Штырь антенный. Расчет вертикальной четвертьволновой антенны

ШТЫРЕВЫЕ АНТЕННЫ

1. Определение и понятия.

Несимметричными (штыревыми) называют антенны, расположенные непосредственно у земли (или металлического экрана) перпендикулярно (реже наклонно) к ее поверхности.


Сопротивление излучения несимметричного вибратора в два раза меньше, чем у эквивалентного симметричного вибратора, поскольку при одинаковых токах первый излучает в два раза меньшую мощность (нет излучения в нижнее полупространство) .

Входное сопротивление несимметричного вибратора в два раза меньше, чем у эквивалентного симметричного вибратора, поскольку при одинаковах токах питания у первого напряжение питания в два раза меньше (рис. 1).

Коэффициент направленного действия несимметричного вибратора в два раза больше, чем у эквивалентного симметричного вибратора, поскольку при однаковой мощности излучения первый обеспечивает в два раза большую угловую плотность мощности, так как вся его мощность излучается в одно полупространство (рис.2).

Все сказанное справедливо для идеального несимметричного вибратора, то есть когда земля представляет собой идеальный проводник. Если же земля обладает плохими проводящими свойствами, поле излучения вибратора меняется. Кроме того, это приводит к уменьшению амплитуды тока в вибраторе и, следовательно, к повышению его сопротивления и уменьшению излучаемой мощности. Почва является диэлектриком с большой диэлектрической проницаемостью (равной почти 80), что приводит к изменению электрической длины мнимого диполя, а также длины пути токов смещения. Результат - полное искажение диаграммы направленности (поднятие лепестков вверх и исчезновение излучения под малыми углами к горизонту) и увеличение сопротивления штыря.

По этой причине практически не используют почву в качестве "земли", а используют искусственную землю.

2. Земля штыревой антенны

Теоретические расчеты показывают, что наибольшие потери имеют место в зоне с радиусом 0,35 длины волны, поэтому в этой зоне желательно провести "металлизацию" земли: соединить радиальные провода между собой перемычками (рис.3). Очень хорошо, если эта металлизация будет проведена на всем расстоянии противовесов.


Рис.3

Противовесы следует изолировать от земли. Если они будут лежать на земле, то от влаги их электрическая длина не будет резонансной для антенны. Так же должны быть изолированы от земли и их концы. Только в одном случае можно не изолировать концы противовесов от земли: если они надежно соединены кольцом-перемычкой (рис.3).

Никогда не следует забывать о том, что идеальная штыревая антенна имеет КПД 47%, а КПД антенны с 3 противовесами - менее 5%. Значит, работая со штыревой антенной с тремя противовесами, из ваших 200 ватт, подводимых к штырю, 180 ватт (!!!) напрасно теряются, попутно создавая TVI. Многие процессы в ионосфере нелинейны, т.е. отражение радиоволн начинается, скажем, при подводимой мощности к вашей антенне в 7 ватт, и уже полностью не происходит при 5 ваттах. Значит, вы теряете уникальные возможности DX QSO, сэкономив на проводе для противовесов.

Следует еще учесть искажения диаграммы направленности при малом количестве противовесов. Из шарообразной она становится лепестковой, имеющей направление вдоль противовесов. Задача о нахождении оптимального количества противовесов была решена мною с помощью ЭВМ. Решение представлено на рис.4. Из него видно, что минимально необходимое число противовесов равно 12. При большем их количестве КПД растет медленно. Противовесы должны быть расположены на одинаковом расстоянии относительно друг друге.


Рис.4

Угол их расположения относительно штыря должен быть от 90° до 1350. При больших и меньших углах падает КПД и д.н. искажается. Противовесы должны быть длиной не менее основного штыря. Это"можно объяснить тем, что протекающие между штырем и противовесами токи смещения занимают определенный объем пространства, который участвует в формировании диаграммы направленности. Уменьшая длину противовесов, а, следовательно, уменьшая объем пространства, служащий формированию д.н., мы существенно ухудшаем характеристики антенны. С большим приближением можно сказать, что каждой точке на штыре соответствует своя точка на противовесе. Однако нет необходимости использовать противовесы длиннее чем основной штырь.

Противовесы и сам штырь должны быть покрыты защитной краской. Это необходимо для того, чтобы материал, из которого выполнена антенна, не окислялся. Окисление вибраторов приводит в негодность антенну из-за того, что тонкая пленка окисла имеет значительное сопротивление, а так как на ВЧ сильно выражен поверхностный эффект, то энергия передатчика поглощается и рассеивается в тепло этой пленкой.

Крайне желательно использовать для этого радиокраску (ту, которой красят локаторы). Обычная краска содержит частички красителя, поглощающие ВЧ энергию. Но, в крайнем случае, можно использовать и обычную краску.

3. Размеры вибраторов штыревой антенны

Как известно, сопротивление излучения антенны Ризл пропорционально отношению L/d, где L - длина и d - диаметр антенны. Чем меньше отношение L/d, тем широкополоснее антенна и больше КПД.

Следует учесть, что при использовании толстых вибраторов сказывается "торцевой эффект". Он обуславливается емкостью между торцами вибратора и землей. Физически это выражается в том, что антенна получается "длиннее" расчетной. Для его уменьшения обычно широкополосные штыри имеют конусообразную форму. Расчеты показывают, что минимально необходимая толщина противовесов должна составлять

d=D/2,4n, где

d - диаметр противовесов, D - диаметр штыря, n - количество противовесов.

Часто радиолюбители не могут установить четвертьволновый штырь и используют штырь, имеющий меньшие размеры. В принципе можно согласовать штырь любой длины с помощью согласующих устройств. Однако короткие штыри имеют малое активное и большое реактивное сопротивление и будут согласованы весьма неоптимально (на самих согласующих устройствах может рассеяться до 90% энергии). А если еще при этом используются и суррогатные короткие противовесы, то эффективность такой антенной системы будет весьма низка. Однако в средствах подвижной связи часто такие суррогатные антенны применяются. Но это только потому, что другие виды укороченных антенн будут работать еще хуже!

4. Диаграммы направленности штыревых антенн

Многих интересует, как влияет высота подъема штыря на его диаграмму направленности в горизонтальной плоскости и зависит ли его сопротивление от высоты подвеса. Важнейший результат заключается в том, что распределение токов в штыре не зависит от высоты его подвеса при наличии идеальной "земли". Практически это означает, что на какой бы высоте штырь ни находился, его сопротивление будет постоянным. Общий результат решения показывает, что если штырь настроен в резонанс, то его нижний конец можно заземлить. При этом его можно питать в любой точке.

На результатах этого важного вывода и созданы штыревые антенны (флаг-антенны, мачта-антенны), нижний конец которых соединен с "землей" и которые питаются через гамма-согласование.

Диаграммы направленностей вертикальной плоскости полуволнового штыря приведены на рис.5. Из этого рисунка видно, что чем выше поднимается антенна, тем положе угол излучения к горизонту. Это объясняется тем, что происходит сложение излученной штырем волны и волны, отраженной от земли. Если почва обладает плохими проводящими свойствами, то диаграмма направленности будет близка к диаграмме направленности штыря над землей. Поднимать антенну на высоту более длины волны не имеет смысла, т.к. при этом уже не происходит уменьшения угла излучения, а только начинают дробиться верхние боковые лепестки.


Рис.5

Следует запомнить еще одну интересную особенность штырей, высота которых равна длине волны и более. Такие антенны в профессиональной связи используются как антифединговые . Это означает, что такая антенна будет принимать без проблем сигнал, приходящий с замираниями на четвертьволновый штырь или диполь.

5. Согласование штыревых антенн

Давайте начнём издалека. Как вообще можно увеличить дальность радиоуправления или видеотрансляции?
1. Изменить окуржающие условия. Не всё в наших силах, но всё же. Полёт в центре города очень отличается в плане помех от полёта в 10 км от города. Стоять лучше на пригорке крупной поляны, чем возле здания или леса. И т. д.
2. Выбрать погоду. Влажность и т. п. Например, для аппаратуры 5,8 ГГц облака - это очень белокрылые непрозрачные лошадки. Они с таким же успехом могли быть листами металла. Короче: если у вас 5,8 ГГц - летайте в безоблачную погоду или ниже облаков.
3. Увеличить мощность передатчика. Железно помогает, но есть свои проблемы:

  • Замена со 100 мВт на 200мВт не даст увеличиния дальности в 2 раза. Всё очень нелинейно.
  • Чем выше мощность передатчика тем печальнее ситуация для близлежащей аппаратуры. У вас рядом приёмник? Ему станет хуже! У вас 1,5 Ваттный видеопередатчик на борту? Сервомашинки начинают слушаться видео-передатчик, а не РУ-приёмник, к которому они подключены. Требуется разнос аппаратуры, экранирование и т. п. Масса увеличивается, дальность управления снижается и т. д. и т.п.
  • Энергопотребление.
  • Охлаждение.
  • Ограничения законодательства.

4. И наконец самый сложный способ: подбор более выгодной антенны. Тут несколько направлений:

  • Выбор направленой или всенаправленой антенны.
  • Выбор конкретного типа антенны.
  • Выбор способа её установки и механизации.
  • Выбор коэффициента усиления.

Собственно, рассказать я бы хотел именно о выборе коэффициента усиления для всенаправленных штыревых антенн. Они чаще всего оказываются в руках граждан поскольку идут в комплектах с аппаратурой. Кроме того, они самые приемлимые по цене.

Перед дальнейшим объяснением мне нужно понимание трёх вопросов. Постараюсь объясить так, чтобы любой понял.
1. Антенны существуют для радиосвязи. Таких понятий как, антенна для приёма или для передачи - нет. Антенна с одинаковым успехом будет приёмной и передающей. На практике, для конкретных условий, выгодней на передачу поставить такую-то антенну, а на приём другую, но это совсем другая история. Ниже расскажу.
2. Диаграмма направленности антенны - это область в пространстве, в которую уходит сигнал от антенны. Дальше этой области сигнал слишком слаб, чтобы его можно было использовать. Если антенна установлена на на приёмнике - значит область из которой антенна может принимать сигнал. Дальше этой области не примет. Форма этой области бывает очень разной: шары, лепестки, торы, конусы и т. п. Суть в том, что если в пространстве пересеклись диаграммы направлености приёмной и передающей антенны - связь будет. А если не пересеклись - связи не будет.
3. Коэффициент усиления антенны. Очень примитивно - это во сколько раз сильнее антенна излучает/принимает сигнал при прочих равных.

Я, как и многие, считал, что жизнь устроена просто. При прочих равных однотипная антенна на 5dbi лучше чем на 2 dbi. А на 8 dbi ещё лучше! Это ужасно, но это не так. Так получилось, что про этот аспект мне некому было рассказать, и я стал страдать гигантоманией. У меня было 12 dbi на передатчике и 5 dbi на приёмнике. Антенны по длине почти как на мегагерцовой аппаратуре! Но я человек простой: мощности двигателя самолёта хватит чтобы тащить такие вещи? Значит - не проблема.
В теории антенна с 0 dbi даёт диаграмму направленности по типу шара. Размер шара (при отсутствии внешних раздражителей, а ещё лучше в открытом космосе) будет зависить только от мощности передатчика или чувствительности приёмника (смотря, на приём или на передачу работает антенна).

Антенна с коэффициентом усиления в 1 dbi даст при прочих равных шар покрупнее, но он будет немного уже не идеальный шар, а такой... приплюснутый сверху и снизу.


Чем большй коэффициент усиления антенны вы будете использовать, тем больше будет радиус шара, но тем более он будет сплюснут по вертикали. В итоге вы получите этакий блин огромного радиуса, но малой толщины.

Вот диаграмма направлености вертикально установленой на земле антенны с 12dbi. Вид сбоку.

Т. е. антенна, говоря по честному, уже перестанет быть всенаправленной. Например к антенне c 8dbi производетель пишет :

Угол направления по горизонтали = 360 градусов.
Угол направления по вертикали = 15 градусов.

Если вы держите штырь отвесно возле земли (1 м над поверхностью), то из 15 градусов 7,5 уходят под землю. Остальные 7,5 - в вашем полном распоряжении. Вы даже можете целиться боком антенны в самолёт.

Для сравнения маленькая таблица штыревых антенн на 2,4 ГГц по данным нескольких производителей.

КУ вертикальный угол
5 dbi 32-40 градусов
8 dbi 13-30 градусов
12 dbi 6-12 градусов

Напрашиваются выводы:
1. На самом самолёте все приёмные/передающие антенны, если они штыревые, должны быть с минимально разумным коэффициентом усиления. Полагаю, что разумно - это 1-2,5 dbi. Это связано с невозможностью сохранения постоянными крена и тангажа самолёта.
2. На земле антенны с высоким коэффициентом усиления будут очень мешать высоким полётам и проходом над собой. Однако, далеко и невысоко - хорошо. Например, описаный выше угол в 7,5 градусов на расстоянии в 1,5 км предполагает нахождение самолёта не выше 100 м.
3. Тыканье концом антенны в самолёт тем хуже даст эффект, чем выше коэффициент усиления этой антенны.
4. При выборе штыря есть смысл учитывать ещё одну характеристику: вертикальный угол направленности. Для равных по КУ антенн он может различаться.

КВ антенны Ю. Прозоровский
РАДИО N 10 1962, c.23-24

Одним из основных способов снижения помех телевизионному приему со стороны любительских передатчиков является применение передающих антенн с вертикальной поляризацией. Наиболее распространена среди коротковолновиков четвертьволновая вертикальная антенна ("Ground plane"). Эта антенна состоит из вертикального штыря, длина которого обычно несколько меньше четверти длины рабочей волны, излучаемой передатчиком, и противовеса. Он выполняется из нескольких горизонтально расположенных четвертьволновых лучей, соединенных с оболочкой коаксиального кабеля, по которому от передатчика подается высокочастотная энергия.

Сопротивление излучения такой четвертьволновой антенны равно 28-32 ом (в зависимости от внешнего диаметра металлических трубок, из которых она построена). Поэтому соединение антенны с 50- или 75-омным коаксиальным кабелем приведет к появлению в нем стоячих волн и к потере энергии. Для согласования вертикального штыря с кабелем необходимо использовать дополнительные элементы - катушки индуктивности, конденсаторы или отрезки кабеля с определенными параметрами.

Ниже описывается упрощенный метод расчета антенны "Ground plane" с горизонтальным противовесом и согласующим отрезком кабеля. Антенны, построенные по этому расчету, хорошо работают на одном любительском диапазоне (например, 14 Мгц) и, вместе с тем, вполне удовлетворительно излучают и на двух соседних диапазонах (21 и 7 Мгц).

Расчет будем приводить на числовом примере для диапазона 14 Мгц. Соединение штыря с питающим его кабелем и согласующим отрезком кабеля и обозначения их размеров показаны на рис. 1.

Для расчета необходимо знать диаметр металлических трубок или провода, из которых будут выполнены штырь антенны и лучи противовеса. Допустим, что мы собираемся применить для изготовления антенны трубки с внешним диаметром 30 мм,

а противовес будем делать из провода диаметром 2 мм. Определяем коэффициент М, характеризующий отношение длины удаленного от земли полуволнового диполя к диаметру антенны. Применяем формулу:

M=150000/(f(Мгц)D(мм))

Здесь: f - средняя частота диапазона,

D - диаметр трубок. При f=14,2 Мгц и D=30 мм получаем:

M=150000/(14,2*30)=352

По коэффициенту М определяем, пользуясь графиком (рис. 2), сопротивление излучения четвертьволновой антенны Rизл (для резонансной частоты): Rизл=30,8 ом.


Puc.2

Теперь следует вычислить истинное сопротивление излучения Ry укороченной антенны, которую мы будем строить; оно из-за влияния земли и противовеса отличается от Rизл и равно:

Ry=Rизл-Z/4Rизл

Здесь Z - волновое сопротивление коаксиального кабеля, из которого выполнен фидер. В нашем примере возьмем его равным 75 ом. Тогда:

Ry=30,8-75/4*30,8=30,2 Ом.

Для вычисления длины вертикального штыря L нужно по графику рис. 3 определить еще два вспомогательных коэффициента: Кс, характеризующий изменение сопротивления антенны при изменении ее длины, и Кз, учитывающий влияние противовеса и земной поверхности. Получаем: Kc=535, Kз=0,97.


Puc.3

График для определения коэффициента К может быть использован лишь при изменении длины антенны не более чем на 10%. Если антенна длиннее резонансной, то ее полное сопротивление носит индуктивный характер, если короче - емкостный.

Длина штыря (в мм) определяется по формуле:


У нас;


Для определения длины лучей противовеса Lnp, выполненных из провода диаметром 2 мм, вычисляем М:

M=150000/14,2*2=5280 и по графику рис. 3 находим Ky=0,978. Тогда


Укороченная антенна имеет, кроме активного, также реактивное сопротивление емкостного характера. Для его компенсации параллельно антенне присоединен закороченный на конце отрезок кабеля; длина его выбирается такой, чтобы его реактивное сопротивление имело индуктивный характер необходимой величины. Определяем это индуктивное сопротивление:

Xc=Z/S=75/1,22=61,5 Ом

Пользуясь логарифмической линейкой или таблицей тангенсов, находим угол а, тангенс которого численно равен отношению полученного значения Xc к волновому сопротивлению Zc кабеля, из которого будет выполнен согласующий отрезок. При Zc=75 ом:

Xc/Z=61,5/75=0,82 и a=39,4°

Длина закороченного отрезка равна:

Lc=(833ab)/f, мм

В этой формуле b - коэффициент, характеризующий скорость распространения энергии по кабелю. Для распространенных кабелей со сплошным заполнением (РК-1, РК-3) b=0,67.

Следовательно,

Lc=(833*38,4*0,67)/114,2=154,9 мм

Описанный выше расчет учитывает, что лучи противовеса расположены горизонтально; однако и при наклонном их расположении (под углом 30-40° к земле) рассогласование бывает незначительным.

Коэффициент стоячей волны (КСВ) в фидере можно измерить, собрав несложный указатель КСВ мостового типа, схема которого показана на рис. 4. Здесь сопротивления R1, R2, R3 и сопротивление излучения антенны образуют мост. В одну из его диагоналей подается энергия высокой частоты от передатчика (разъем Пер). Во второй диагонали включен диод Д1 типа Д2Е.


Рис.4

Сопротивление R4 служит для уменьшения выходного сопротивления источника энергии (передатчика). Дроссель (Др1) замыкает цепь постоянной слагающей выпрямленного тока; он необходим в том случае, если цепь антенны не имеет гальванической проводимости.

При балансе моста стрелка прибора не отклоняется. Рассогласование антенны и кабеля вызывает появление стоячих воли, что отмечается отклонением стрелки. Порядок измерения КСВ следующий:

1. Настраивают передатчик с антенной при полной излучаемой мощности.

2. Уменьшают мощность до нуля, запирая, например, одну из ламп предварительных каскадов отрицательным смещением, и отсоединяют антенну.

3. Соединяют отрезком кабеля вход передатчика и разъем Пер. на указателе ксв.

4. Постепенно, очень плавно, чтобы не сжечь сопротивление R4, увеличивают мощность энергии, подаваемой в указатель ксв, до тех пор, пока стрелка прибора не отклонится до конца шкалы.

5. Для проверки баланса моста временно присоединяют к разъему Ант сопротивление 75 ом; стрелка миллиамперметра должна при этом стать на нуль.

6. Включив к разъему Ант. коаксиальный кабель, питающий антенну, отмечают по шкале ток и определяют ксв по кривой, изображенной на рис. 5.


Puc.5

Если фидер антенны не вносит существенных потерь, например он выполнен из кабеля РК-1 или РК-3 и имеет длину не более 15-20 м, то ксв 2 и даже 2,5 вполне допустим. Общие потери (сумма потерь в фидере и потерь за счет рассогласования) в этом случае не превысят 0,5 дб. Такое уменьшение мощности на приемной станции на слух отмечено не будет. Заметное падение громкости приема (на 1-2 балла) может наблюдаться лишь при ксв порядка 5-8.

В том случае, если построенная антенна обладает чрезмерным ксв или ее размеры выбраны большими или меньшими, чем следует, необходимо, пользуясь указателем ксв, настроить антенну опытным путем. Антенна большей, чем нужно, длины может быть электрически укорочена конденсатором, включенным последовательно с вертикальной частью (рис. 6,а). Слишком короткую антенну можно электрически удлинить, добавив к ней индуктивность (рис. 6,б). В этом случае настройку антенны ведут попеременно, подбирая положение обоих щипков на катушке. Здесь часть катушки между щипками 1 и 2 используется для удлинения вертикальной части антенны, а нижняя часть (2-3) заменяет согласующий закороченный отрезок кабеля (рис. 1).


Puc.6

В заключение отметим, что на антенне описанного типа накапливаются заряды статического электричества, особенно при близкой грозе. Поэтому рекомендуется применять антенны с закороченными отрезками кабеля (рис. 1) или шунтирующей кабель индуктивностью (рис. 6 б) и надежно заземлять оболочку кабеля.

Для комментирования материалов с сайта и получения полного доступа к нашему форуму Вам необходимо зарегистрироваться .

Это несимметричный вибратор , который представляет собой жесткий металлический стержень. Штыревая антенна применяется в области радиовещания и радиосвязи.

Штыревые антенны, работающие в диапазонах коротких волн, используются в портативных и носимых комплектах вместе с автоматическим или ручным тюнером. Антенны могут быть различной длины (1-3 м) и могут иметь разное количество секций (2-6). Высокоэффективные штыревые антенны применяются в лесистых и труднопроходимых местностях, где обычные антенны не могут выполнять свою работу эффективно.

Чтобы увеличить диапазон частот, к штыревой антенне присоединяют удлинительную катушку.
Первые коротковолновые штыревые антенны состояли из опорных фарфоровых изоляторов с большими габаритами. При настройке антенны вибраторы удлинялись или укорачивались. Современные антенны легко настраиваются и без громоздких изоляторов получают желаемое согласование антенны с выходом передатчика и фидером.

Штыревая антенна с гамма-согласующим устройством имеет вид вибратора, который вставлен в муфту.
Муфта , в свою очередь, припаивается к краю металлической площадки. В некоторых штыревых антеннах функции вибратора выполняют водопроводные оцинкованные трубы, которые привариваются к двум муфтам с внутренней резьбой. К еще одной муфте крепятся четыре ушка с пучками-противовесами. На концах противовесов находятся орешковые изоляторы. Пучки, кроме функций противовесов, выполняют еще и работу оттяжек мачт первого яруса. С одной стороны площадки располагается вибратор, в противоположной стороне от него крепится опорный изолятор с трубкой гамма-согласователя. Металлическая перемычка, передвигающаяся вверх и вниз, охватывает как трубку гамма-согласователя, так и трубу вибратора. На верхней стороне площадки закрепляется металлическая коробка между гамма-согласователем и вибратором. Коробка содержит в себе разъем с высокой частотой и конденсатор переменной емкости. Параллельно к конденсатору устанавливается конденсатор постоянной емкости. Пластины ротора и статора конденсатора изолируются от металлической коробки. В трубе вибратора делаются четыре отверстия для медного провода, концы которого загибаются через край трубы. К отрезкам медного провода присоединяются антенные изоляторы, а также изоляторы для комнатных антенн.

Таким образом, полученная конструкция образует второй ярус оттяжек штыревой антенны. Отверстие вибратора, расположенное наверху, закрывается деревянной заглушкой, которая не пропускает влагу внутрь вибратора. Верхнее отверстие трубки гамма-согласователя также закрывается подобной деревянной пробкой.

К разъему высокой частоты, находящемуся на металлической коробке, подключается коаксиальный кабель с определенным волновым сопротивлением. Контакты разъема, предварительно изолированные, соединяются с пластинами статора конденсатора. Изолированный отрезок гибкого проводника соединяется с пластинами ротора конденсатора и крепится к основанию трубки гамма-согласователя.

Настраивается штыревая антенна специальным прибором, определяющим индикатор напряженности поля. Самым простым способом настройки считается включение в разрыв провода теплового амперметра . Наибольшее отклонение стрелки амперметра происходит за счет перемещения перемычки вверх и вниз. Разрыв провода располагается от пластин ротора конденсатора до основания трубки гамма-согласователя.

Через высокочастотный разъем к штыревой антенне подключается фидер. Высокочастотное напряжение поступает к антенне через коаксиальный кабель. При настройке штыревой антенны передатчик должен быть нацелен на максимальное излучение при среднем любительском диапазоне. Когда антенна окончательно настроится, будет исходить от нее наибольшее излучение, перемычка твердо крепится на трубе вибратора и трубке гамма-согласователя. Место закрепления обмазывается пластилином для большей надежности.

а, выполненного из жёсткого металлического стержня (сплошного или состоящего из нескольких сочленяющихся звеньев) либо из большого числа металлических катушек, нанизанных на гибкий стальной трос (т. н. антенна Куликова). Реже применяются Ш. а. из профилированной металлической ленты, проволочных жгутов или металлизированных диэлектрических стержней. Диаграмма направленности излучения (приёма) Ш. а. в горизонтальной плоскости имеет форму круга (см. рис. 2 ), поэтому такая антенна особенно удобна при связи между наземными объектами с изменяющимся во времени взаимным расположением, например между передвижными радиостанциями (установленными в автомобилях, танках и т.п.).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Штыревая антенна" в других словарях:

    штыревая антенна - Вертикальная антенна в виде жесткого или гибкого металлического стержня. Излучение штыревой антенны максимально в плоскости, перпендикулярной ее оси, и отсутствует в направлении вдоль оси. [Л.М. Невдяев. Телекоммуникационные технологии. Англо… … Справочник технического переводчика

    Несимметричный вибратор в виде жесткого металлического стержня. Используется для радиосвязи и радиовещания … Большой Энциклопедический словарь

    Несимметричный вибратор в виде жёсткого металлического стержня. Используется для радиосвязи и радиовещания. * * * ШТЫРЕВАЯ АНТЕННА ШТЫРЕВАЯ АНТЕННА, несимметричный вибратор в виде жесткого металлического стержня. Используется для радиосвязи и… … Энциклопедический словарь

    штыревая антенна - strypinė antena statusas T sritis automatika atitikmenys: angl. flagpole antenna vok. Stabantenne, f rus. штыревая антенна, f pranc. antenne en tige, f … Automatikos terminų žodynas

    Антенна в виде гибкого или жёсткого металлич. штыря, соединяемого короткой линией со входом радиоприёмника или радиопередатчика. Применяется на подвижных объектах (автомобилях, танках и т. п.) и др … Большой энциклопедический политехнический словарь

    гибкая штыревая антенна - rimbinė antena statusas T sritis radioelektronika atitikmenys: angl. whip antenna vok. Peitschenantenne, f rus. гибкая штыревая антенна, f pranc. antenne fouet, f … Radioelektronikos terminų žodynas