Точность определения координат в GPS-навигации и причины ошибок GPS. Ионосферные и атмосферные задержки сигналов

Практическое применение одной из наиболее выдающихся современных разработок - системы глобального позиционирования GPS (Global Positioning System), точность определения местонахождения объекта зависит от степени погрешности, возникающей при измерении расстояний от терминала до спутников. От степени влияния целого ряда факторов зависит, насколько точно будет определено местоположение GPS-приемника, будет эта погрешность составлять один метр или десяток, а то и сотню метров.

К факторам, оказывающим непосредственное влияние на степень погрешности, можно отнести следующие:

    Специальная погрешность (SA);
    Качество геометрии спутников;
    Гравитационные влияния;
    Влияния ионосферы;
    Влияния тропосферы;
    Отражения сигналов;
    Относительность измерения времени;
    Округление и вычислительные ошибки

Специальная погрешность

Данный фактор представляет собой искусственную погрешность, намеренное искажение времени сигнала, посылаемого спутником, в результате чего точность определения местоположения объекта прибором GPS снижалась до 50-150 метров. Погрешность искусственно вносилась в сигналы спутников в соответствии с требованиями режима SA - selective availability (селективного доступа), задачей которого было ограничить точность измерений для гражданских GPS-приемников.

Причина создания «специальной погрешности» заключалась в обеспечении государственной безопасности США. В момент организации и развития система глобального позиционирования GPS являлась исключительно военной разработкой, призванной обеспечить потребности силовых структур. Лишь с течением времени навигационная система получила коммерческое применение, возможность определять местоположение появилась и у гражданских лиц. Помимо исключительно мирных целей, система позиционирования могла быть использована для различных злонамеренных действий, которые представляли бы прямую угрозу для безопасности. Так, террористические организации получили бы возможность использовать GPS для определения местонахождения стратегических объектов и точного наведения дистанционного оружия.

Режим селективного доступа все-таки был отключен вследствие широкой распространенности системы глобального позиционирования, произошло это в мае 2000 года, и решение об этом принял лично президент США. Событие стало ключевым в истории развития GPS-навигации, еще бы – ведь с этого момента для частных коммерческих предприятий и простых граждан открылись новые горизонты использования системы точного определения координат. С момента отключения режима SA точность показаний приборов повысилась с 50-100 метров до 6-7 метров. Предпосылкой к полному отключению послужило частичное отключение, предпринятое в 1990 году, во время войны в Персидском заливе. Тогда армии США не хватало собственных штатных приемников, позволявших ориентироваться в пустыне, и было закуплено порядка 10 тыс. единиц навигаторов «гражданского» предназначения.

Качество геометрии спутников

Очередным фактором, влияющим на точность показаний GPS-приемника, является качество геометрии спутников – характер взаимного расположения спутников относительно приемника. Точность определения местоположения напрямую зависит от количества спутников в «зоне видимости» прибора, а также от того, как эти спутники распределены на небосводе. Все расчеты построены не столько на определении расстояния как такового, но и на пересечении прямых, образованных расстояниями от приемника GPS до каждого из видимых спутников. Именно эти пересечения формируют зону вероятного нахождения объекта, и чем обширнее зона, тем ниже точность определения.

Оптимальным вариантом измерения считается соотношение расстояний от терминала до четырех спутников одновременно, для создания подобных условий в любой точке земного шара по орбите Земли кружат 28 спутников. Спутники равномерно распределены по орбите на высоте 20350 км. Для высокой точности измерений необходимо, чтобы спутники, находясь в пределах видимости прибора, были разнесены на максимально возможное расстояние. Если же все четыре спутника будут расположены, к примеру, только на северо-западе относительно прибора, не исключен вариант, что определить местоположение будет невозможно, либо точность определения будет неудовлетворительной (100 – 150 м.). Область вероятного расположения прибора (пересечения прямых) будет весьма значительной, что негативно отразится на точности.

Особенно важным качество геометрии спутников является при расположении приемника GPS в местности, где спутники могут быть заслонены естественными или искусственными преградами. Это могут быть горы, ущелья, высотные здания, в такой местности важно количество спутников, которые прибор может засечь одновременно, чем меньше спутников оказывается в пределах видимости, тем ниже точность определения местоположения. В то время как один или несколько спутников остаются скрытыми, или же сигнал какого-либо из спутников заблокирован, система предпринимает попытки определить положение с помощью остальных спутников.

Существует система оценки качества геометрии спутников, которая используется производителями навигационных GPS-приборов и которая характеризует уровень потери точности непосредственно из-за расположения спутников. Показатель DOP (Delution of Precision - понижение точности), учитывает количество видимых спутников в определенный момент времени и расположение спутников относительно друг друга.

Помимо универсального показателя DOP применяются его модификации:

    PDOP – этот показатель учитывает понижение точности определения местоположения без учета возможных погрешностей при определении времени;
    GDOP – учитывает понижение точности с учетом временных погрешностей;
    HDOP – учитывает только горизонтальную точность определения положения;
    VDOP – показатель учитывает только вертикальную точность;
    TDOP – учет точности времени

Пользователями приборов используется общее правило – чем выше значения показателей DOP, тем ниже точность определения. Кроме того, на качество геометрии спутников влияет широта, на которой находится приемник, а также близость к одному из полюсов Земли (влияние атмосферы).

Гравитационные влияния

Движение спутников, обеспечивающих работу системы GPS, по своим орбитам является достаточно стабильным, однако все же случаются некоторые отклонения. Причиной этих отклонений является гравитационное поле космических объектов – Солнца и Луны. Для преодоления подобных влияний данные о текущей орбите непрерывно корректируются и отправляются к приемникам уже в обработанном виде. Но, несмотря на принятые меры, гравитационные влияния все же приводят к погрешностям в измерении местоположения, такие погрешности могут приводить к потере точности определения до 2 метров.

Влияния ионосферы

Фактором, который имеет существенное влияние на точность вычислений, является разница в скорости прохождении сигнала от спутника в космосе и разных слоях атмосферы. Так, если в открытом космосе скорость сигнала равняется скорости света, то в тропосфере, а также в ионосфере эта скорость является более низкой.

На высоте от 80 до 100 км от Земли в результате воздействия энергии Солнца сконцентрировано значительное количество положительно заряженных ионов. В слоях ионосферы сигналы от спутников, представляющие собой электромагнитные волны, преломляются, за счет чего увеличивается время их прохождения через эти слои. Для преодоления влияния этого фактора используются корректирующие вычисления, проводимые самим приемником, поскольку возможные скорости прохождения сигнала через различные слои ионосферы достаточно хорошо изучены.

Но все же GPS терминалы (gps-трекеры), предназначенные для гражданского использования, не в силах выполнять корректировку в случае непредвиденных изменений, которые могут быть вызваны солнечными ветрами. Приемники, разработанные для нужд армии, принимают два вида сигналов с различной частотой, соответственно – с различной скоростью прохождения в ионосфере. Поэтому разница во времени их прибытия позволяет скорректировать погрешность, возникающую при вычислениях скорости прохождения сигналов через ионосферу.

Влияния тропосферы

При прохождении сигнала через тропосферу возникают искажения, вызванные погодными факторами, а именно – различной концентрацией водяного пара. Предугадать уровень концентрации пара настолько же сложно, насколько затруднительно предсказывать погоду, поэтому внести коррекцию методом вычислений крайне проблематично. С другой стороны, величина погрешности, вызванная особенностями прохождения сигнала через тропосферу заметно ниже влияния ионосферы, поэтому используется примерная поправка.

Однако данные спутников, которые расположены под углом менее 10° к горизонту, не включаются в измерения именно по этой причине, поскольку искажения достаточно высоки. Более точно настроить приемники позволяют погодные карты различных регионов. Геостационарные системы навигационного покрытия WAAS (Америка) и EGNOS (Европа) отсылают скорректированные сигналы для приемников, которые поддерживают дифференцированные поправки, эти данные заметно улучшают точность определения местоположения.

Отражения сигналов

Крупные объекты, находящиеся на пути сигнала – высотные здания и прочие объекты, часто становятся причиной его отражения, которое принимается терминалом GPS вместе с прямыми сигналами. Это приводит к искажению дальности, так как отраженному сигналу требуется больше времени, чтобы достичь приемника, погрешность в результате отражения может составлять несколько метров.

Также помехой для спутниковых измерений могут стать достаточно мощные источники излучений – радиостанции, локаторы, т.п.

Относительность измерения времени

Смысл очередного фактора, влияющего на погрешность в измерениях координат положения объекта, заключается в утверждениях теории относительности. В частности, согласно этой теории, при более высоких скоростях время течет медленнее. Спутник движется по орбите со скоростью около 12 тыс. км/ч., а уже при скорости 3874 км/ч. время для движущегося объекта течет медленнее, чем для неподвижного объекта (на Земле). Разница во времени (сигналы о точном времени отправляются со спутника в составе общего пакета данных) составляет 7,2 микросекунды в день. Впрочем, погрешность, вызванная этим фактором, является незначительной в сравнении со следующим утверждением той же теории относительности.

Теория относительности также свидетельствует о том, что время находится в зависимости от силы гравитации – чем сильнее гравитационное поле, тем медленнее движется время. То есть, относительно объекта, который находится на земле, часы спутника будут идти быстрее, так как последний подвергается заметно меньшим гравитационным влияниям. Данный эффект мог бы привести к отклонениям на 38 микросекунд в день, что равнялось бы ошибкам в расчетах на 10 км. Для нейтрализации подобных эффектов нет необходимости вносить постоянные корректировки и проводить дополнительные вычисления, вместо этого было решено привести частоту часов на спутниках к определенному значению.

Еще один эффект, который учитывается при измерениях GPS только в особых случаях, известен ка «эффект Сагнака». Общий смысл явления заключается в том, что объект, находящийся на Земле в неподвижном состоянии, передвигается со скоростью порядка 500 км/ч (скорость вращения Земли). Явление приводит к определенным искажениям и зависит от направления движения объекта, поэтому для коррекции необходимы достаточно сложные вычисления. Искажения являются незначительными, хотя в некоторых случаях при измерениях принимается во внимание и этот фактор.

Округление и вычислительные ошибки

В тот момент, когда приемником GPS выполняются вычисления местоположения, данные о времени (терминала) синхронизируются с данными о времени на спутнике. Однако округления, производимые приемником при вычислениях, все же являются причиной погрешности, которая колеблется в пределах 1 м.

Заключение

Резюмируя информацию, изложенную в данной статье, мы приводим таблицу, в которой факторы, приводящие к искажению расчетов, отражены в виде примерного расстояния погрешности определения координат.

В сумме все причины, которые влияют на точность определения местонахождения объекта, составляют погрешность приблизительно до 15 метров. До момента отключения режима селективного доступа SA погрешность составляла до 100 метров. На уменьшение погрешности существенно влияют откорректированные данные систем WAAS и EGNOS, позволяющие сократить влияние тропосферы, гравитационные влияния, приводящие к ошибкам определения орбиты спутника. Таким образом, погрешность дополнительно может быть уменьшена еще на 3 – 5 метров.

Случалось ли вам заблудиться и от всей души желать найти простой способ узнать, какой дорогой необходимо идти? Или найти чудесное место для рыбалки или охоты и не запомнить, как можно к нему легко вернуться? А как на счет обнаружить в походе, что сбился с пути, и не знать, как вернуться обратно к лагерю или машине? Возникала ли при полете необходимость определить ближайший аэропорт или идентифицировать воздушное пространство, в котором находились? Возможно, вы сталкивались с проблемой, когда нужно съехать на обочину и уточнить у кого-нибудь направление.

GPS технология стремительно изменяет способ людей прокладывать путь по всей земле. Делается ли это ради забавы, спасения жизни, более быстрого добирания, или еще чего вы только не придумаете, GPS навигация становится с каждым днем все более распространенной.

Что же все-таки такое GPS ?

GPS - Глобальная система навигации и позиционирования. Сеть спутников, которые постоянно передают закодированную информацию, с помощью которой можно точно определить месторасположение на земле путем измерения расстояния до спутников.

Как указано в приведенном выше определении GPS означает Глобальная Система Позиционирования (Global Positioning System), и относится к группе спутников Министерства Обороны США, постоянно вращающихся вокруг Земли. Спутники передают радио сигналы малой мощности, позволяя каждому, у кого есть GPS навигатор, определять свое месторасположение на Земле. Создание этой выдающейся системы было не дешевым и стоило США миллиардов долларов. Текущее техническое обслуживание, включая запуск новых спутников на замену старым, увеличивает стоимость системы. Удивительно, GPS фактически предшествовал появлению персональных компьютеров. Разработчики возможно и предвидеть не могли тот день, когда мы сможем носить маленькие GPS навигаторы весом меньше фунта, которые будут не только сообщать нам, где мы находимся в системе координат (долгота/широта), но смогут даже показывать наше месторасположение на электронной карте с городами, улицами и т.п.

Изначально разработчики думали о военном применении. GPS приемники служили бы целям навигации, дислокации войск и координации артиллерийского огня (среди прочих применений). К счастью, административное решение в 1980г. сделало GPS навигатор доступным также для гражданского применения. Сейчас каждый может оценить преимущества GPS ! Возможности почти не ограничены. Иногда люди спрашивают, можно ли бесплатно использовать эту систему – ДА! (Ну, вообще-то вашей платой стали уплаченные налоги). Так что просто распакуйте свой GPS навигатор, вставьте батарейки и окунитесь в интереснейший мир GPS навигации.

Кто использует GPS ?

У GPS навигатора есть множество применений на суше, в воде и в воздухе. В основном GPS навигатор позволяет вам записывать или задавать точки месторасположения на земле и помогает продвигаться от и к этим точкам. GPS навигатор может использоваться везде, кроме мест, где нет приема сигнала, т.е. внутри помещений, в пещерах, парковках и прочих местах, находящихся под землей, а также под водой.

В воздухе и на воде GPS применяется в основном для навигации, на земле же применение более разнообразно. В различных целях GPS навигаторы используется учеными. Все большую часть своей работы геодезисты проделывают с использованием GPS навигатора, что значительно сокращает затраты на проведение разведывательных работ, а также обеспечивает потрясающую точность. В основном разведывательное оборудование обеспечивает точность до одного метра. Более дорогие системы могут обеспечить точность в пределах сантиметра! В сфере отдыха применение GPS навигатора настолько разнообразно, насколько многочисленны виды отдыха. GPS навигатор становится все популярнее среди туристов, охотников, скалолазов, лыжников и т.д. Если вы увлекаетесь видом спорта или какой-либо деятельностью, где вам необходимо отслеживать свое местоположение, прокладывать маршрут к определенному месту или знать. в каком направлении и как быстро вы движетесь, вы по достоинству оцените все преимущества GPS навигации.

GPS навигация быстро становится привычным делом и в автомобилях. Некоторые встроенные системы обеспечивают поддержку в экстренных ситуациях на дороге – нажатием кнопки передается текущее месторасположение автомобиля в диспетчерский центр. Более совершенные системы могут отображать на дисплее месторасположение машины по электронной карте, позволяя водителям контролировать маршрут движения и искать нужные адреса, рестораны, отели и прочие объекты. Некоторые GPS навигаторы даже могут автоматически создавать маршрут и поочередно выдавать направления движения до указанного пункта назначения.

Чтобы знать, как работает GPS навигация, не надо быть ученым. Все что вам нужно, это немного базовых знаний плюс желание изучить и понять мир GPS навигации. Не позволяйте понятиям вроде "псевдослучайный", "анти-спуфинг" и "псевдокод" запугать вас. Давайте знакомиться и осваивать наилучший инструмент навигации со времен изобретения компасса - GPS навигатор!

3 сегмента GPS

Система NAVSTAR (официальное название GPS в Министерстве обороны США) состоит из космического сегмента (спутники), контрольного сегмента (наземные станции) и пользовательского сегмента (вы и ваш GPS навигатор).

Теперь давайте возьмем три части системы и обсудим их более детально. Так мы сможем ближе рассмотреть, как работает GPS навигация.

Космический сегмент

Космический сегмент, который состоит минимум из 24 спутников (21 активный и 3 запасных) является сердцем системы. Спутники находятся на так называемой "верхней орбите" на высоте около 12 тыс. миль над поверхностью Земли. Функционирование на такой большой высоте позволяет сигналам покрывать бОльшую территорию. Спутники расположены на орбитах так, что GPS навигатор на земле всегда может получать сигналы по меньшей мере от четырех из них в любое заданное время.

Спутники вращаются со скоростью 7 000 миль в час, что позволяет им обходить вокруг земли каждые 12 часов. Они питаются солнечной энергией и рассчитаны приблизительно на 10 лет работы. На случай пропадания солнечной энергии (затмения и прочее) у спутников есть резервные батареи. Также спутники оснащены малыми ракетоносителями, которые корректируют траекторию вращения.

Первые GPS спутники были запущены в космос в 1978г. Полное созвездие из 24 спутников было получено в 1994г., завершив создание системы. Деньги на покупку новых спутников и их запуск для поддержания в последующие годы работоспособности системы входят в бюджет Министерства обороны США.

Каждый спутник передает радио сигналы малой мощности на нескольких частотах (выделенные L1, L2 и др.). Гражданские GPS навигаторы "слушают" частоту L1 1575,42 МГц в сверхвысокой полосе частот. Сигналы проходят "линию видимости", что значит, что они пройдут через облака, стекло и пластик, но не пройдут сквозь большинство твердых объектов, таких как здания и горы.

Чтобы вы смогли получить представление о положении сигнала L1 в радиоспектре, вспомните ваши любимые FM радиостанции, они работают на частотах где-то между 88 и 108 МГц (и звучат намного лучше!). Спутниковые сигналы очень малой мощности, порядка 20-50 Вт. Для сравнения, FM радиостанция около 100 000 Вт. Представьте теперь, как сложно пытаться услышать 50 Вт радиостанцию, передающую на высоте 12 000 миль! Вот почему так важно иметь чистый обзор неба при использовании GPS навигатора.

L1 содержит два "псевдослучайных" (комплексный шаблон цифрового кода) сигнала, Защищенный (Р) код и код гражданского доступа (С/А). Каждый спутник передает уникальный код, позволяющий GPS приемнику идентифицировать сигналы. "Анти-спуфинг" относится к шифрованию Р-кода для предотвращения несанкционированного доступа. Р-код также называют "Р(Y)" или "Y" код.

Основной целью этих закодированных сигналов является возможность вычисления времени прохождения (или времени прибытия сигнала) от спутника до GPS навигатора на земле. Время прохождения, умноженное на скорость света, равно дальности спутника (расстояние от спутника до GPS навигатора). Навигационное сообщение (информация, которую спутники передают GPS навигатору) содержит данные об орбите спутника, системном времени, общем состоянии системы, а также модель задержки сигналов в ионосфере. Спутниковые сигналы рассчитываются с использованием сверхточных атомных часов.

Контрольный сегмент

Контрольный сегмент выполняет то, о чем говорит само его название – "контролирует" GPS спутники, отслеживая их и обеспечивая правильной информацией об орбите и времени. На земле расположено пять контрольных станций – четыре станции слежения и одна станция основного контроля. Четыре станции постоянно получают данные со спутников и затем передают информацию на станцию основного контроля, которая "корректирует" данные спутников и вместе с двумя другими антенными полигонами передает (по восходящему потоку) информацию к GPS спутникам.

Пользовательский сегмент

Пользовательский сегмент включает вас и ваш GPS навигатор. Как уже упоминалось, пользовательский сегмент состоит из туристов, пилотов, охотников, военных и других, кто хочет знать, где находится, где находился или куда направляется.
GPS навигация – Как это работает?

Месторасположение

Теперь расскажем о том, как это работает. GPS навигатор должен знать две вещи, чтобы выполнить свою работу. Он должен знать, ГДЕ находятся спутники (месторасположение) и как ДАЛЕКО они находятся (расстояние). Посмотрим сперва как GPS навигатор знает, где в космосе находятся спутники. GPS навигатор получает два вида кодированной информации от спутников. Один вид информации, называемый "альманах", содержит данные о расположении спутников. Эти данные постоянно передаются и сохраняются в памяти GPS навигатора, так что он знает орбиты спутников и где каждый спутник предположительно должен находится. Данные альманаха периодически обновляются по мере перемещения спутников. Любой спутник может немного отклоняться от орбиты, а наземные станции постоянно отслеживают орбиту, высоту, расположение и скорость спутников. постоянно отслеживают орбиту, высоту, расположение и скорость спутников. Наземные станции посылают данные об орбите на станцию основного контроля, которая, в свою очередь, передает откорректированные данные обратно спутникам. Эти откорректированные данные точного месторасположения спутника называются данными "эфимериса", которые действительны около четырех или шести часов и передаются GPS навигатору в виде кодированной информации.

Таким образом, получив данные альманаха и эфимериса, GPS навигатор всегда знает местонахождение спутников.

Время

Даже если GPS навигатор знает точное положение спутников в космосе, ему все равно необходимо знать, насколько они далеко (расстояние), чтобы определить свое месторасположение на земле. Существует простая формула, говорящая приемнику, как далеко он находится от каждого из спутников:

расстояние от данного спутника равно скорости передаваемого сигнала, умноженной на время, необходимое сигналу, чтобы пройти от спутника до GPS навигатора (Скорость х Время прохождения сигнала = Расстояние).

Вспомните, как вы определяли, насколько далеко от вас гроза, когда были ребенком. Когда вы видели молнию, то считали затем, сколько секунд пройдет, пока раздастся гром. Чем больше насчитали, тем дальше была гроза. GPS навигация работает по такому же принципу, называемому "Время прибытия".

Используя основную формулу для определения расстояния, приемник уже знает скорость. Это скорость радио волны – 186 000 миль в секунду (скорость света), с учетом задержки сигнала при прохождении сквозь атмосферу Земли.

Теперь GPS навигатору необходимо определить временную составляющую формулы. Ответ кроется в закодированных сигналах, которые передают спутники. Передаваемый код называется "псевдослучайным кодом" потому, что похож на шумовой сигнал. Когда спутник генерирует псевдослучайный код, GPS навигатор генерирует такой же код и пытается согласовать его с кодом спутника. GPS навигатор сравнивает два кода, чтобы определить, насколько необходимо задержать (или сместить) свой код, чтобы соответствовать коду спутника. Чтобы получить расстояние время задержки (смещения) умножается на скорость света.

Часы GPS навигатора не отслеживают время с такой точностью, как часы спутника. Включение в состав GPS навигатора атомных часов сделало бы его намного больше и намного дороже! Поэтому каждое измерение расстояния требует корректировки на величину погрешности внутренних часов GPS навигатора. По этой причине измерение расстояния относится к "псевдорасстоянию". Чтобы определить позицию, используя данные псевдорасстояния, необходимо отслеживать и пересчитывать зафиксированные данные минимум с четырех спутников, чтобы погрешность исчезла.

Получение полного круга

Теперь, когда у нас есть и позиция спутника, и расстояние до него, приемник может определить свое месторасположение. Скажем, мы находимся на расстоянии 11 000 миль от спутника. Тогда наше месторасположение будет где-то в условной сфере со спутником в центре с радиусом 11 000 миль. Далее, допустим, что мы находимся на расстоянии 12 000 миль от другого спутника. Вторая сфера будет пересекаться с первой, образуя общую окружность. Если добавить третий спутник, на расстоянии 13 000 миль, будет две общие точки, где пересекаются три сферы.
Хотя возможных позиций две, они сильно отличаются показателями широты, долготы и высоты. Чтобы определить, какая же из двух точек соответствует вашему фактическому месторасположению, GPS навигатору необходимо также указать приблизительную высоту над уровнем моря. Это позволит приемнику рассчитать 2-х координатную позицию (широта, долгота). При наличии четвертого спутника GPS навигатор сможет определить 3-х координатную позицию (широта, долгота, высота). Так, допустим, расстояние до четвертого спутника составляет 10 000 миль. Теперь у нас есть четвертая сфера, пересекающая первые три в одной общей точке.

Данные альманаха

GPS навигатор всегда сохраняет данные о положении спутников. Эти данные называются альманахом. Иногда, когда GPS навигатор долгое время не включается, данные альманаха становятся устаревшими или "холодными". Когда GPS навигатор "холодный", установление связи со спутником может занять больше времени. GPS навигатор считается "теплым", если данные со спутников собраны за последние четыре-шесть часов. Если время установления связи со спутником играет для вас большую роль, то при покупке GPS навигаторов необходимо обращать внимание на время захвата спутника в "холодном" и "теплом" режимах.

Как только навигатор установит связь с достаточным количеством спутников, чтобы рассчитать месторасположение, вы готовы начать GPS навигацию! Большинство GPS навигаторов будут отображать текущие координаты или текущую позицию на электронной карте, которая будет помогать вам в навигации.

Технология GPS навигатора

Большинство современных GPS навигаторов имеют параллельный мультиканальный дизайн. Более старые одноканальные тоже были популярны, но у них была ограниченная возможность постоянного приема сигналов в жестких условиях, таких как густой лиственный покров. Параллельные приемники обычно имеют от пяти до двенадцати схем приема, каждая из которых отвечает за сигнал конкретного спутника, так что можно в любое время устанавливать надежную связь со всеми спутниками. Параллельные приемники быстро захватывают спутники при первом включении, им также нет равных в возможности принимать сигналы спутника в сложных условиях, таких как густая листва или город с высокими зданиями.

Источники погрешностей GPS навигаторов

Гражданский GPS навигатор имеет потенциальную погрешность определения месторасположения как результат совокупности погрешностей от следующих источников:

Задержки ионосферы и тропосферы – Сигнал спутника проходит сквозь атмосферу, и поэтому скорость электромагнитных волн отличается от пресловутой скорости света. Система использует встроенную "модель", которая высчитывает среднее, но не точное, значение задержки.

Отражение сигнала – встречается, когда сигнал перед тем, как достичь приемника, отражается от таких объектов как высотные здания или горы. Это увеличивает время прохождения сигнала, вызывая тем самым ошибку.

Ошибки часов приемника – поскольку не практично устанавливать атомные часы в приемниках GPS навигаторов, имеющиеся встроенные часы могут выдавать очень незначительные временные ошибки.

Орбитальные ошибки – также известны как "ошибки эфимериса", это неточности данных о расположении спутника.

Количество видимых спутников – чем больше спутников может "видеть" GPS навигатор, тем выше точность. Здания, рельеф местности, электронная интерференция, иногда даже густая листва могут блокировать прием сигнала, вызывая ошибки месторасположения или полное отсутствие показаний. Чем чище обзор, тем лучше прием. GPS навигаторы не будут работать в помещении (как правило), под водой или под землей.

Геометрия/затенение спутника – имеет отношение к относительному расположению спутников в любое заданное время. Идеальная геометрия спутников бывает, когда спутники располагаются под тупым углом по отношению друг к другу. Плохая геометрия является результатом расположения спутников на одной линии или в тесной группе.

Намеренное ухудшение сигнала спутника – намеренное ухудшение сигнала министерством обороны США известно как "Избирательная доступность" и предназначено для предотвращения использования с враждебными намерениями GPS сигналов высокой точности. Этим объясняется большинство ошибок. "Избирательная доступность" была отменена 2 мая 2000г. и в данный момент не применяется. Это значит, что вы можете ожидать от GPS навигатора точности в пределах 6 – 12 метров (около 20 – 40 футов).

Точность GPS навигатора может быть улучшена еще больше с применением дифференциального GPS приемника (DGPS), который может работать от нескольких возможных источников, уменьшая некоторые из описанных выше ошибок. Следующий раздел объясняет, что такое DGPS и как это работает.
DGPS – как это работает?

Дифференциальные GPS работают с помощью расположения GPS приемника (называемого контрольной станцией) в месте с известными координатами. Поскольку контрольная станция знает свое точное месторасположение, она может определить ошибки спутниковых сигналов. Станция делает это путем измерения расстояния до каждого спутника с использованием принимаемых сигналов и сравнивает результат с фактическими показателями, рассчитанными на основе известного месторасположения. Разница между измеренным и рассчитанным расстоянием для каждого видимого спутника является "дифференциальной коррекцией".
Дифференциальные коррекции для каждого отслеживаемого спутника форматируются в сообщения и передаются DGPS приемникам. Далее дифференциальные коррекции применяются DGPS приемниками в вычислениях для уменьшения ошибок и улучшения точности. Уровень точности зависит от самого приемника и сходства его "окружающей среды" с условиями, в которых находится контрольная станция, а также его приближенности к станции. Приемник контрольной станции определяет составляющие погрешности и обеспечивает их коррекцию для GPS навигатора в реальном времени. Коррекция может передаваться по FM радиочастотам, через спутник или через маяк береговой охраны США. Обычно точность DGPS составляет 1 – 5 метров (около 3 – 16 футов).

При полете есть одна вещь, которую все мы желаем получить: БЕЗОПАСНОСТЬ. Исключительная информация о месторасположении это ключ к безопасности полета. При дезориентирующих погодных условиях, когда визуальная навигация усложняется или вообще невозможна особое значение приобретает GPS навигация. Знакомьтесь с "Системой Панорамного обзора" или просто WAAS. Так называется сеть из 25 наземных контрольных станций, которые полностью покрывают территорию США, захватывая немного Канады и Мексики. Внедренные FAA (Федеральным Авиационным Агентством США) для целей авиации эти 25 контрольных станций расположены с предельной точностью. Они сравнивают измеренное GPS расстояние с известными значениями. Каждая контрольная станция подключена к базовой станции, которая собирает все коррекционные сообщения вместе и транслирует их через спутник. С помощью WAAS приемники GPS навигаторов могут обеспечивать точность 3 – 5 метров по горизонтали и 3 – 7 в высоту.

GPS - спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположениe. Позволяет в любом месте Земли (не включая приполярные области), почти при любой погоде, а также в космическом пространстве вблизи планеты определить местоположение и скорость объектов. Система разработана, реализована и эксплуатируется Министерством обороны США.

Краткая характеристика GPS

Спутниковая навигационная система Министерства Обороны США — GPS, называется также NAVSTAR. Система состоит из 24 навигационных искусственных спутников Земли (НИСЗ) , наземного командно-измерительного комплекса и аппаратуры потребителей. Она является глобальной, всепогодной, навигационной системой, обеспечивающей определение координат объектов с высокой точностью в трехмерном околоземном пространстве. Спутники GPS помещены на шести средневысоких орбитах (высота 20183 км) и имеют период обращения 12 часов Плоскости орбит расположены через 60° и наклонены к экватору под углом 55°. На каждой орбите находится 4 спутника. 18 спутников — это минимальное количество для обеспечения видимости в каждой точке Земля не менее 4-х НИСЗ.

Основной принцип использования системы - определение местоположения путём измерения расстояний до объекта от точек с известными координатами - спутников. Расстояние вычисляется по времени задержки распространения сигнала от посылки его спутником до приёма антенной GPS-приёмника. То есть, для определения трёхмерных координат GPS-приёмнику нужно знать расстояние до трёх спутников и время GPS системы. Таким образом, для определения координат и высоты приёмника используются сигналы как минимум с четырёх спутников.

Система предназначена для обеспечения навигации воздушных и морских судов и определения времени с высокой точностью . Она может применяться в режиме двухмерной навигации – 2D определение навигационных параметров объектов на поверхности Земли) и в трехмерном режиме — ЗD (измерение навигационных параметров объектов над поверхностью Земли). Для нахождения трехмерного положения объекта требуется измерить навигационные параметры не менее 4-х НИСЗ, а при двухмерной навигации — не менее 3-х НИСЗ. В GPS используется псевдодальномерный способ определения позиции и псевдорадиально скоростной метод нахождения скорости объекта.

Для повышения точности результаты определений сглаживаются с помощью фильтра Калмана. Спутники GPS передают навигационные сигналы на двух частотах: F1 = 1575,42 и F2=1227,60 МГц. Режим излучения — непрерывный с псевдошумовой модуляцией. Навигационные сигналы представляют собой общедоступный С/А-код (course and acquisition), передаваемый только на частоте F1, и защищенный Р-код (precision code), излучаемый на частотах F1, F2.

В GPS для каждого НИСЗ определен свой уникальный С/А-код и уникальный Р-код. Такой вид разделения сигналов спутников называется кодовым. Он позволяет бортовой аппаратуре распознавать, какому спутнику принадлежит сигнал, когда все они осуществляют передачу на одной частоте GPS предоставляет два уровня обслуживания потребителей точные определения (РРS Precise positioning Service) и стандаршые данные (SPS Standart Positioning Service) PPS основывается на точном коде, а SPS — на общедоступном. Уровень обслуживания РРS предоставляется военным и федеральным службам США, а SPS — массовому гражданскому потребителю.Кроме навигационных сигналов, спутник регулярно передает сообщения, которые содержат информацию о состоянии спутника, его эфемеридах, системном времени, прогнозе ионосферной задержки, показателях работоспособности. Бортовая аппаратура GPS состоит из антенны и приемоиндикатора. ПИ включает в себя приемник, вычислитель, блоки памяти, устройства управления и индикации. В блоках памяти хранятся необходимые данные, программы решения задач и управления работой приемоиндикатора. В зависимости от назначения используется два вида бортовой аппаратуры: специальная и для массового потребителя.Специальная аппаратура предназначена для определения кинематических параметров ракет, военных самолетов, кораблей и специальных судов. При нахождении параметров объектов в ней используются Р и С/А коды. Эта аппаратура обеспечивает практически непрерывные определения с точностью: местоположения объекта — 5+7 м, скорости — 0.05+0.15 м/с, времени — 5+15 нс

Основное применение навигационных спутниковой системы GPS:

  • Геодезия: с помощью GPS определяются точные координаты точек и границы земельных участков
  • Картография: GPS используется в гражданской и военной картографии
  • Навигация: с применением GPS осуществляется как морская, так и дорожная навигация
  • Спутниковый мониторинг транспорта: с помощью GPS ведётся мониторинг за положением, скоростью автомобилей, контроль за их движением
  • Сотовая связь: первые мобильные телефоны с GPS появились в 90-х годах. В некоторых странах, например США это используется для оперативного определения местонахождения человека, звонящего 911.
  • Тектоника, Тектоника плит: с помощью GPS ведутся наблюдения движений и колебаний плит
  • Активный отдых: есть разные игры, где применяется GPS, например, Геокэшинг и др.
  • Геотегинг: информация, например фотографии «привязываются» к координатам благодаря встроенным или внешним GPS-приёмникам.

Определение координат потребителя

Местоопределение по расстояниям до спутников

Координаты местоположения вычисляются на основе измеренных дальностей до спутников. Для определения местоположения необходимо провести четыре измерения. Трех измерений достаточно, если уметь исключать неправдоподобные решения какими-то другими доступными способами. Еще одно измерение требуется по техническим причинам.

Измерение расстояния до спутника

Расстояние до спутника определяется путем измерения промежутка времени, который требуется радиосигналу, чтобы дойти от спутника до нас. Как спутник, так и приемник генерируют один и тот же псевдослучайный код строго одновременно в общей шкале времени. Определим, сколько времени потребовалось сигналу со спутника, чтобы дойти до нас, путем сравнения запаздывания его псевдослучайного кода по отношению коду приемника.

Обеспечение совершенной временной привязки

Точная временная привязка — ключ к измерению расстояний до спутников. Спутники точны по времени, поскольку на борту у них — атомные часы. Часы приемника могут и не быть совершенными, так как их уход можно исключить при помощи тригонометрических вычислений. Для получения этой возможности необходимо произвести измерение расстояния до четвертого спутника. Необходимость в проведении четырех измерений определяет устройство приемника.

Определение положения спутника в космическом пространстве.

Для вычисления своих координат нам необходимо знать как расстояния до спутников, так и местонахождение каждого в космическом пространстве. Спутники GPS движутся настолько высоко, что их орбиты очень стабильны и их можно прогнозировать с большой точностью. Станции слежения постоянно измеряют незначительные изменения в орбитах, и данные об этих изменениях передаются со спутников.

Ионосферные и атмосферные задержки сигналов.

Существуют два метода, которые можно использовать, чтобы сделать ошибку минимальной. Во-первых, можно предсказать, каково будет типичное изменение скорости в обычный день, при средних ионосферных условиях, а затем ввести поправку во все наши измерения. Но, к сожалению, не каждый день является обычным. Другой способ состоит в сравнении скоростей распространения двух сигналов, имеющих разные частоты несущих колебаний. Если сравнить время распространения двух разночастотных компонентов сигнала GPS, то сможем выяснить, какое замедление имело место. Этот метод корректировки достаточно сложен и используется только в наиболее совершенных, так называемых «двухчастотных» приемниках GPS.

Многолучевость.

Еще один тип погрешностей — это ошибки «многолучевости». Они возникают, когда сигналы, передаваемые со спутника, многократно переотражаются от окружающих предметов и поверхностей до того, как попадают в приемник.

Геометрический фактор уменьшения точности.

Хорошие приемники снабжают вычислительными процедурами, которые анализируют относительные положения всех доступных для наблюдения спутников и выбирают из них четырех кандидатов, т.е. наилучшим образом расположенные четыре спутника.

Результирующая точность GPS.

Результирующая погрешность GPS определяется суммой погрешностей от различных источников. Вклад каждого из них варьируется в зависимости от атмосферных условий и качества оборудования. Кроме того, точность может быть целенаправленно снижена Министерством обороны США в результате установки на спутниках GPS так называемого режима S/A («Selective Availability»- ограниченный доступ). Этот режим разработан для того, чтобы не дать возможному противнику тактического преимущества в определении местоположения с помощью GPS. Когда и если этот режим установлен, он создает наиболее существенную компоненту суммарной погрешности GPS.

Вывод:

Точность измерений с помощью GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов. «Бытовые» GPS-приборы, для «гражданских» пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5–15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте – от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды). Измерители высокой точности «геодезического класса» – точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например – удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование — может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать GPS-приёмник – на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают «двойную надёжность и точность» (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины — лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и «далеко» – у линии горизонта (всё это называется «плохая геометрия») и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) — после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури, после мощных солнечных вспышек — возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении «вспомогательных данных A-GPS сервера местоположения» по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) — увеличивается скорость определения координат и расположения на карте

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) – дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на GPS-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника GPS. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт). Быстрый, «горячий» (длительностью в первые секунды) или «тёплый старт» (полминуты или минута, по времени) приёмного устройства — возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее — до нескольких секунд). Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат — нужны, как минимум, четыре сп-ка. Необходимость создания собственной, отечественной системы навигации связана с тем, что GPS – американская, потенциальных противников, которые могут в любой момент Ч, в своих военных и геополитических интересах, селективно отключить, «глушить», модифицировать её в каком-либо регионе или увеличить искусственную, систематическую ошибку в координатах (для иностранных потребителей этой услуги), что и в мирное время всегда присутствует.

Точность измерений с помощью ГЛОНАСС/GPS зависит от конструкции и класса приёмника, числа и расположения спутников (в реальном времени), состояния ионосферы и атмосферы Земли (сильной облачности и т.д.), наличия помех и других факторов.

"Бытовые" GPS-приборы, для "гражданских" пользователей, имеют погрешность измерения в диапазоне от ±3-5м до ±50м и больше (в среднем, реальная точность, при минимальной помехе, если новые модели, составляет ±5-15 метров в плане). Максимально возможная точность достигает +/- 2-3 метра на горизонтали. По высоте - от ±10-50м до ±100-150 метров. Высотомер будет точнее, если проводить калибровку цифрового барометра по ближайшей точке с известной точной высотой, (из обычного атласа, например) на ровном рельефе местности или по известному атмосферному давлению (если оно не слишком быстро меняется, при перемене погоды).

Измерители высокой точности "геодезического класса" - точнее на два-три порядка (до сантиметра, в плане и по высоте). Реальная точность измерений обусловлена различными факторами, например - удаленностью от ближайшей базовой (корректирующей) станции в зоне обслуживания системы, кратностью (числом повторных измерений / накоплений на точке), соответствующим контролем качества работ, уровнем подготовки и практическим опытом специалиста. Такое высокоточное оборудование - может применяться только специализированными организациями, специальными службами и военными.

Для повышения точности навигации рекомендуется использовать многосистемный Glanas / GPS-приёмник - на открытом пространстве (нет рядом зданий или нависающих деревьев) с достаточно ровным рельефом местности, и подключать дополнительную внешнюю антенну. Для целей маркетинга, таким аппаратам приписывают "двойную надёжность и точность" (ссылаясь на, одновременно используемые, две спутниковые системы, Глонасс и Джипиэс), но реальное фактическое, улучшение параметров (повышение точности определения координат) может составлять величины - лишь до нескольких десятков процентов. Возможно только заметное сокращение времени горячего-тёплого старта и продолжительности измерений.

Качество измерений джипиэс ухудшается, если спутники располагаются на небе плотным пучком или на одной линии и "далеко" - у линии горизонта (всё это называется "плохая геометрия") и есть помехи сигналу (закрывающие, отражающие сигнал высотные здания, деревья, крутые горы поблизости). На дневной стороне Земли (освещённой, в данный момент, Солнцем) - после прохождения через ионосферную плазму, радиосигналы ослабляются и искажаются на порядок сильнее, чем на ночной. Во время геомагнитной бури , после мощных солнечных вспышек - возможны перебои и длительные перерывы в работе спутникового навигационного оборудования.

Фактическая точность джипиэски зависит от типа GPS-приемника и особенностей сбора и обработки данных. Чем больше каналов (их должно быть не меньше 8) в навигаторе, тем точнее и быстрее определяются верные параметры. При получении "вспомогательных данных A-GPS сервера местоположения" по сети Интернет (путём пакетной передачи данных, в телефонах и смартфонах) - увеличивается скорость определения координат и расположения на карте.

WAAS (Wide Area Augmentation System, на американском континенте) и EGNOS (European Geostationary Navigation Overlay Services, в Европе) - дифференциальные подсистемы, передающие через геостационарные (на высоте от 36 тыс.км в нижних широтах до 40 тысяч километров над средними и высокими широтами) спутники корректирующую информацию на G P S-приёмники (вводятся поправки). Они могут улучшить качество позиционирования ровера (полевого, передвижного приемника), если поблизости располагаются и работают наземные базовые корректирующие станции (стационарные приёмники опорного сигнала, уже имеющие высокоточную координатную привязку). При этом полевой и базовый приёмник должны одновременно отслеживать одноимённые спутники.

Для повышения скорости измерений рекомендуется применять многоканальный (8-и канальный и более), многосистемный (Glonas / Gps) приёмник с внешней антеной. Должны быть видимы, как минимум, три спутника ГПС и два ГЛОНАСС. Чем их больше, тем лучше результат. Необходима, так же, хорошая видимость небосвода (открытый горизонт).

Быстрый, "горячий" (длительностью в первые секунды) или "тёплый старт" (полминуты или минута, по времени) приёмного устройства - возможен, если он содержит актуальный, свежий альманах. В случае, когда навигатор долго не использовался, приёмник вынужден получать полный альманах и, при его включении, будет производиться холодный старт (если прибор с поддержкой AGPS, тогда быстрее - до нескольких секунд).

Для определения только горизонтальных координат (широта / долгота) может быть достаточно сигналов трёх спутников. Для получения трёхмерных (с высотой) координат - нужны, как минимум, четыре сп-ка.

Поиск Лекций

Об утверждении требований к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке

Во исполнение части 7 статьи 38 и части 10 статьи 41 Федерального закона от 24 июля 2007 г. № 221-ФЗ «О государственном кадастре недвижимости» (Собрание законодательства Российской Федерации, 2007,
№ 31, ст. 4017; 2008, № 30, ст. 3597, ст. 3616; 2009, № 1, ст. 19; № 19, ст. 2283; № 29, ст. 3582; № 52, ст. 6410, ст. 6419) п р и к а з ы в а ю:

утвердить прилагаемые требования к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке.

Министр Э.С. Набиуллина

Утвержден

приказом Минэкономразвития России

от_____________ №___________

Требования к точности и методам определения координат характерных точек границ земельного участка, а также характерных точек контура здания, сооружения или объекта незавершенного строительства на земельном участке

1. Характерной точкой границы земельного участка является точка изменения описания границы земельного участка и деления ее на части.

Характерной точкой контура здания, сооружения или объекта незавершенного строительства на земельном участке является точка, в которой граница контура здания, сооружения или объекта незавершенного строительства изменяет свое направление.

2. Положение на местности характерных точек границы земельного участка описывается их плоскими прямоугольными координатами в проекции Гаусса-Крюгера, вычисленными в системе координат, принятой для ведения государственного кадастра недвижимости.

Местоположение здания, сооружения или объекта незавершенного строительства на земельном участке устанавливается посредством определения плоских прямоугольных координат в проекции Гаусса-Крюгера характерных точек контура такого здания, сооружения или объекта незавершенного строительства в системе координат, принятой для ведения государственного кадастра недвижимости.

3. Координаты характерных точек границ земельных участков и характерных точек границ контура здания, сооружения или объекта незавершенного строительства на земельном участке определяются следующими методами:

1) геодезическим методом (метод триангуляции, полигонометрии, трилатерации, метод прямых, обратных или комбинированных засечек и иные геодезические методы);

2) методом спутниковых геодезических измерений (определений);

3) фотограмметрическим методом;

4) картометрическим методом.

4. Закрепление характерных точек границы земельного участка на местности межевыми знаками осуществляется по желанию заказчика кадастровых работ. Конструкция межевого знака определяется договором подряда. В случае закрепления характерных точек границы земельного участка межевыми знаками их координаты относятся к фиксированным (обозначенным) центрам межевых знаков.

5. Метод работ по определению координат характерных точек устанавливается кадастровым инженером в зависимости от имеющихся исходных сведений и требований к точности определения координат характерных точек, принятых в настоящем документе.

6. Геодезической основой для определения плоских прямоугольных координат характерных точек границы земельного участка являются пункты государственной геодезической сети и пункты опорных межевых сетей.

Геодезической основой для определения плоских прямоугольных координат характерных точек контура здания, сооружения или объекта незавершенного строительства являются характерные точки границы земельного участка.

СКП местоположения характерной точки контура здания, сооружения или объекта незавершенного строительства определяется относительно ближайшей характерной точки границы земельного участка.

7. СКП местоположения характерной точки границы земельного участка не должна превышать нормативную точность определения координат характерных точек границ земельных участков (приложение №1).

8. СКП местоположения характерной точки контура здания, сооружения или объекта незавершенного строительства не должна превышать нормативную точность определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства:

для земель населенных пунктов – 1м;

для иных земель – 5 м.

Если контур здания, сооружения или объекта незавершенного строительства совпадает с границей земельного участка, то координаты характерных точек контура здания, сооружения или объекта незавершенного строительства определяются с нормативной точностью определения координат характерных точек границ земельных участков.

Если здание, сооружение или объект незавершенного строительства располагаются на нескольких земельных участках, для которых установлена различная нормативная точность, то координаты характерных точек контура здания, сооружения или объекта незавершенного строительства определяются с точностью, соответствующей точности определения координат характерных точек контура здания, сооружения или объекта незавершенного строительства с более высокой точностью.

9. Для определения СКП местоположения характерной точки, используются формулы, соответствующие методам определения координат характерных точек.

10. Геодезические методы.

Вычисление СКП местоположения характерных точек производится с использованием программного обеспечения, посредством которого ведется обработка полевых материалов. При этом к межевому плану прилагается ведомость (выписка) из программного обеспечения.

При обработке полевых материалов без применения программного обеспечения для определения СКП местоположения характерной точки используются формулы расчета СКП, соответствующие геодезическим методам определения координат характерных точек.

11. Метод спутниковых геодезических измерений.

Вычисление СКП местоположения характерных точек производится с использованием программного обеспечения, посредством которого выполняется обработка материалов спутниковых наблюдений. При этом к межевому плану прилагается ведомость (выписка) из программного обеспечения.

12. Картометрический и фотограмметрический методы.

При определении местоположения характерных точек, совмещенных с контурами географических объектов, изображенных на карте (плане) или аэрофотоснимке, СКП принимается равной Мt = К*М.

Где М – знаменатель масштаба карты или аэроснимка.

— для фотограмметрического метода К принимается равным графической точности (например, при определении местоположения характерных точек по фотоснимкам – 0,0001 м);

— для картометрического метода:

— для населенных пунктов К принимается равным 0,0005 м;

— для земель сельскохозяйственного и иного назначения
К принимается равным 0,0007 м.

13. При восстановлении на местности границы земельного участка на основе сведений государственного кадастра недвижимости, положение характерных точек границы земельного участка определяется с нормативной точностью, соответствующей данным, представленным в приложении № 1.

14. Если смежные земельные участки имеют различные категории, то общие характерные точки границ земельных участков определяются с точностью, соответствующей точности определения координат земельного участка с более высокой точностью.

15. По желанию заказчика договором подряда на выполнение кадастровых работ может быть предусмотрено определение местоположения характерных точек границ земельного участка и контуров зданий, сооружений или объектов незавершенного строительства с более высокой точностью, чем установлено настоящим порядком. В этом случае определение координат характерных точек границ земельного участка, контуров зданий, сооружений или объектов незавершенного производится с точностью, указанной в договоре подряда.

16. По вычисленным координатам характерных точек границы земельного участка составляется их каталог, на основе которого вычисляется площадь земельного участка.

17. Для расчета предельной погрешности определения площади земельного участка применяется формула:

∆Р — предельная погрешность определения площади земельного участка (кв.м);

M t — максимальное значение средней квадратической погрешности местоположения характерных точек границы земельного участка, рассчитанное с учетом технологии и точности выполнения работ (м);

Р — площадь земельного участка (кв.м);

k — коэффициент вытянутости земельного участка, т.е. отношение наибольшей длины участка к его наименьшей ширине.

Приложение № 1

Нормативная точность определения координат характерных точек границ земельных участков

№№ п.п. Категория земель, площадь земельных участков Средняя квадратическая ошибка, (м)
1. Земли сельскохозяйственного назначения
площадь земельных участков до 1 га 0,2
площадь земельных участков до 100 га
площадь земельных участков более 100 га 2,5
2. Земли населенных пунктов 0,2
3. Земли промышленности, энергетики, транспорта, связи, радиовещания, телевидения, информатики, земли обеспечения космической деятельности, земли обороны, безопасности и земли иного специального назначения 0,5
4. Земли особо охраняемых природных территорий и объектов, земли лесного фонда, земли водного фонда и земли запаса 5,0

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Тестирование точности GPS-приемников у мобильных телефонов

В ходе работ по одному проекту нам понадобилось выяснить реальную (а не декларируемую) точность геопозиционирования у различных смартфонов.

Для этого был использован стационарный приемник фирмы Topcon, показания которого были взяты за эталон. В том же месте размещались тестируемые аппараты. После холодного старта дополнительно выдерживалось 2 минуты для более точного определения координат.

В тестировании принимали участие следующие аппараты:

  • Fly IQ447 (80$);
  • Nokia Lumia 625 (100$);
  • Samsung Galaxy Tab 2;
  • Промышленный смартфон Motorola TC-55 – (1500$);
  • Промышленный смартфон Coppernic C-One (1500$);

Выглядело это следующим образом:


В итоге результаты (расхождение координат смартфонов с координатами стационарного приемника) оказались следующими:

  • Fly IQ447 (GPS) – 1-3 метра;
  • Coppernic C-One (GPS + ГЛОНАСС) – 2 метра;
  • Motorola TC-55 (GPS + ГЛОНАСС) – 6 метров;
  • Samsung Galaxy Tab 2 (GPS) – 8 метров;
  • Nokia Lumia 625 (GPS) – 30 метров.

Немного разочаровала Motorola – за ее цену результаты ожидались более высокими.

Но больше всего удивил телефон Fly. За свою цену в 3000 рублей он оказался наиболее точным; при том, что у него отсутствует приемник Глонасс. Мы несколько раз перепроверяли результаты, но они неизменно оказывались на высоте.

К слову, данный телефон – единственный, кто всегда и везде в самолете с холодного старта находит спутники и вычисляет координаты. Несмотря на кажущиеся хорошие условия приема, большинство других телефонов далеко не всегда в полете находят сигнал с достаточного числа спутников – порой можно ждать по 20 минут, но так и не добиться определения координат.

Кстати, мы изначально не хотели брать за эталон координаты точки на карте (например, Яндекса). Нам известно о возможном расхождении карт с реальными координатами. В нашей точке у Яндекса величина этого расхождения составила около 5 метров.