Чем отличаются cwdm и dwdm. Часто задаваемые вопросы по технологиям спектрального уплотнения (WDM)

Основным принципом технологии WDM (Wavelength-division multiplexing, частотное разделение каналов) является возможность передавать в одном оптическом волокне множество сигналов на различных несущих длинах волн. В российском телекоме системы передачи, созданные с помощью технологии WDM, называют «системы уплотнения».


На данный момент существуют три типа WDM-систем:
1. CWDM (Coarse Wavelength-division multiplexing - грубое частотное разделение каналов) -системы с разносом оптических несущих на 20 нм (2500 ГГц). Рабочий диапазон 1261-1611 нм, в котором можно реализовать до 18 симплексных каналов. Стандарт МСЭ G.694.2.
2. DWDM (Dense Wavelength-division multiplexing - плотное частотное разделение каналов) - системы с разносом оптических несущих на 0,8 нм (100 ГГц). Существуют два рабочих диапазона - 1525-1565 нм и 1570-1610 нм, в которых можно реализовать до 44 симплексных каналов. Стандарт МСЭ G.694.1.
3. HDWDM (High Dense Wavelength-division multiplexing - высокоплотное частотное разделение каналов) - системы с разносом оптических несущих на 0,4 нм (50 ГГц) и менее. Возможна реализация до 80 симплексных каналов.

В данной статье (обзоре) уделено внимание проблеме мониторинга в системах уплотнения DWDM, более подробно о различных типах WDM-систем можно ознакомиться по ссылке - ссылка .

Системы спектрального уплотнения DWDM могут использовать один из двух диапазонов несущих длин волн: С-диапазон - 1525-1565 нм (также может встречаться conventional band или C-band) и L-диапазон - 1570-1610 нм (также может встречаться long wavelength band или L-band).

Деление на два диапазона обосновано использованием разных оптических усилителей с различными рабочими диапазонами усиления. Ширина полосы усиления для традиционной конфигурации усилителя составляет примерно 30 нм, 1530-1560 нм, что является С-диапазоном. Для усиления в длинноволновом диапазоне (L-диапазон) конфигурация эрбиевого усилителя меняется путем удлинения эрбиевого волокна, что приводит к смещению диапазона усиления в длины волн 1560-1600 нм.

На данный момент в российском телекоме большое признание получило оборудование DWDM C-диапазона. Связано это с обилием различного оборудования, поддерживающего данный диапазон. Следует отметить, что производителями оборудования выступают как маститые отечественные компании и ведущие мировые бренды, так и многочисленные безликие азиатские производители.

Основным вопросом на любом участке системы уплотнения (в независимости от типа) является уровень мощности в оптическом канале. Для начала следует разобраться, из чего обычно состоит система уплотнения DWDM.

Компоненты DWDM-системы:
1) Транспондер
2) Мультиплексор/демультиплексор
3) Оптический усилитель
4) Компенсатор хроматической дисперсии

Транспондер производит 3R-регенерацию («reshaping, «re-amplifying», «retiming» -восстановление формы, мощности и синхронизации сигнала) приходящего клиентского оптического сигнала. Транспондер может производить также конвертацию клиентского трафика из одного протокола передачи (зачастую Ethernet) в другой, более помехозащищенный (например, OTN с использованием FEC) и передавать сигнал в линейный порт.

В более простых системах в роли транспондера может выступать OEO-преобразователь, который производит 2R-регенерацию («reshaping», «re-amplifying») и без изменения протокола передачи передает клиентский сигнал в линейный порт.

Клиентский порт зачастую выполняется в виде слота для оптических трансиверов, в который вставляется модуль для связи с клиентским оборудованием. Линейный порт в транспондере может быть выполнен в виде слота для оптического трансивера или в виде простого оптического адаптера. Исполнение линейного порта зависит от конструктива и назначения системы в целом. В OEO-преобразователе линейный порт всегда выполнен в виде слота для оптического трансивера.
Во многих системах промежуточное звено - транспондер, исключается в целях снижения стоимости системы или из-за функциональной избыточности в конкретной задаче.

Оптические мультиплексоры предназначены для объединения (смешения) отдельных WDM-каналов в групповой сигнал для одновременной их передачи по одному оптическому волокну. Оптические демультиплексоры предназначены для разделения принятого группового сигнала на приемной стороне. В современных системах уплотнения, функции мультиплексирования и демультиплексирования выполняет одно устройство - мультиплексор/демультиплексор (MUX/DEMUX).

Мультиплексор/демультиплексор условно можно разделить на блок мультиплексирования и блок демультиплексирования.
Оптический усилитель на основе примесного оптического волокна, легированного эрбием (Erbium Doped Fibre Amplifier-EDFA), увеличивает мощность входящего в него группового (без предварительного демультиплексирования) оптического сигнала без оптоэлектронного преобразования. Усилитель EDFA состоит из двух активных элементов: активного волокна, легированного Ег3+ и подходящей накачки.

В зависимости от типа, EDFA может обеспечить выходную мощность от +16 до +26 дБм.
Существует несколько видов усилителей, применение которых определяется конкретной задачей:
Входные оптические усилители мощности (бустеры) - устанавливаются в начале трассы
Оптические предусилители - устанавливаются в конце трассы перед оптическими приемниками
Линейные оптические усилители - устанавливаются на промежуточных узлах усиления для поддержания необходимой оптической мощности

Оптические усилители широко применяются на протяженных линиях передачи данных с системами спектрального уплотнения DWDM.

Компенсатор хроматической дисперсии (Dispersion Compensation Module) предназначен для исправления формы оптических сигналов, передаваемых в оптическом волокне, которые, в свою очередь, искажаются под влиянием хроматической дисперсии.

Хроматическая дисперсия - физическое явление в оптическом волокне, заключающееся в том, что световые сигналы с разными длинами волн проходят одно и то же расстояние за разный промежуток времени и в результате чего происходит уширение передаваемого оптического импульса. Таким образом, хроматическая дисперсия является одним из основных факторов, ограничивающим протяженность ретрансляционного участка трассы. Стандартное волокно имеет значение хроматической дисперсии около 17 пс/нм.

Для увеличения протяженности ретрансляционного участка на линии передачи устанавливаются компенсаторы хроматической дисперсии. Установка компенсаторов зачастую требует линии передачи со скоростью 10 Гбит/с и более.

Существуют два основных типа DCM:

1. Волокно, компенсирующее хроматическую дисперсию - DCF (Dispersion Compensation Fiber). Основной составляющей частью данных пассивных устройств является волокно с отрицательным значением хроматической дисперсии в диапазоне длин волн 1525-1565 нм.

2. Компенсатор хроматической дисперсии на основе решетки Брэгга - DCM FBG (Dispersion Compensation Module Fiber Bragg Grating). Пассивное оптическое устройство, состоящее из чирпированного волокна и оптического циркулятора. Чирпированное волокно за счет структуры создает условно отрицательную хроматическую дисперсию входящих сигналов в диапазоне длин волн 1525-1600 нм. Оптический циркулятор в устройстве выполняет роль фильтрующего устройства, направляющего сигналы в соответствующие выводы.

Таким образом, стандартная схема состоит всего из двух типов активных компонентов -транспондер и усилитель, с помощью которых можно отслеживать текущий уровень мощности передаваемых сигналов. В транспондерах реализована функция мониторинга состояния линейных портов либо на основе встроенной функции DDMI в оптические трансиверы, либо с организацией собственного мониторинга. Использование данной функции позволяет оператору получать актуальную информацию о состоянии определенного канала связи.

По причине того, что оптические усилители представляют собой усилители с обратной связью, в них всегда присутствует функция мониторинга входного группового сигнала (суммарная оптическая мощность всех входящих сигналов) и исходящего группового сигнала. Но данный мониторинг неудобен в случае контроля конкретных каналов связи и может использоваться как оценочный (наличие или отсутствие света). Таким образом, единственным инструментом контроля оптической мощности в канале передачи данных является транспондер.

А так как системы уплотнения состоят не только из активных, но и из пассивных элементов, организация полноценного мониторинга в системах уплотнения является весьма нетривиальной и востребованной задачей.

Варианты организации мониторинга в системах уплотнения WDM будут рассмотрены в следующей статье.

Наверняка все слышали о передаче информации по оптоволоконным сетям, а также о том, что этот метод обеспечивает наибольшие на сегодняшний день скорости. Именно последнее дает хороший повод к развитию технологий передачи данных по оптоволокну. Уже сегодня пропускная способность может достигать порядка терабит (1000 гигабит) в секунду.

Если сравнивать с другими способами передачи информации, то порядок величин Тбайт/с просто недостижим. Еще один плюс таких технологий - это надежность передачи. Передача по оптоволокну не имеет недостатков электрической или радиопередачи сигнала. Отсутствуют помехи, которые могут повредить сигнал, и нет необходимости лицензировать использование радиочастоты. Однако не так много людей представляют себе, как вообще происходит передача информации по оптоволокну, и тем более не знакомы с конкретными реализациями технологий. В этой статье мы рассмотрим одну из них - технологию DWDM (dense wavelength-division multiplexing).

Вначале рассмотрим, как вообще передается информация по оптоволокну. Оптоволокно - это волновод, по которому распространяются электромагнитные волны с длиной волны порядка тысячи нанометров (10-9 м). Это область инфракрасного излучения, не видимого человеческим глазом. И основная идея состоит в том, что при определенном подборе материала волокна и его диаметра возникает ситуация, когда для некоторых длин волн эта среда становится почти прозрачной и даже при попадании на границу между волокном и внешней средой большая часть энергии отражается обратно внутрь волокна. Тем самым обеспечивается прохождение излучения по волокну без особых потерь, и основная задача - принять это излучение на другом конце волокна. Конечно, за столь кратким описанием скрывается огромная и трудная работа многих людей. Не надо думать, что такой материал просто создать или что этот эффект очевиден. Наоборот, к этому нужно относиться как к большому открытию, так как сейчас это обеспечивает лучший способ передачи информации. Нужно понимать, что материал волновода - это уникальная разработка и от его свойств зависит качество передачи данных и уровень помех; изоляция волновода разработана с учетом того, чтобы выход энергии наружу был минимален. Что же касается конкретно технологии, называемой «мультиплексинг», то это означает, что вы одновременно передаете несколько длин волн. Между собой они не взаимодействуют, а при приеме или передаче информации интерференционные эффекты (наложение одной волны на другую) несущественны, так как наиболее сильно они проявляются при кратных длинах волн. Здесь же речь идет об использовании близких частот (частота обратно пропорциональна длине волны, поэтому все равно, о чем говорить). Устройство под названием «мультиплексор» - это аппарат для кодирования или декодирования информации в формат волн и обратно. После этого короткого введения перейдем уже к конкретному описанию технологии DWDM.

Основные характеристики мультиплексоров DWDM, которые отличают их от просто WDM-мультиплексоров:

  • использование только одного окна прозрачности 1550 нм, в пределах области усиления EDFA 1530-1560 нм (EDFA - система оптического усиления);
  • малые расстояния между мультиплексными каналами - 3,2/1,6/0,8 или 0,4 нм.

Для справки скажем, что длина волны видимого света 400-800 нм. Кроме того, поскольку само название говорит о плотной (dense) передаче каналов, то количество каналов больше, чем в обычных WDM-схемах, и достигает нескольких десятков. Из-за этого возникает потребность создать устройства, которые способны добавлять канал или извлекать его, в отличие от обычных схем, когда происходит кодирование или декодирование всех каналов сразу. С такими устройствами, работающими с одним каналом из многих, связывается понятие пассивной маршрутизации по длинам волн. Также понятно, что работа с большим числом каналов требует большей точности устройств кодирования и декодирования сигнала и предъявляет более высокие требования к качеству линии. Отсюда очевидное повышение стоимости устройств - при одновременном снижении цены за передачу единицы информации из-за того, что теперь ее можно передавать в большем объеме.

Вот как происходит работа демультиплексора с зеркалом (схема на рис. 1а). Приходящий мультиплексный сигнал попадает на входной порт. Затем этот сигнал проходит через волновод-пластину и распределяется по множеству волноводов, представляющих собой дифракционную структуру AWG (arrayed waveguide grating). По-прежнему сигнал в каждом из волноводов остается мультиплексным, а каждый канал - представленным во всех волноводах, то есть пока что произошло лишь распараллеливание. Далее происходит отражение сигналов от зеркальной поверхности, и в итоге световые потоки вновь собираются в волноводе-пластине, где происходит их фокусировка и интерференция. Это приводит к образованию интерференционной картины с пространственно разнесенными максимумами, причем обычно расчет геометрии пластины и зеркала делают так, чтобы эти максимумы совпадали с выходными полюсами. Мультиплексирование происходит обратным путем.

Другой способ построения мультиплексора базируется не на одной, а на паре волноводов-пластин (рис. 1б). Принцип действия такого устройства аналогичен предыдущему случаю, за исключением того, что здесь для фокусировки и интерференции используется дополнительная пластина.

DWDM-мультиплексоры, являясь чисто пассивными устройствами, вносят большое затухание в сигнал. Например, потери для устройства (см. рис. 1а), работающего в режиме демультиплексирования, составляют 10-12 дБ, при дальних переходных помехах менее –20 дБ и полуширине спектра сигнала 1 нм (по материалам Oki Electric Industry). Из-за больших потерь часто возникает необходимость установления оптического усилителя перед DWDM-мультиплексором и/или после него.

Самым важным параметром в технологии плотного волнового мультиплексирования, бесспорно, является расстояние между соседними каналами. Стандартизация пространственного расположения каналов нужна уже хотя бы потому, что на ее основе можно будет начинать проведение тестов на взаимную совместимость оборудования разных производителей. Сектор по стандартизации телекоммуникаций Международного союза по электросвязи ITU-T утвердил частотный план DWDM с расстоянием между соседними каналами 100 ГГц, что соответствует разнице длин волн в 0,8 нм. Еще обсуждается вопрос о передаче информации с разницей в длинах волн 0,4 нм. Казалось бы, разницу можно сделать и еще меньшей, добившись тем самым большей пропускной способности, но при этом возникают чисто технологические трудности, связанные с изготовлением лазеров, генерирующих строго монохроматический сигнал (постоянной частоты без помех), и дифракционных решеток, которые разделяют в пространстве максимумы, соответствующие различным длинам волн. При использовании разделения 100 ГГц все каналы равномерно заполняют используемый диапазон, что удобно при настройке оборудования и его переконфигурации. Выбор интервала разделения определяется необходимой пропускной способностью, типом лазера и степенью помех на линии. Однако нужно учитывать, что при работе даже в столь узком диапазоне (1530-1560 нм) влияние нелинейных помех на границах этой области весьма существенно. Этим объясняется тот факт, что с увеличением числа каналов необходимо увеличивать мощность лазера, но это, в свою очередь, приводит к снижению отношения «сигнал/шум». В результате использование более жесткого уплотнения пока не стандартизовано и находится в стадии разработки. Еще один очевидный минус увеличения плотности - уменьшение расстояния, на которое сигнал может быть передан без усиления или регенерации (чуть подробнее об этом будет сказано ниже).

Отметим, что упомянутая выше проблема нелинейности присуща системам усиления, основанным на кремнии. Сейчас разрабатываются более надежные фтор-цирконатные системы, обеспечивающие большую линейность (во всей области 1530-1560 нм) коэффициента усиления. С увеличением рабочей области EDFA становится возможным мультиплексирование 40 каналов STM-64 с интервалом 100 ГГц общей емкостью 400 ГГц в расчете на волокно (рис. 2).

В таблице приведены технические характеристики одной из мощных мультиплексных систем, использующих частотный план 100/50 ГГц, производства фирмы Ciena Corp.

Остановимся подробнее на системе оптического усиления. В чем состоит проблема? Изначально сигнал генерируется лазером и отправляется в волокно. Он распространяется по волокну, претерпевая изменения. Основным изменением, с которым нужно бороться, является рассеяние сигнала (дисперсия). Оно связано с нелинейными эффектами, возникающими при прохождении волнового пакета в среде и очевидным образом объясняется сопротивлением среды. Тем самым возникает проблема передачи на большие расстояния. Большие - в смысле сотен или даже тысяч километров. Это на 12 порядков больше длины волны, поэтому не удивительно, что даже если нелинейные эффекты малы, то в сумме на таком расстоянии с ними нужно считаться. Плюс к тому нелинейность может быть в самом лазере. Есть два способа добиться уверенной передачи сигнала. Первый - это установка регенераторов, которые будут принимать сигнал, декодировать его, генерировать новый сигнал, полностью идентичный пришедшему, и отправлять его дальше. Этот метод эффективен, но такие устройства являются весьма дорогими, и увеличение их пропускной способности или добавление новых каналов, которые они должны обрабатывать, связано с трудностями по переконфигурации системы. Второй способ - это просто оптическое усиление сигнала, полностью аналогичное усилению звука в музыкальном центре. В основе такого усиления лежит технология EDFA. Сигнал не декодируется, а лишь наращивается его амплитуда. Это позволяет избавиться от потерь скорости в узлах усиления, а также снимает проблему добавления новых каналов, так как усилитель усиливает все в заданном диапазоне.

На основе EDFA потери мощности в линии преодолеваются путем оптического усиления (рис. 3). В отличие от регенераторов такое «прозрачное» усиление не привязано к битовой скорости сигнала, что позволяет передавать информацию на более высоких скоростях и наращивать пропускную способность до тех пор, пока не вступают в силу другие ограничивающие факторы, такие как хроматическая дисперсия и поляризационная модовая дисперсия. Также усилители EDFA способны усиливать многоканальный WDM-сигнал, добавляя еще одно измерение в пропускную емкость.

Хотя оптический сигнал, генерируемый исходным лазерным передатчиком, имеет вполне определенную поляризацию, все остальные узлы на пути следования оптического сигнала, включая оптический приемник, должны проявлять слабую зависимость своих параметров от направления поляризации. В этом смысле оптические усилители EDFA, характеризуясь слабой поляризационной зависимостью коэффициента усиления, имеют ощутимое преимущество перед полупроводниковыми усилителями. На рис. 3 приведены схемы работы обоих методов.

В отличие от регенераторов оптические усилители вносят дополнительный шум, который необходимо учитывать. Поэтому, наряду с коэффициентом усиления, одним из важных параметров EDFA является коэффициент шума. Технология EDFA более дешевая, по этой причине она чаще используется в реальной практике.

Поскольку EDFA, по крайней мере по цене, выглядит привлекательнее, давайте разберем основные характеристики этой системы. Это мощность насыщения, характеризующая выходную мощность усилителя (она может достигать и даже превосходить 4 Вт); коэффициент усиления, определяемый как отношение мощностей входного и выходного сигналов; мощность усиленного спонтанного излучения определяет уровень шума, который создает сам усилитель. Здесь уместно привести пример музыкального центра, где можно проследить аналогии по всем этим параметрам. Особенно важен третий (уровень шума), и желательно, чтобы он был как можно меньшим. Используя аналогию, вы можете попробовать включить музыкальный центр, не запуская никакого диска, но при этом повернуть ручку громкости до максимума. В большинстве случаев вы услышите некоторый шум. Этот шум создается системами усиления просто потому, что на них подается питание. Аналогично в нашем случае возникает спонтанное излучение, но поскольку усилитель рассчитан на испускание волн в определенном диапазоне, то фотоны именно этого диапазона будут с большей вероятностью испускаться в линию. Тем самым будет создаваться (в нашем случае) световой шум. Это накладывает ограничение на максимальную длину линии и количество оптических усилителей в ней. Коэффициент же усиления обычно подбирается такой, чтобы восстановить изначальный уровень сигнала. На рис. 4 приведены сравнительные спектры выходного сигнала при наличии и отсутствии сигнала на входе.

Еще одним параметром, который удобно использовать при характеристике усилителя, является шум-фактор - это соотношение параметров «сигнал/шум» на входе и выходе усилителя. В идеальном усилителе такой параметр должен быть равен единице.

Для усилителей EDFA существует три способа применения: предусилители, линейные усилители и усилители мощности. Первые устанавливаются непосредственно перед приемником. Это делается для увеличения отношения «сигнал/шум», что обеспечивает возможность использования более простых приемников и может снизить цену оборудования. Линейные усилители имеют своей целью простое усиление сигнала в протяженных линиях или в случае разветвления таких линий. Усилители мощности используются для усиления выходного сигнала непосредственно после лазера. Это связано с тем, что мощность лазера тоже ограничена и иногда легче просто поставить оптический усилитель, чем устанавливать более мощный лазер. На рис. 5 схематически показаны все три способа применения EDFA.

Помимо описанного выше прямого оптического усиления, в настоящее время готовится к выходу на рынок усиливающее устройство, использующее для этих целей эффект рамановского усиления и разработанное в лабораториях Белла (Bell Labs). Суть эффекта заключается в том, что из точки приема навстречу сигналу посылается лазерный луч определенной длины волны, который раскачивает кристаллическую решетку волновода таким образом, что она начинает излучать фотоны в широком спектре частот. Тем самым общий уровень полезного сигнала поднимается, что позволяет несколько увеличить максимальное расстояние. Сегодня это расстояние составляет 160-180 км, по сравнению с 70-80 км без рамановского усиления. Эти устройства производства Lucent Technologies появятся на рынке в начале 2001 года.

То, о чем было рассказано выше, является технологией. Теперь несколько слов о реализациях, которые уже существуют и активно используются на практике. Во-первых, отметим, что применение оптоволоконных сетей - это не только Интернет и, может быть, не столько Интернет. По оптоволоконным сетям можно передавать голос и телеканалы. Во-вторых, скажем, что существует несколько разных типов сетей. Нас интересуют магистральные сети дальней связи, а также локализованные сети, например внутри одного города (так называемые метрополитен-решения). При этом для магистральных каналов связи, где отлично работает правило «чем толще труба, тем лучше», технология DWDM является оптимальным и обоснованным решением. Другая ситуация складывается в городских сетях, в которых запросы по передаче трафика не столь велики, как у магистральных каналов. Здесь операторы используют старый добрый транспорт на основе SDH/SONET, работающий в диапазоне длин волн 1310 нм. В этом случае для решения проблемы недостаточной пропускной способности, которая, кстати, для городских сетей пока стоит не очень остро, можно использовать новую технологию SWDM, которая является своеобразным компромиссом между SDH/SONET и DWDM (подробнее о технологии SWDM читайте на нашем CD-ROM). В соответствии с этой технологией одни и те же узлы волоконно-оптического кольца поддерживают и одноканальную передачу данных на длине волны 1310 нм, и спектральное уплотнение в диапазоне 1550 нм. Экономия достигается за счет «включения» дополнительной длины волны, для чего требуется добавить модуль в соответствующее устройство.

DWDM и трафик

Одним из важных моментов при использовании технологии DWDM является передающийся трафик. Дело в том, что большинство оборудования, существующего в настоящее время, поддерживает передачу только одного типа трафика на одной длине волны. В результате нередко возникает ситуация, когда трафик не до конца заполняет оптоволокно. Таким образом по каналу с формальной пропускной способностью, эквивалентной, например, STM-16, передается менее «плотный» трафик.

В настоящее время появляется оборудование, реализующее полную загрузку длин волн. При этом одна длина волны может быть «наполнена» разнородным трафиком, скажем, TDM, ATM, IP. В качестве примера можно привести оборудование семейства Chromatis производства Lucent Technologies, которое может передавать на одной длине волны все типы трафика, поддерживаемые интерфейсами ввода/вывода. Это достигается за счет встроенных кросс-коммутатора TDM и коммутатора АТМ. Причем дополнительный коммутатор АТМ не является ценообразующим. Другими словами, дополнительная функциональность оборудования достигается практически при той же стоимости. Это позволяет прогнозировать, что будущее - за универсальными устройствами, способными передавать любой трафик с оптимальным использованием полосы пропускания.

DWDM завтра

Плавно перейдя к тенденциям развития этой технологии, мы наверняка не откроем Америки, если скажем, что DWDM является наиболее перспективной оптической технологией передачи данных. Это можно связывать в большей мере с бурным ростом Интернет-трафика, показатели роста которого приближаются к тысячам процентов. Основными же отправными точками в развитии станут увеличение максимальной длины передачи без оптического усиления сигнала и реализация большего числа каналов (длин волн) в одном волокне. Сегодняшние системы обеспечивают передачу 40 длин волн, что соответствует 100-гигагерцевой сетке частот. На очереди к выходу на рынок устройства с 50-гигагерцевой сеткой, поддерживающие до 80 каналов, что соответствует передаче терабитных потоков по одному волокну. И уже сегодня можно услышать заявления лабораторий фирм-разработчиков, таких как Lucent Technologies или Nortel Networks, о скором создании 25-гигагерцевых систем.

Однако, несмотря на столь бурное развитие инженерной и исследовательской мысли, рыночные показатели вносят свои коррективы. Прошедший год ознаменовался серьезным падением оптического рынка, что подтверждается существенным падением курса акций Nortel Networks (29% за один день торгов) после объявления ею о трудностях со сбытом своей продукции. В аналогичной ситуации оказались и другие производители.

В то же время, если на западных рынках наблюдается некоторое насыщение, то восточные только начинают разворачиваться. Наиболее ярким примером служит рынок Китая, где десяток операторов национального масштаба наперегонки строят магистральные сети. И если «у них» вопросы построения магистральных сетей уже практически решены, то в нашей стране, как это ни печально, пока просто нет необходимости в толстых каналах для передачи собственного трафика. Тем не менее прошедшая в начале декабря выставка «Ведомственные и корпоративные сети связи» выявила огромный интерес отечественных связистов к новым технологиями, и к DWDM в том числе. И если такие монстры, как «Транстелеком» или «Ростелеком», уже имеют транспортные сети масштаба государства, то нынешние энергетики только начинают их строить. Так что, несмотря на все неурядицы, за оптикой - будущее. И немалую роль здесь сыграет DWDM.

КомпьютерПресс 1"2001

Основным принципом технологии WDM (Wavelength-division multiplexing, частотное разделение каналов) является возможность передавать в одном оптическом волокне множество сигналов на различных несущих длинах волн. В российском телекоме системы передачи, созданные с помощью технологии WDM, называют «системы уплотнения».


На данный момент существуют три типа WDM-систем:
1. CWDM (Coarse Wavelength-division multiplexing - грубое частотное разделение каналов) -системы с разносом оптических несущих на 20 нм (2500 ГГц). Рабочий диапазон 1261-1611 нм, в котором можно реализовать до 18 симплексных каналов. Стандарт МСЭ G.694.2.
2. DWDM (Dense Wavelength-division multiplexing - плотное частотное разделение каналов) - системы с разносом оптических несущих на 0,8 нм (100 ГГц). Существуют два рабочих диапазона - 1525-1565 нм и 1570-1610 нм, в которых можно реализовать до 44 симплексных каналов. Стандарт МСЭ G.694.1.
3. HDWDM (High Dense Wavelength-division multiplexing - высокоплотное частотное разделение каналов) - системы с разносом оптических несущих на 0,4 нм (50 ГГц) и менее. Возможна реализация до 80 симплексных каналов.

В данной статье (обзоре) уделено внимание проблеме мониторинга в системах уплотнения DWDM, более подробно о различных типах WDM-систем можно ознакомиться по ссылке - ссылка .

Системы спектрального уплотнения DWDM могут использовать один из двух диапазонов несущих длин волн: С-диапазон - 1525-1565 нм (также может встречаться conventional band или C-band) и L-диапазон - 1570-1610 нм (также может встречаться long wavelength band или L-band).

Деление на два диапазона обосновано использованием разных оптических усилителей с различными рабочими диапазонами усиления. Ширина полосы усиления для традиционной конфигурации усилителя составляет примерно 30 нм, 1530-1560 нм, что является С-диапазоном. Для усиления в длинноволновом диапазоне (L-диапазон) конфигурация эрбиевого усилителя меняется путем удлинения эрбиевого волокна, что приводит к смещению диапазона усиления в длины волн 1560-1600 нм.

На данный момент в российском телекоме большое признание получило оборудование DWDM C-диапазона. Связано это с обилием различного оборудования, поддерживающего данный диапазон. Следует отметить, что производителями оборудования выступают как маститые отечественные компании и ведущие мировые бренды, так и многочисленные безликие азиатские производители.

Основным вопросом на любом участке системы уплотнения (в независимости от типа) является уровень мощности в оптическом канале. Для начала следует разобраться, из чего обычно состоит система уплотнения DWDM.

Компоненты DWDM-системы:
1) Транспондер
2) Мультиплексор/демультиплексор
3) Оптический усилитель
4) Компенсатор хроматической дисперсии

Транспондер производит 3R-регенерацию («reshaping, «re-amplifying», «retiming» -восстановление формы, мощности и синхронизации сигнала) приходящего клиентского оптического сигнала. Транспондер может производить также конвертацию клиентского трафика из одного протокола передачи (зачастую Ethernet) в другой, более помехозащищенный (например, OTN с использованием FEC) и передавать сигнал в линейный порт.

В более простых системах в роли транспондера может выступать OEO-преобразователь, который производит 2R-регенерацию («reshaping», «re-amplifying») и без изменения протокола передачи передает клиентский сигнал в линейный порт.

Клиентский порт зачастую выполняется в виде слота для оптических трансиверов, в который вставляется модуль для связи с клиентским оборудованием. Линейный порт в транспондере может быть выполнен в виде слота для оптического трансивера или в виде простого оптического адаптера. Исполнение линейного порта зависит от конструктива и назначения системы в целом. В OEO-преобразователе линейный порт всегда выполнен в виде слота для оптического трансивера.
Во многих системах промежуточное звено - транспондер, исключается в целях снижения стоимости системы или из-за функциональной избыточности в конкретной задаче.

Оптические мультиплексоры предназначены для объединения (смешения) отдельных WDM-каналов в групповой сигнал для одновременной их передачи по одному оптическому волокну. Оптические демультиплексоры предназначены для разделения принятого группового сигнала на приемной стороне. В современных системах уплотнения, функции мультиплексирования и демультиплексирования выполняет одно устройство - мультиплексор/демультиплексор (MUX/DEMUX).

Мультиплексор/демультиплексор условно можно разделить на блок мультиплексирования и блок демультиплексирования.
Оптический усилитель на основе примесного оптического волокна, легированного эрбием (Erbium Doped Fibre Amplifier-EDFA), увеличивает мощность входящего в него группового (без предварительного демультиплексирования) оптического сигнала без оптоэлектронного преобразования. Усилитель EDFA состоит из двух активных элементов: активного волокна, легированного Ег3+ и подходящей накачки.

В зависимости от типа, EDFA может обеспечить выходную мощность от +16 до +26 дБм.
Существует несколько видов усилителей, применение которых определяется конкретной задачей:
Входные оптические усилители мощности (бустеры) - устанавливаются в начале трассы
Оптические предусилители - устанавливаются в конце трассы перед оптическими приемниками
Линейные оптические усилители - устанавливаются на промежуточных узлах усиления для поддержания необходимой оптической мощности

Оптические усилители широко применяются на протяженных линиях передачи данных с системами спектрального уплотнения DWDM.

Компенсатор хроматической дисперсии (Dispersion Compensation Module) предназначен для исправления формы оптических сигналов, передаваемых в оптическом волокне, которые, в свою очередь, искажаются под влиянием хроматической дисперсии.

Хроматическая дисперсия - физическое явление в оптическом волокне, заключающееся в том, что световые сигналы с разными длинами волн проходят одно и то же расстояние за разный промежуток времени и в результате чего происходит уширение передаваемого оптического импульса. Таким образом, хроматическая дисперсия является одним из основных факторов, ограничивающим протяженность ретрансляционного участка трассы. Стандартное волокно имеет значение хроматической дисперсии около 17 пс/нм.

Для увеличения протяженности ретрансляционного участка на линии передачи устанавливаются компенсаторы хроматической дисперсии. Установка компенсаторов зачастую требует линии передачи со скоростью 10 Гбит/с и более.

Существуют два основных типа DCM:

1. Волокно, компенсирующее хроматическую дисперсию - DCF (Dispersion Compensation Fiber). Основной составляющей частью данных пассивных устройств является волокно с отрицательным значением хроматической дисперсии в диапазоне длин волн 1525-1565 нм.

2. Компенсатор хроматической дисперсии на основе решетки Брэгга - DCM FBG (Dispersion Compensation Module Fiber Bragg Grating). Пассивное оптическое устройство, состоящее из чирпированного волокна и оптического циркулятора. Чирпированное волокно за счет структуры создает условно отрицательную хроматическую дисперсию входящих сигналов в диапазоне длин волн 1525-1600 нм. Оптический циркулятор в устройстве выполняет роль фильтрующего устройства, направляющего сигналы в соответствующие выводы.

Таким образом, стандартная схема состоит всего из двух типов активных компонентов -транспондер и усилитель, с помощью которых можно отслеживать текущий уровень мощности передаваемых сигналов. В транспондерах реализована функция мониторинга состояния линейных портов либо на основе встроенной функции DDMI в оптические трансиверы, либо с организацией собственного мониторинга. Использование данной функции позволяет оператору получать актуальную информацию о состоянии определенного канала связи.

По причине того, что оптические усилители представляют собой усилители с обратной связью, в них всегда присутствует функция мониторинга входного группового сигнала (суммарная оптическая мощность всех входящих сигналов) и исходящего группового сигнала. Но данный мониторинг неудобен в случае контроля конкретных каналов связи и может использоваться как оценочный (наличие или отсутствие света). Таким образом, единственным инструментом контроля оптической мощности в канале передачи данных является транспондер.

А так как системы уплотнения состоят не только из активных, но и из пассивных элементов, организация полноценного мониторинга в системах уплотнения является весьма нетривиальной и востребованной задачей.

Варианты организации мониторинга в системах уплотнения WDM будут рассмотрены в следующей статье.

Оборудование dwdm использует технологию плотного спектрального уплотнения каналов (Dense Wavelength Division Multiplexing) и позволяет организовать до 46 дуплексных каналов передачи данных по двум оптическим волокнам или до 23 дуплексных каналов по одному оптическому волокну при использовании частотного диапазона C band и частотной сетки 100 гГц согласно рекомендации МСЭ-Т G.694.1. Скорость передачи каждого канала может варьироваться от 100 Мбит/с до 10 Гбит/с. Системы dwdm в основном применяются на городских и магистральных волоконно-оптических сетях. Протяженность сетей dwdm, построенных на оборудовании Telcon, может составлять до 800 километров при скорости передачи каналов 10 Гбит/с и до 1500 километров при скорости передачи каналов 1 Гбит/с.

Системы dwdm являются недорогим решением по уплотнению оптических волокон для организации связи на больших расстояниях. Также, системы dwdm являются альтернативой системам cwdm в случаях, когда необходимо организовать по одному волокну более 9 дуплексных каналов и более 18 дуплексных каналов по двум волокнам.

При необходимости, инженеры компании Telcon выполняют расчеты сетей dwdm на основании предпроектных исследований, а также работы по пуско-наладке, калибровке, тестированию оборудования. После выполнения данных работ, компания Telcon гарантирует работоспособность сети dwdm.

При создании большинства современных сетей связи применяется cwdm dwdm технология, dwdm оборудование постепенно становится дешевле, современные dwdm сети поддерживают наиболее распространенные стандарты, в т.ч. все уровни dwdm sdh с STM-1 до STM-64, Ethernet со скоростями передачи от 10 Мбит/с до 10 Гбит/с, Fiber Channel, ATM. Фактически, оборудование dwdm является протоколонезависимым. Еще 5 лет назад оборудование dwdm выпускалось только ведущими всемирно известными компаниями - производителями, стоило довольно дорого и было доступно только крупным межрегиональным операторам. Основными причины высокой стоимости таких систем являются - исполнение в виде плат, вставляемых в большие управляемые шасси, сложная архитектуры системы, многоуровневая система управления. Изначально такая аппаратура dwdm создавалась для применения на крупных и протяженных магистральных сетях, однако со временем возникла необходимость применения технологии dwdm на сетях городского, районного и межрайонного масштабов. Компания Telcon поставляет на Российский рынок т. н. упрощенные dwdm системы, которые существенно дешевле, проще в обслуживании и эксплуатации, чем оборудование dwdm для крупных магистральных сетей. Компоненты dwdm оборудования Telcon, компактны и легко размещаются на любых узлах связи.
Постоянно развиваясь, технология dwdm, проникает в новые сегменты рынка, по прогнозам специалистов, через 5 лет необходимость в таких системах появится у небольших компаний - провайдеров, обслуживающих несколько микрорайонов, к тому времени их стоимость снизится настолько, что купить dwdm сможет позволить себе любая, даже небольшая компания - оператор связи.

В отличие от систем разреженного спектрального уплотнения cwdm, системы плотного спектрального уплотнения позволяю организовать передачу на большие расстояния, более 1000 километров по одномодовому кабелю без 3R регенерации передаваемых сигналов. При создании таких систем необходимо учитывать факторы, которыми можно пренебречь при создании cwdm систем, а именно:

Хроматическая дисперсия, в результате ее влияния, по мере распространения по волокну, импульсы, составляющие оптический сигнал, становиться шире. При передаче сигналов на большие расстояния импульсы могут накладываться на соседние, затрудняя точное их восстановление. С увеличением скорости передачи и длины оптического волокна влияние хроматической дисперсии возрастает. Для уменьшения влияния хроматической дисперсии на передаваемые сигналы, применяются компенсаторы дисперсии.

Поляризационная модовая дисперсия, возникает в оптическом волокне из-за разности скоростей распространения двух взаимно перпендикулярных поляризационных составляющих моды, что приводит к искажению формы передаваемых импульсов. Причиной этого явления является неоднородность геометрической формы оптического волокна. Влияние поляризационной модовой дисперсии на передаваемые оптические сигналы возрастает с увеличением скорости передачи, с увеличением числа каналов системы уплотнения и с увеличением длины волокна.

Вынужденное обратное рассеяние Мандельштама — Бриллюэна, суть этого явления заключается в создании оптическим сигналом периодических областей с переменным показателем преломления - своего рода виртуальную дифракционную решетку, проходя через которую сигналы распространяются подобно акустической волне. Отраженные этой виртуальной решеткой сигналы, складываются и усиливаются, образуя обратный оптический сигнал с доплеровским понижением частоты. Данное явление приводит к увеличению уровня шумов и препятствует распространению оптического сигнала, так как большая часть его мощности рассеивается в обратном направлении. Часто это явление ошибочно называют отраженной акустической волной.

Фазовая автомодуляция, при высоких уровнях мощности сигнала от лазера, может происходить модуляция сигналом собственной фазы. Эта модуляция расширяет спектр и уширяет или сжимает сигнал во времени в зависимости от знака хроматической дисперсии. В системах плотного спектрального уплотнения, сигнал с расширенным автомодуляцией спектром, может накладываться на сигналы соседних каналов. Фазовая автомодуляция увеличивается при возрастании мощности сигнала, при увеличении скорости передачи и при отрицательной хроматической дисперсии. Влияние фазовой автомодуляции уменьшается при нулевой или небольшой положительной хроматической дисперсии.

Перекрестная фазовая модуляция, в результате этого явления сигнал одного канала модулирует фазы сигналов у соседних каналов. Факторы, влияющие на перекрестную фазовую модуляцию, совпадают с факторами, влияющими на фазовую автомодуляцию. Помимо этого, влияние перекрестной фазовой модуляции зависит от числа каналов в системе.

Четырехволновое смешение, проявляется при достижении порогового уровня мощности излучения лазера, в этом случае нелинейные характеристики волокна приводит к взаимодействию трех волн и появлению новой четвертой волны, которая может совпасть с частотой другого канала. Такое наложение частот приводит к увеличению уровня помех и затрудняет прием сигнала.

Вносимый усилителем edfa шум, причина этого явления - мощность усиленного спонтанного излучения, возникающая вследствии конструктивных особенностей усилителей edfa. В процессе прохождения через усилитель, к полезной составляющей оптического сигнала добавляется шум, таким образом, уменьшается отношение "сигнал/шум", в результате сигнал может быть принят с ошибками. Это явление ограничивает количество усилителей в линии.

Часто возникают вопросы, в чем отличие технологий CWDM (Coarse Wavelength Division Multiplexing) и DWDM (Dense Wavelength Division Multiplexing) кроме различного количества каналов. Технологии похожи в принципах организации каналов связи, ввода-вывода каналов, но имеют абсолютно разную степень технологической прецизионности, что в значительной степени сказывается на параметрах линии и стоимости решений.

Количество длин волн и каналов CWDM и DWDM

Технология спектрального уплотнения CWDM подразумевает использование 18 длин волн 1) , в то время как при точном спектральном уплотнении DWDM может быть задействовано от 40 длин волн.

Сетка частот CWDM и DWDM

Каналы в технологии CWDM разделяются по длинам волн, в DWDM - по частоте 2) . Длина волны вычисляется вторично из отношения скорости света в вакууме к частоте. Для CWDM используется сетка длин волн с шагом в 20 нм, для стандартных DWDM систем сетки частот 100 ГГц и 50 ГГц, для высокоплотных DWDM используются сетки 25 и 12,5 ГГц.

Длины волн и частоты CWDM и DWDM

В технологии CWDM используются длины волн из диапазона 1270 - 1610 нм. C учетом допусков и полосы пропускания фильтров диапазон расширяется до 1262,5 - 1617,5, что составляет 355 нм. получаем 18 длин волн.

Для DWDM с сеткой 100 ГГц несущие располагаются в диапазоне от 191.5 (1565.50 нм) ТГц до 196.1 ТГц (1528.77 нм), т.е. диапазон шириной в 4,6 ТГц или 36,73 нм. Итого 46 длин волн для 23 дуплексных каналов.

Для DWDM с сеткой 50 ГГц частоты сигналов лежат в диапазоне 192 ТГц (1561.42 нм) - 196 ТГц (1529,55 нм), что составляет 4 ТГц (31,87 нм). Здесь располагается 80 длин волн.

Возможность усиления CWDM и DWDM

Системы спектрального уплотнения на базе технологии CWDM не подразумевают усиления многокомпонентного сигнала. Связано это с отсутствием оптических усилителей, работающих в столь широком спектре.

Технология DWDM наоборот, подразумевает усиление сигналов. Многокомпонентный сигнал может усиливаться стандартными эрбиевыми усилителями (EDFA).

Дальность работы CWDM и DWDM

Системы CWDM предназначены для работы на линиях относительно небольшой протяженности, порядка 50-80 километров.

DWDM системы позволяют передавать данные на расстояния много превышающие 100 километров. Кроме того, в зависимости от типа модуляции сигнала, DWDM каналы могут работать без регенерации на расстоянии более 1000 километров.

Примечания

1) В начале 2015 года производители оптических модулей, в том числе и СКЕО, представили CWDM SFP модули с длиной волны 1625 нм. Эта длина волны не специфицирована ITU G.694.2, однако на практике нашла применение.

2) Сетки частот для CWDM описаны в стандарту ITU G.694.2, для DWDM - в стандарте G.694.1 (ревизия 2).