Принцип работы флеш карты. Основные характеристики USB-накопителя

Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям ( , , , ). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…
Какая память бывает?
На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах .

Что такое flash-память и какой она бывает (NOR и NAND)?
Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память ( тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором.

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано . Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» - ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM.

Опять-таки на ixbt есть неплохая , посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да , но всё-таки…

Часть практическая

Flash
Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти.

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы ). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый» < 2 диаметров человеческого волоса, так что всё в мире относительно:


СЭМ-изображения контактов, питающих чип памяти

Если говорить о самой памяти, то тут нас тоже ждёт успех. Удалось отснять отдельные блоки, границы которых выделены стрелочками. Глядя на изображение с максимальным увеличением, постарайтесь напрячь взгляд, этот контраст реально трудно различим, но он есть на изображении (для наглядности я отметил отдельную ячейку линиями):


Ячейки памяти 1. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Мне самому сначала это показалось как артефакт изображения, но обработав все фото дома, я понял, что это либо вытянутые по вертикальной оси управляющие затворы при SLC-ячейке, либо это несколько ячеек, собранных в MLC. Хоть я и упомянул MLC выше, но всё-таки это вопрос. Для справки, «толщина» ячейки (т.е. расстояние между двумя светлыми точками на нижнем изображении) около 60 нм.

Чтобы не лукавить – вот аналогичные фото с другой половинки флешки. Полностью аналогичная картина:


Ячейки памяти 2. Границы блоков выделены стрелочками. Линиями обозначены отдельные ячейки

Конечно, сам чип – это не просто набор таких ячеек памяти, внутри него есть ещё какие-то структуры, принадлежность которых мне определить не удалось:


Другие структуры внутри чипов NAND памяти

DRAM
Всю плату SO-DIMM от Samsung я, конечно же, не стал распиливать, лишь с помощью строительного фена «отсоединил» один из модулей памяти. Стоит отметить, что тут пригодился один из советов, предложенных ещё после первой публикации – распилить под углом. Поэтому, для детального погружения в увиденное необходимо учитывать этот факт, тем более что распил под 45 градусов позволил ещё получить как бы «томографические» срезы конденсатора.

Однако по традиции начнём с контактов. Приятно было увидеть, как выглядит «скол» BGA и что собой представляет сама пайка:


«Скол» BGA-пайки

А вот и второй раз пора кричать: «Язь!», так как удалось увидеть отдельные твердотельные конденсаторы – концентрические круги на изображении, отмеченные стрелочками. Именно они хранят наши данные во время работы компьютера в виде заряда на своих обкладках. Судя по фотографиям размеры такого конденсатора составляют около 300 нм в ширину и около 100 нм в толщину.

Из-за того, что чип разрезан под углом, одни конденсаторы рассечены аккуратно по середине, у других же срезаны только «бока»:


DRAM память во всей красе

Если кто-то сомневается в том, что эти структуры и есть конденсаторы, то можно посмотреть более «профессиональное» фото (правда без масштабной метки).

Единственный момент, который меня смутил, что конденсаторы расположены в 2 ряда (левое нижнее фото), т.е. получается, что на 1 ячейку приходится 2 бита информации. Как уже было сказано выше, информация по мультибитовой записи имеется, но насколько эта технология применима и используется в современной промышленности – остаётся для меня под вопросом.

Конечно, кроме самих ячеек памяти внутри модуля есть ещё и какие-то вспомогательные структуры, о предназначении которых я могу только догадываться:


Другие структуры внутри чипа DRAM-памяти

Послесловие

Помимо тех ссылок, что раскиданы по тексту, на мой взгляд, довольно интересен данный обзор (пусть и от 1997 года), сам сайт (и фотогалерея, и chip-art, и патенты, и много-много всего) и данная контора , которая фактически занимается реверс-инжинирингом.

К сожалению, большого количества видео на тему производства Flash и RAM найти не удалось, поэтому довольствоваться придётся лишь сборкой USB-Flash-накопителей:

P.S.: Ещё раз всех с наступающим Новым Годом чёрного водяного дракона!!!
Странно получается: статью про Flash хотел написать одной из первых, но судьба распорядилась иначе. Скрестив пальцы, будем надеяться, что последующие, как минимум 2, статьи (про биообъекты и дисплеи) увидят свет в начале 2012 года. А пока затравка - углеродный скотч:


Углеродный скотч, на котором были закреплены исследуемые образцы. Думаю, что и обычный скотч выглядит похожим образом

Что такое флеш-память? | Флеш-память (на англ. Flash Memory ) или флеш-накопитель - вид твердотельной полупроводниковой энергонезависимой и перезаписываемой памяти.

Данный вид памяти может быть прочитан большое количество раз в пределах срока хранения информации, обычно от 10 до 100 лет. Но производить запись в память можно лишь ограниченное число раз (обычно в районе миллиона циклов). В основном в мире распространена флеш память, выдерживающая около ста тысяч циклов перезаписи и это гораздо больше, чем способна выдержать обычная дискета или диск CD-RW.
В отличие от накопителей на жестких дисках (HDD), флеш-память не содержит подвижных механических частей, и поэтому считается более надёжным и компактным видом носителя информации.
Так, благодаря своей компактности, относительной дешевизне и очень низкому энергопотреблению, флеш-накопители широко применяется в цифровом портативном оборудовании – в видео- и фотокамерах, в диктофонах, в MP3-плеерах, в КПК, в мобильных телефонах, смартфонах и коммуникаторах. Более того, данный вид памяти применяется для хранения встроенного ПО в различном оборудовании (модемы, мини-АТС, сканеры, принтеры, маршрутизаторы).
В последнее время широкое распространение получили флеш-накопители с USB входом (обычно говорят «флешка», USB-диск), вытеснившие дискеты и CD-диски.
В наше время основным недостатком устройств на базе флеш-накопителей, является очень высокое соотношение цена-объём, намного превышающий в сравнении с жесткими дисками в 2–5 раз. Поэтому объёмы флеш-дисков не очень велики, но в этих направлениях ведутся работы. Удешевляя технологический процесс и под действием конкуренции, уже многие фирмы заявили о выпуске SSD-дисков объёмом 512 ГБ и более. Например, в феврале 2011 года компания OCZ Technology предложила PCI-Express SSD-накопитель ёмкостью 1,2 ТБ, и позоляющий производить 10 млн. циклов на запись.
Современные SSD-накопители разрабатываются на базе многоканальных контроллеров, обеспечивающих параллельное чтение или запись сразу из нескольких микропроцессоров флеш-памяти. В следствие этого уровень производительности увеличился во столько раз, что ограничивающим фактором стала пропускная способность интерфейса SATA II.

КАК РАБОТАЕТ ФЛЕШ-ПАМЯТЬ

Флеш-накопитель сохраняет данные в массиве состоящий из транзисторов с плавающим затвором, называемые ячейками (на англ. cell). В обычных устройствах с одноуровневыми ячейками (на англ. single-level cell), любая из них может "запомнить" только один бит данных. Но некоторые более новые чипы с многоуровневыми ячейками (на англ. multi-level cell или triple-level cell) могут "запомнить" больше одного бита. В последнем случае на плавающем затворе транзистора может используется разный электрический заряд.

NOR ФЛЕШ-ПАМЯТЬ (NOR FLASH MEMORY)

В основе данного типа флеш-памяти лежит алгоритм ИЛИ-НЕ (на англ. NOR), так как в транзисторе с плавающим затвором слишком малое напряжение на затворе обозначает единицу.
Данный тип транзистора состоит из двух затворов: плавающего и управляющего. Первый затвор полностью изолирован и имеет возможность удерживать электроны до десяти лет. Ячейка также состоит из стока и истока. При подаче напряжения на управляющий затвор образуется электрическое поле и возникает так называемый туннельный эффект. Большая часть электронов переносится (туннелирует) через слой изолятора и проникает на плавающий затвор. Заряд на плавающем затворе транзистора изменяет «ширину» сток-исток и проводимость канала, что используется при чтении.
Запись и чтение ячеек очень сильно различаются в энергопотреблении: так, флеш-накопители потребляют больше тока при записи, чем при чтении (потребляется очень мало энергии).
Для удаления (стирания) данных на управляющий затвор подаётся достаточно высокое отрицательное напряжение, что приводит к обратному эффекту (электроны с плавающего затвора с помощью туннельного эффекта переходят на исток).
В NOR-архитектуре существует необходимость подводить к каждому транзистору контакт, что сильно увеличивает размеры процессора. Эта проблема решается с помощью новой NAND-архитектуры.

NAND ФЛЕШ-ПАМЯТЬ (NAND FLASH MEMORY)

В основе NAND-архитектуры лежит И-НЕ алгоритм (на англ. NAND). Принцип работы аналогичен NOR-типу, и отличается только расположением ячеек и их контактов. Уже нет необходимости подводить контакт к каждой ячейке памяти, так что стоимость и размер NAND-процессора значительно меньше. За счет этой архитектуры, запись и стирание происходят заметно быстрее. Однако эта технология не позволяет обращаться к произвольной области или ячейке, как в NOR.
Для достижения максимальной плотности и емкости, флеш-накопитель, изготовленный по технологии NAND, использует элементы с минимальными размерами. Поэтому, в отличие от NOR-накопителя допускается наличие сбойных ячеек (которые блокируются и не должны быть использованы в дальнейшем), что заметно усложняет работу с такой флеш-памятью. Более того, сегменты памяти в NAND снабжаются функцией CRC для проверки их целостности.
В настоящее время NOR и NAND-архитектуры существуют параллельно и никак не конкурируют друг с другом, поскольку у них разная область применения. NOR используется для простого хранения данных малого объема, NAND - для хранения данных большого размера.

ИСТОРИЯ ФЛЕШ-НАКОПИТЕЛЕЙ

Впервые флеш-память была изобретена в 1984 году инженером Фудзио Масуокой (Fujio Masuoka) работающего в то время в компании Toshiba. Название «flash» было придумано его коллегой Фудзио, Сёдзи Ариидзуми (Shoji Ariizumi), так как процесс стирания данных из памяти напомнил ему фотовспышку (на англ. flash). Фудзио представил свою разработку на Международном семинаре по электронным устройствам (International Electron Devices Meeting), в Сан-Франциско, в Калифорнии. Компанию Intel заинтересовало данное изобретение и через четыре года в 1988 году она выпустила первый коммерческий флеш-процессор NOR-типа.
NAND-архитектура флеш-памяти была анонсирована спустя год компанией Toshiba в 1989 году на Международной конференции построения твердотельных схем (International Solid-State Circuits Conference). У NAND-чипа была больше скорость записи и меньше площадь схемы.
В конце 2010 года, лидерами по производству флеш-накопителей являются Samsung (32% рынка) и Toshiba (17% рынка).
Стандартизацией процессоров флеш-памяти NAND-архитектуры занимается группа ONFI (NAND Flash Interface Working Group). Настоящим стандартом считается спецификация ONFI 1.0, выпущенная 28 декабря 2006 года. Стандартизацию ONFI при производстве NAND-процессоров поддерживают такие компании, как Samsung, Toshiba, Intel, Hynix и др.

ХАРАКТЕРИСТИКИ ФЛЕШ-НАКОПИТЕЛЕЙ

В настоящее время объём флеш-накопителей измеряется от килобайт до сотен гигабайт.

В 2005 году две компании Toshiba и SanDisk представили NAND-процессоры общим объёмом 1 Гб, использующие технологию многоуровневых ячеек (транзистор может хранить несколько бит данных, используя различный электрический заряд на плавающем затворе).

В сентябре 2006 года компания Samsung представила 4-гигабайтный чип, изготовленный по 40-нм технологическому процессу.

В конце 2007 года Samsung известила о создании первого в мире NAND-чипа, использующего технологию многоуровневых ячеек, выполненного уже по 30-нм технологическому процессу с ёмкостью накопителя 8 Гб.

В декабре 2009 года, компания Toshiba заявила, что 64 Гб NAND-чип уже поставляется заказчикам и массовый выпуск начался в первом квартале 2010 года.

16 июня 2010 года Toshiba представила первый в истории 128 Гб процессор, состоящий из шестнадцати модулей по 8 Гб.
Для повышения объёма флеш-памяти, в устройствах часто применяется комплексный массив, состоящий из нескольких процессоров.

В апреле 2011 года компании Intel и Micron представили MLC NAND флэш-чип емкостью 8 Гбайт, произведенного по 20-нм технологическому процессу. Самый первый 20-нм NAND процессор имеет площадь 118 мм, что на 35-40% меньше, чем у доступных в настоящее время 25-нм чипов на 8 Гбайт. Серийное производство данного чипа начнется в конце 2011 года.

ВИДЫ И ТИПЫ КАРТ ПАМЯТИ И ФЛЕШ-НАКОПИТЕЛЕЙ

CF (на англ. Compact Flash ): один из старейших стандартов типов памяти. Первая CF флеш-карта была произведена корпорацией SanDisk еще в 1994 году. Данный формат памяти очень распространён и в наше время. Чаще всего он применяется в профессиональном видео- и фото-оборудовании, так как ввиду своих больших размеров (43х36х3,3 мм) слот для Compact Flash физически проблематично установить в мобильные телефоны или MP3-плееры. Кроме того, ни одна карта не может похвастаться такими скоростями, объемами и надежностью. Максимальный объём Compact Flash уже достиг размера в 128 Гбайт, а скорость копирования данных увеличена до 120 Мбайт/с.

MMC (на англ. Multimedia Card ): карта в формате MMC имеет небольшой размер - 24х32х1,4 мм. Разработана совместно компаниями SanDisk и Siemens. MMC содержит контроллер памяти и обладает высокой совместимостью с устройствами самого различного типа. В большинстве случаев карты MMC поддерживаются устройствами со слотом SD.

RS-MMC (на англ. Reduced Size Multimedia Card ): карта памяти, которая вдвое меньше по длине стандартной карты MMC. Её размеры составляют 24х18х1,4 мм, а вес - порядка 6 гр., все остальные характеристики и параметры не отличаются от MMC. Для обеспечения совместимости со стандартом MMC при использовании карт RS-MMC нужен адаптер.

DV-RS-MMC (на англ. Dual Voltage Reduced Size Multimedia Card ): карты памяти DV-RS-MMC с двойным питанием (1,8 и 3,3 В) отличаются пониженным энергопотреблением, что позволит работать мобильному телефону немного дольше. Размеры карты совпадают с размерами RS-MMC, 24х18х1,4 мм.

MMCmicro : миниатюрная карта памяти для мобильных устройств с размерами 14х12х1,1 мм. Для обеспечения совместимости со стандартным слотом MMC необходимо использовать специальный переходник.

SD Card (на англ. Secure Digital Card ): поддерживается фирмами SanDisk, Panasonic и Toshiba. Стандарт SD является дальнейшим развитием стандарта MMC. По размерам и характеристикам карты SD очень похожи на MMC, только чуть толще (32х24х2,1 мм). Основное отличие от MMC - технология защиты авторских прав: карта имеет криптозащиту от несанкционированного копирования, повышенную защиту информации от случайного стирания или разрушения и механический переключатель защиты от записи. Несмотря на родство стандартов, карты SD нельзя использовать в устройствах со слотом MMC.

SDHC (на англ. SD High Capacity , SD высокой ёмкости ): Старые карты SD (SD 1.0, SD 1.1) и новые SDHC (SD 2.0) и устройства их чтения различаются ограничением на максимальную ёмкость носителя, 4 Гб для SD и 32 Гб для SDHC. Устройства чтения SDHC обратно совместимы с SD, то есть SD-карта будет без проблем прочитана в устройстве чтения SDHC, но в устройстве SD карта SDHC не будет читаться вовсе. Оба варианта могут быть представлены в любом из трёх форматов физических размеров (стандартный, mini и micro).

miniSD (на англ. Mini Secure Digital Card ): От стандартных карт Secure Digital отличаются меньшими размерами 21,5х20х1,4 мм. Для обеспечения работы карты в устройствах, оснащённых обычным SD-слотом, используется адаптер.

microSD (на англ. Micro Secure Digital Card ): в 2011 году являются самыми компактными съёмными устройствами флеш-памяти (11х15х1 мм). Используются, в первую очередь, в мобильных телефонах, коммуникаторах и т. п., так как, благодаря своей компактности, позволяют существенно расширить память устройства, не увеличивая при этом его размеры. Переключатель защиты от записи вынесен на адаптер microSD-SD. Максимальный объём карты microSDHC, выпущенной SanDisk в 2010 году, равен 32 Гб.

Memory Stick Duo : данный стандарт памяти разрабатывался и поддерживается компанией Sony. Корпус достаточно прочный. На данный момент - это самая дорогая память из всех представленных. Memory Stick Duo был разработан на базе широко распространённого стандарта Memory Stick от той же Sony, отличается малыми размерами (20х31х1,6 мм).

Memory Stick Micro (M2) : данный формат является конкурентом формата microSD (по размеру), сохраняя преимущества карт памяти Sony.

xD-Picture Card : карта используются в цифровых фотоаппаратах фирм Olympus, Fujifilm и некоторых других.

Современные технологии развиваются достаточно быстро, и то, что ещё вчера казалось верхом совершенства, сегодня нас совсем не устраивает. Это особенно относится к современным видам компьютерной памяти. Памяти постоянно не хватает или скорость носителя очень низкая, по современным меркам.

Флеш-память появилась относительно недавно, но имея много преимуществ достаточно серьёзно теснит другие виды памяти.

Флеш- память - это вид твёрдотельной энергонезависимой, перезаписываемой памяти. В отличии от жёсткого диска флешка имеет большую скорость чтения, которая может доходить до 100 Мб/с, очень маленький размер. Её можно легко транспортировать, так как она подключается через USB- порт.

Ею можно пользоваться как ОЗУ, но в отличии от ОЗУ, флеш-память хранит данные при отключенном питании, автономно.

Сегодня на рынке представлены флеш- носители объёмом от 256 мегабайт до 16 гигабайт. Но имеются носители и с большим объёмом.

К дополнительным функциям флеш- памяти можно отнести защиту от копирования, сканер отпечатков пальцев, модуль шифрования и многое другое. Так же если материнская плата поддерживает загрузку через USB- порт, то её можно использовать как загрузочное устройство.

К новым флеш- технологиям можно отнести UЗ. Этот носитель распознаётся компьютером как два диска, где на одном хранятся данные, а со второго происходит загрузка компьютера. Преимущества этой технологии очевидны, вы можете работать на любом компьютере.

Достаточно маленький размер, позволяет использовать этот вид памяти очень широко. Это и мобильные телефоны, фотоаппараты, видеокамеры, диктофоны и другое оборудование.

В описании технических характеристик любого мобильного устройства указывается тип флеш-памяти и не случайно, так как не все типы совместимы. Исходя их этого, надо выбирать достаточно распространенные на рынке флешки, чтобы не иметь проблем с каким-нибудь устройством.
Для некоторых типов флеш-карт существуют адаптеры, которые расширяют её возможности.

Существующие типы флеш-памяти

Современные флеш-карты можно разделить на шесть основных типов.

Первый и самый распространенный тип - это CompactFlash (CF) , имеется двух видов CF type I и CF type II. Имеет хорошую скорость, ёмкость и цену.
К недостаткам относят размер 42*36*4 мм. Является достаточно универсальным и используется во многих устройствах.

IBM Microdrive -дешёвая, но менее надёжная и потребляет больше обычного энергии, что и является причиной её ограниченности.

SmartMedia - тонкая и дешёвая, но не высокая защита от стирания.

Multimedia Card (MMC) - маленький размер (24x32x1,4мм), низкое энергопотребление, используется в миниатюрных устройствах. Недостаток - низкая скорость.

SecureDigital (SD) при сопастовимых размерах с Multimedia Card, имеет больший объём и скорость. Но дороже.

MemoryStick - имеет хорошую защиту информации, скорость, но не очень большую ёмкость.

Сегодня самыми распространёнными считаются CompactFlash и SD/MMC, но
кроме перечисленных карт, существуют и другие виды флеш-карт

Выбирать флеш-карту стоит исходя из своих потребностей, учитывая, что чем больше объём и скорость, тем дороже флеш- карта.

Принципиальная схема построения устройства осталась неизменной с 1995 года, когда флэшки впервые начали производиться в промышленных масштабах. Если не углубляться в детали, USB флэш-карта состоит из трех ключевых элементов: * разъем USB -- хорошо знакомый каждому разъем, представляющий собой интерфейс между флэшкой и компьютерной системой, будь то система персонального компьютера, мультимедийного центра или даже автомагнитолы; * контроллер памяти -- очень важный элемент цепи. Осуществляет связь памяти устройства с разъемом USB и руководит передачей данных в обе стороны; * микросхема памяти -- самая дорогая и важная часть USB флэш-карты. Определяет объем хранимой на карте информации, быстроту чтения/записи данных. Что может меняться в этой схеме? Принципиально ничего, но современная индустрия предоставляет несколько вариантов такой схемы; комбинация разъемов eSATA и USB, два разъема USB.

1 -- USB-разъём; 2 -- микроконтроллер; 3 -- контрольные точки; 4 -- микросхема флэш-памяти; 5 -- кварцевый резонатор; 6 -- светодиод; 7 -- переключатель «защита от записи»; 8 -- место для дополнительной микросхемы памяти.

Принцип действия

Флэш-память хранит информацию в массиве транзисторов с плавающим затвором, называемых ячейками (англ. cell). В традиционных устройствах с одноуровневыми ячейками (англ. single-level cell, SLC), каждая из них может хранить только один бит. Некоторые новые устройства с многоуровневыми ячейками (англ. multi-level cell, MLC; triple-level cell, TLC ) могут хранить больше одного бита, используя разный уровень электрического заряда на плавающем затворе транзистора.

Типы флeш памяти

NOR

В основе этого типа флэш-памяти лежит ИЛИ-НЕ элемент (англ. NOR), потому что в транзисторе с плавающим затвором низкое напряжение на затворе обозначает единицу.

Транзистор имеет два затвора: управляющий и плавающий. Последний полностью изолирован и способен удерживать электроны до 10 лет. В ячейке имеются также сток и исток. При программировании напряжением на управляющем затворе создаётся электрическое поле и возникает туннельный эффект. Часть электронов туннелирует сквозь слой изолятора и попадает на плавающий затвор. Заряд на плавающем затворе изменяет «ширину» канала сток-исток и его проводимость, что используется при чтении.

Программирование и чтение ячеек сильно различаются в энергопотреблении: устройства флэш-памяти потребляют достаточно большой ток при записи, тогда как при чтении затраты энергии малы.

Для стирания информации на управляющий затвор подаётся высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток.

В NOR-архитектуре к каждому транзистору необходимо подвести индивидуальный контакт, что увеличивает размеры схемы. Эта проблема решается с помощью NAND-архитектуры.

NAND

В основе NAND-типа лежит И-НЕ элемент (англ. NAND). Принцип работы такой же, от NOR-типа отличается только размещением ячеек и их контактами. В результате уже не требуется подводить индивидуальный контакт к каждой ячейке, так что размер и стоимость NAND-чипа может быть существенно меньше. Также запись и стирание происходит быстрее. Однако эта архитектура не позволяет обращаться к произвольной ячейке.

NAND и NOR-архитектуры сейчас существуют параллельно и не конкурируют друг с другом, поскольку находят применение в разных областях хранения данных.

В основе любой flash-памяти лежит кристалл кремния, на котором сформированы не совсем обычные полевые транзисторы. У такого транзистора есть два изолиро­ванных затвора: управляющий (control) и плавающий (floating). Последний спо­собен удерживать электроны, то есть заряд. В ячейке, как и у любого полевого транзистора, есть сток и исток (рис. 4.1). В процессе записи на управляющий затвор подается положительное напряжение и часть электронов, движущихся от стока к истоку, отклоняется к плавающему затвору. Некоторые из электронов преодоле­вают слой изолятора и проникают (диффундируют) в плавающий затвор. В нем они могут оставаться в течение многих лет.

Концентрация электронов в области плавающего затвора определяет одно из двух устойчивых состояний транзистора - ячейки памяти. В первом, исходном, состоя­нии количество электронов на плавающем затворе мало, а пороговое напряжение открытия транзистора относительно невысоко (логическая единица). Когда на плавающий затвор занесено достаточное количество электронов, транзистор ока­зывается во втором устойчивом состоянии. Напряжение открытия его резко уве­личивается, что соответствует логическому нулю. При считывании измеряется

Рис. 4.1. Ячейка flash-памяти

пороговое напряжение, которое нужно подать на сток для открытия транзистора. Для удаления информации на управляющий затвор кратковременно подается от­рицательное напряжение, и электроны с плавающего затвора диффундируют об­ратно на исток. Транзистор вновь переходит в состояние логической единицы и остается в нем, пока не будет произведена очередная запись. Примечательно, что во flash-памяти один транзистор хранит один бит информации - он и является ячейкой. Весь процесс «запоминания» основан на диффузии электронов в полу­проводнике. Отсюда следуют два не очень оптимистичных вывода.

Время хранения заряда очень велико и измеряется годами, но все же ограниче­но. Законы термодинамики и диффузии гласят, что концентрация электронов в разных областях рано или поздно выровняется.

По той же причине ограничено количество циклов записи-перезаписи: от ста тысяч до нескольких миллионов. Со временем неизбежно происходит деграда­ция самого материала и р-п-переходов. Например, карты Kingston Compact Flash рассчитаны на 300 ООО циклов перезаписи. Transcend Compact Flash - на

1 ООО ООО, а flash-диск Transcend 32 Gb USB – всего на 100 ООО.

Существуют две архитектуры flash-памяти. Они отличаются способом обращения к ячейкам и, соответственно, организацией внутренних проводников.

Память NOR (ИЛИ-НЕ) позволяет обращаться к ячейкам по одной. К каждой ячейке подходит отдельный проводник. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (каждое слово содержит

2 байта). Такая архитектура накладывает серьезные ограничения на максималь­ный объем памяти на единице площади кристалла. Память NOR сегодня используется лишь в микросхемах BIOS и других ПЗУ малой емкости, например в сотовых телефонах.

В памяти архитектуры NAND (И-НЕ) каждая ячейка оказывается на пересече­нии «линии бит» и «линии слов». Ячейки группируются в небольшие блоки по аналогии с кластером жесткого диска. И считывание, и запись осуществляются лишь целыми блоками или строками. Все современные съемные носители по­строены на памяти NAND.

Крупнейшими производителями NAND-чипов являются компании Intel, Micron Technology, Sony и Samsung. Ассортимент выпускаемых чипов довольно велик, а обновление его происходит несколько раз в год.

Контроллеры

Для управления чтением и записью служит контроллер памяти. В настоящее вре­мя контроллер всегда выполняется в виде отдельного элемента (это либо микро­схема одного из стандартных форм-факторов, либо бескорпусный чип, встраиваемый в карту памяти), хотя ведутся работы по интеграции контроллера непосредственно в кристалл flash-памяти.

Контроллеры разрабатываются и выпускаются под совершенно определенные микросхемы flash-памяти. Способ адресации ячеек конструктивно заложен в кон­троллере. Данные при записи в микросхему flash-памяти располагаются опреде­ленным способом, меняющимся от модели к модели. Производители эти тонкости держат в секрете и, по всей видимости, раскрывать не планируют. Очевидно, мик­ропрограмм контроллеров создается значительно больше, чем самих моделей кон­троллеров. Микропрограмма контроллера (прошивка) и таблица трансляции ад­ресов (транслятор) записываются в служебную область flash-памяти. Именно эту область контроллер начинает считывать сразу после подачи на него питания. Кро­ме собственно адресации ячеек, контроллер выполняет ряд других функций: функ­ции контроля bad-секторов, коррекции ошибок (ЕСС - error check and correct) и равномерности износа ячеек (wear leveling).

Технологической нормой при изготовлении микросхем памяти считается наличие в них в среднем до 2 % нерабочих ячеек. Со временем их количество может увели­чиваться, поэтому, как и в винчестерах, во flash-памяти предусмотрен резервный объем. Если появляется дефектный сектор, контроллер в процессе форматиро­вания или записи подменяет его адрес в таблице размещения файлов адресом сектора из резервной области. Коррекция осуществляется контроллером, но реа­лизуется на уровне файловой системы конкретного носителя.

Из-за ограниченного ресурса ячеек (порядка нескольких миллионов циклов чтения/ записи для каждой) в контроллер заложена функция учета равномерности износа. Чтобы запись информации осуществлялась равномерно, свободное пространство условно разбивается на участки, и для каждого из них учитывается количество операций записи. Статистика циклов заносится в скрытую служебную область памяти, и за этими сведениями контроллер периодически обращается к ней. На ад­ресацию это не влияет.

Конструкция flash-диска USB

Несмотря на разнообразие корпусов, все flash-диски USB устроены одинаково. Если половинки корпуса соединены защелками, они обычно легко разъединяются. Водонепроницаемые или ультрамодные корпусы приходится вскрывать разру­шающими методами, например разрезать.

На плате внутри flash-диска USB (рис. 4.2) обязательно присутствуют две микро­схемы: чип памяти и контроллер. На обеих нанесена заводская маркировка. Иногда плата несет два чипа flash-памяти, которые работают в паре. Обвязка микросхем состоит из нескольких резисторов и диодов, стабилизатора питания и кварцевого резонатора. В последнее время стабилизатор все чаще встраивается непосред­ственно в контроллер и количество навесных элементов сокращается до минимума. Кроме того, на плате могут находиться светодиодный индикатор и миниатюрный переключатель для защиты от записи.

Рис. 4.2. Устройство flash-диска

Разъем USB припаян непосредственно к плате. Места пайки контактов во многих моделях являются довольно уязвимыми, поскольку на них приходится механиче­ская нагрузка при подключении и отключении устройства.

Виды и конструкция карт памяти

Многие компании время от времени предлагали пользователям разные конструк­ции карт памяти. За редкими исключениями все они несовместимы между собой по количеству и расположению контактов и электрическим характеристикам, Flash-карты бывают двух типов: с параллельным (parallel) и последовательным (serial) интерфейсом.

В табл. 4.1 перечислены 12 основных типов карт памяти, которые встречаются в настоящее время. Внутри каждого типа существуют свои дополнительные раз­новидности, с учетом которых можно говорить о существовании почти 40 видов карт.

Таблица 4.1. Типы карт памяти

Тип карты памяти

Габаритные размеры (мм)

Максимальная

конструктивная

Интерфейс

CompactFlash (CF)

Параллельный 50 контактов

Последовательный 9 контактов

MultiMedia Card (ММС)

Последовательный 7 контактов

Последовательный 7 контактов

Highspeed ММС

Последовательный 13 контактов

Последовательный 10 контактов

Memory Stick PRO

Последовательный 10 контактов

Memory Stick Duo

Последовательный 10 контактов

SmartMedia (SSFDC)

Параллельный 22 контакта

Параллельный 22 контакта

Последовательный 8 контактов

Карты ММС могут работать в двух режимах: ММС (MultiMedia Card) и SPI (Serial Peripheral Interface). Режим SPI является частью протокола ММС и используется идя коммуникации с каналом SPI в микроконтроллерах компании Motorola и не­которых других производителей.

В слот для карты SD (Secure Digital) можно вставить карту ММС (MultiMedia Card), но не наоборот. В контроллер карты SD заложено аппаратное шифрование данных, а сама память снабжена специальной областью, в которой хранится ключ шифрования. Сделано это для того, чтобы препятствовать нелегальному копиро­ванию музыкальных записей, для хранения и продажи которых и задумывался такой носитель. На карте сделан переключатель защиты от записи (write protection switch).

Карты CompactFlash (CF) легко можно вставить в разъем PCMCIA Туре II. Несмотря на то что у PCMCIA 68 контактов, а у CF - только 50, конструкция карт CompactFlash обеспечивает полную совместимость и обладает всеми функциональ­ными возможностями формата PCMCIA-AT А.

Все карты памяти Memory Stick (стандарт корпорации Sony) относительно совмес­тимы между собой. Стандартом теоретически предусмотрен объем карты памяти до 2 Тбайт, хотя в реальности емкость достигает единиц гигабайт.

Карты SmartMedia практически вышли из употребления, их можно встретить только в очень старых цифровых камерах. Примечательно, что это был единственный стан­дарт, в котором контроллер находился не внутри карты, а в устройстве считывания.

Конструкция карт памяти неразборная - это непригодное для ремонта устройство. Бескорпусные микросхемы вместе с выводами залиты в компаунд и все вместе спрессованы в пластиковую оболочку. Добраться до кристалла можно лишь путем вскрытия устройства, но при этом почти неизбежно повреждение проводников.

Устройства считывания

Для считывания flash-диска USB достаточно обычного порта USB: компьютер видит подобные устройства как стандартный съемный диск благодаря их контрол­леру. Контроллеры всех карт памяти обращены к компьютеру последовательными или параллельными интерфейсами - контактами на карте. Для каждого из этих интерфейсов нужен соответствующий переходник - дополнительный контроллер, согласующий данный интерфейс со стандартным портом USB.

Кард-ридер - устройство, состоящее из одного или нескольких подобных контрол­леров, преобразователя питания и разъемов для разных карт памяти (рис. 4.3). Питание осуществляется от источника +5 В через кабель USB.

Рис. 4.3. Кард-ридер

Чаще всего встречаются «комбайны», рассчитанные на несколько типов карт: от 6 до 40. Слотов в кард-ридере гораздо меньше, так как каждое гнездо использу­ется для нескольких типов карт, близких по размерам и расположению контактов. По своим характеристикам разные модели практически равноценны, а различа­ются, главным образом, количеством поддерживаемых типов карт и конструк­цией.

Логическая организация

Прежде чем перейти к файловым системам flash-накопителей, нужно вспомнить об архитектуре NAND. В этой часто используемой памяти и чтение, и запись, и уда­ление информации происходят лишь блоками.

На жестких и гибких дисках величина блока составляет 512 байтов, не считая 59 служебных байтов, которые видны только контроллеру винчестера. Все файло­вые системы создавались именно с учетом этих значений. Проблема в том, что во flash-памяти величина блока стирания, за редким исключением, не совпадает с величиной стандартного дискового сектора в 512 байтов и обычно составляет 4,8 и даже 64 Кбайт. С другой стороны, для обеспечения совместимости блок чте­ния/записи должен совпадать с величиной дискового сектора.

Для этого блок стирания разбивается на несколько блоков чтения/записи с разме­ром 512 байтов. На практике блок чуть больше: кроме 512 байтов для данных, в нем еще есть «хвост» (Tail) длиной 16 байтов для служебной информации о самом блоке. Физически расположение и количество блоков чтения/записи ничем не ограничены. Единственное ограничение - блок чтения/записи не должен пересе­кать границу блока стирания, так как он не может принадлежать двум разным блокам стирания.

Блоки чтения/записи делятся на три типа: действительные, недействительные и дефектные. Блоки, которые содержат записанные данные и принадлежат какому-либо файлу, являются действительными. Использованные блоки с устаревшей информацией считаются недействительными и подлежат очистке. Категорию де­фектных составляют блоки, не поддающиеся записи и стиранию.

Еще одна особенность flash-памяти состоит в том, что запись информации возмож­на только на предварительно очищенное от предыдущей информации пространст­во. Когда необходимо записать информацию, микропрограмма контроллера долж­на решить, какие недействительные блоки нужно перед этим стереть. В большей части микропрограмм вопрос удаления недействительных блоков решается про­стейшим способом: как только определенная часть емкости flash-диска оказывает­ся заполнена информацией, автоматически запускается механизм очистки недей­ствительных блоков.

Для увеличения срока службы памяти используется технология управления изно­сом (wear-leveling control), которая продлевает жизненный цикл кристалла памя­ти за счет равномерного распределения циклов записи/стирания блоков памяти. Побочный эффект - выход из строя одного блока памяти - не сказывается на работе остальных блоков памяти того же кристалла. Неподвижные блоки принад­лежат файлам, которые долго или вообще никогда не изменялись и не перемеща­лись. Наличие неподвижных блоков данных приводит к тому, что оставшаяся часть ячеек подвергается усиленному износу и быстрее расходует свой ресурс. Микро­программа учитывает такие блоки и по мере необходимости перемещает их содер­жимое в другие ячейки.

Файловые системы flash-дисков и карт памяти, на первый взгляд, хорошо знакомы пользователям по жестким и гибким дискам. Это FAT16, реже FAT32: именно так предлагает отформатировать диск операционная система Windows. Стандартными средствами Windows ХР и Windows 7 диск можно отформатировать и в систему NTFS! Для этого нужно предварительно зайти в Диспетчер устройств и в окне свойств подключенного flash-диска на вкладке Политика выбрать значение Оптимизация для быстрого выполнения. Специальные программы от производителей, например HP USB Disk Storage Format Tool, позволяют форматировать flash-диски в NTFS и без таких усилий.

Однако внешнее сходство файловых систем твердотельных накопителей и обыч­ных винчестеров обманчиво. Файловая система flash-памяти (Flash File System, FFS) лишь эмулирует обычный дисковый накопитель и состоит из блоков управ­ления и блока инициализации. На самом деле об истинном расположении и адре­сации блоков памяти знает только контроллер flash-диска или карты памяти.

Это очень существенно при разных способах восстановления содержимого микро­схемы flash-памяти. При считывании микросхемы памяти через ее «родной» кон­троллер в файле образа оказывается последовательность блоков в порядке их но­меров или смещений. В начале находятся заголовок и таблица файловой системы. Если же считывание производится на программаторе, в начальных блоках дампа расположена служебная информация, а блоки с данными перемешаны почти бес­порядочно. При этом служебная информация вряд ли будет полезна, поскольку она всецело зависит от модели контроллера и его прошивки - правильную после­довательность блоков приходится составлять с большим трудом.

Некоторые фотоаппараты работают только с файловой системой RAW Способ записи фотографий на носитель с такой файловой системой, а также особенности форматирования самой карты зависят от модели аппарата и даже прошивки той или иной модели. Этот формат не стандартизирован и имеет много разновидностей. Обычно данные с таких карт могут восстановить лишь сервисные программы от изготовителя фотокамеры, а в качестве кард-ридера желательно использовать сам фотоаппарат.

Рис. 4.4. Окно форматирования flash-диска в Windows Vista SPl

Нововведением является файловая система exFAT (Extended FAT - расширенная FAT). Поддержка этой специально разработанной для flash-дисков файловой системы впервые появилась в Windows Embedded СЕ 6.0. С exFAT работают Windows Vista Service Pack 1 и Windows 7 (рис. 4.4).

Назначение новой файловой системы - постепен­ная замена FAT и FAT32 на flash-накопителях. В ней заложены некоторые черты, которые ранее были присущи только файловой системе NTFS:

Преодолено ограничение в размере файла в 4 Гбайт: теоретически лимит составляет 2^ байтов (16 эксабайтов);

Улучшено распределение свободного места за счет введения битовой карты свободного мес­та, что уменьшает фрагментацию диска;

Снят лимит на количество файлов в одной директории;

Введена поддержка списка прав доступа.

Насколько скоро эта файловая система станет нормой для flash-накопителей, по­кажет время. Видимо, это произойдет не раньше, чем на операционную систему Windows 7 перейдет подавляющее большинство пользователей.