диагностики.  

Распознавание образов является одной из форм обработки информации, поступающей от системы или объекта. Классы характеризуются тем, что принадлежащие им объекты обладают некоторой общностью (сходством), например характеризуются одинаковой структурой функционального оператора. То общее, что объединяет объекты в класс, принято называть образом. К задаче построения математического описания объекта или системы с точки зрения проблемы распознавания образов можно подходить двояко. Один из подходов заключается в том, что в качестве образа, который необходимо опознать, выступает сам функциональный оператор ФХС. С другой стороны, вместо функционального оператора Ф строится кибернетическое распознающее устройство, которое прогнозирует поведение системы так же, как это делал бы соответствующий функциональный оператор.  

Из сказанного выше очевидно, что существует множество алгоритмов выделения признаков в процессе предварительной обработки информации; их число непрерывно и быстро растет, поскольку выбор способов решения конкретной задачи в большой степени обусловлен характером самой задачи. Успех всего исследования по проблеме распознавания образов определяется тем, насколько удачно выполнен этап выделения признаков. Общее признание получила точка зрения, согласно которой новых крупных достижений в этой области следует ожидать как раз на стадии выделения признаков при предварительной обработке информации.  

Я лично считаю, что такая трактовка дает современному специалисту по кибернетике ключ к более глубокому исследованию проблемы памяти, которая рассматривается в этой книге в другом разделе. Далее, хотя Лейбницу не удалось создать релятивистскую логику, его философские взгляды на проблему восприятия (являющуюся одним из важнейших вопросов кибернетики) примерно на три столетия опередили его эпоху. Ведь только с появлением работ Уайтхеда (Whitehead) в нашем веке был обоснован взгляд, что некоторый объект, не обладающий сам по себе сознанием, в состоянии реагировать в определенном смысле на связанные с ним события. Наконец, особенно характерно то, что в своих исследованиях всех этих связей Лейбниц стоял на принципиальных позициях теории исследования операций. Он гораздо меньше интересовался причинно-следственным истолкованием связей, чем динамическим, и считал, что часть является выражением целого, а не просто содержится в нем. Такой подход хорошо согласуется с гештальт-проблемами в современной психологии, с подходом к решению всех задач промышленной кибернетики с позиций органического единства, а также с современными кибернетическими исследованиями проблемы распознавания образов.