Схемы цветных металлоискателей своими руками. Самодельные металлоискатели: простые и посложнее – на золото, черный металл, для стройки

Глубинный металлоискатель по конструкции напоминает обычный, за исключением некоторых технических деталей. Отличием его также является повышенная чувствительность к металлическим предметам, что дает возможность обнаруживать их на большей глубине по сравнению с простым металлоискателем. Помимо этого, имеется функция избирательного поиска, то есть возможность находить предметы определенного размера, не реагируя на неподходящие по параметрам.

Схема глубинного металлоискателя

Она довольно проста, несмотря на кажущуюся сложность. Состоит металлодетектор из двух частей – принимающей и передающей. Основным устройством является генератор передатчика высокой частоты. Две рамочных антенны, одна из которых служит передатчиком сигнала, вторая приемником. Они должны располагаться строго под углом 90 градусов друг к другу для предотвращения улавливания сигналов генератора приемной антенной. При нахождении предмета из металла, магнитное поле, создаваемое генератором, подвергается искажению, и впоследствии улавливается принимающей антенной. В данном случае масса металлического предмета используется как источник излучения, отправляя производимую энергию на принимающую антенну.

Схема приемника металлодетектора

В передающее устройство входит тиристор мощностью от 0,25 до 1 Вт, генератор звука частотой 200 Гц. При нахождении металлического предмета оператор слышит звук частотой 200 Гц, сила которого зависит от величины найденного предмета и расстояния до него.

Детекторный приемник, контур колебаний которого реагирует на частоту 120 кГц, и состоящий из двух диодов. Усилителем может служить абсолютно любой генератор низких частот, которой можно найти в старом радиоприемнике. Достаточно усилителя на транзисторах в количестве 5-6 штук. Также используется транзистор в качестве усилителя тока для стрелочного прибора, позволяющий измерить уровень принимаемого сигнала. То есть, в составе прибора есть два вида индикаторов – визуальный и акустический. Частота работы настроена таким образом, чтобы не мешать работе приемника сигнала.

Схема передатчика

Необходимые детали и инструменты для сборки

Для сборки такого металлоискателя необходимо в первую очередь подготовить набор необходимых деталей и инструментов.

В случае с импульсным металлоискателем примерныйсписок деталей будет выглядеть так:

  1. Электролитные конденсаторы с напряжением минимум 16 В следующих емкостей: 2 конденсатора емкостью 10 мкФ, один емкостью 2200 мкФ, 2 шт – 1 мкФ.
  2. Конденсаторы из керамики: 1 шт емкостью 1 нф.
  3. Пленочные конденсаторы самого минимальное значения напряжения, к примеру, 63 В – 2 шт по 100 нф.
  4. Резисторы по 0, 125 Вт: 1 к — один, 1,6 к – один, 47 к – один, 62к – два, 100 к – один, 120 к – один, 470 к – один, 2 ом – один, 100 ом – один, 470 ом – один, 150 ом – один,
  5. Резисторы по 0,25 Вт: 10 ом – один.
  6. Резисторы по 0,5 Вт: 390 ом – один
  7. Резисторы 1 Вт: 220 ом – один.
  8. Резисторы переменные: 10 к –один, 100 к – один,
  9. Транзисторы: ВС 557 – один, ВС 547 – один, IRF 740 – один,
  10. Диоды: 1N4148 — два, 1N4007 – один.
  11. Микросхемы: К157 УД2, NE555.
  12. Панели для каждой из них.

Детали для металлоискателя

Из инструментов при выполнении работ понадобятся:

  • Паяльник, олово, специальный припой, прочие принадлежности для пайки.
  • Набор отверток, кусачки, плоскогубцы и другой слесарный инструмент.
  • Материалы для производства печатной платы.

Этапы сборки металлоискателя

Процесс сборки глубинного металлоискателя своими руками включает в себя следующие этапы:

На первом этапе необходимо собрать электронную часть, а именно блок управления.

Пошагово процесс выглядит так:

  • Вырезка текстолита необходимого размера.
  • Подготовка рисунка печатной платы и его перенесение непосредственно на плату.
  • Подготовка травильного раствора. В его состав входят соль поваренная, электролит и пероксид водорода.
  • Травление платы и просверливание технологических отверстий.
  • Лужение платы при помощи паяльника.
  • Далее наступает самый важный этап в сборке блока управления. Это подбор, поиск и припаивание деталей непосредственно на плату.
  • Наматывание пробной катушки. Существует несколько вариантов ее намотки. Наиболее простой вариант – использовать провод ПЭВ размером 0,5 и намотать его 25 витков на подходящей оправе с диаметром около 19-20 см.

Лучшим вариантом будет спаять все напрямую, а уже после окончания наладки подобрать необходимые разъемы и переходники. Скрутки лучше не делать, это оказывает отрицательное влияние на чувствительность прибора.

Вторым неплохим вариантом будет сделать такое кольцо из провода витой пары. Понадобится около 2,5 – 2,7 м провода.

Для достижения максимальной чувствительности необходимо выполнить следующие действия:

  1. Намотать 25 витков провода.
  2. Провести тест, отрезая небольшие куски провода и наблюдая за повышением чувствительности.
  3. Необходимо проделывать это до тех пор, пока чувствительность не начнет снижаться.
  4. Подсчитать число витков, намотать окончательный вариант катушки, добавив 1-2 витка. Таким образом, достигается максимальное значение чувствительности.

По окончании основных работ, блок управления, катушка и остальные детали закрепляются на своих местах на штанге. Металлоискатель можно включать и проверять.

Возможные проблемы при сборке

  • Собранный прибор не дает реакцию на металлические предметы. Причиной может быть поломка диодов, либо транзистора. Требуется заменить неисправные детали.
  • Чрезмерный нагрев транзистора. Следует установить резистор меньшего сопротивления, уменьшая его до прекращения нагрева.

Сборка такого типа металлоискателей не является слишком сложной, при четком соблюдении всех правил и инструкций.

По своей популярности металлопоиск сопоставим с рыбалкой или охотой, не уступая им в азарте с определенной долей меркантильности. Повышение технической культуры населения и широкий ассортимент рынка деталей электротехнического предназначения способствуют росту числа желающих изготовить собственный металлоискатель своими руками, чтобы попробовать себя в роли кладоискателя. На рис. ниже показан энтузиаст металлопоиска, использующий самодельный металлоискатель для обнаружения металлических изделий на морском берегу.

Принцип действия металлоискателя

Металлоискатель (далее по тексту МИ), называемый также металлодетектором, представляет собой электронный прибор, формирующий направленное электромагнитное поле (первичный сигнал) и улавливающий его изменения при контакте поля с металлическими предметами. В процессе распространения электромагнитных волн в неоднородной физической среде они взаимодействуют с металлами, создавая на их поверхности вихревые токи, генерирующие собственные электромагнитные поля. Приемная аппаратура МИ фиксирует эти поля (вторичный сигнал) и информирует поисковика об обнаруженной находке звуковым или визуальным способом.

Как работает металлодетектор

Техническая реализация принципа действия МИ основывается на применении двух базовых функциональных элементов модульного типа:

  • поисковых катушек для генерации первичного электромагнитного поля направленного характера и приема переотраженных вторичных радиосигналов;
  • блоков управления для обработки информации от поисковых катушек и выдачи оператору результата обработки.

В зависимости от предназначения МИ, поисковые катушки работают в следующих частотных диапазонах:

  • низкочастотном диапазоне в пределах 2,5-6,6 кГц – для выявления золота, серебра, меди и их сплавов на глубине до 4 метров;
  • в среднечастотном диапазоне – для поиска металлов любого типа;
  • в высокочастотном диапазоне – для поиска алюминия, никеля и обнаружения мелких мишеней на малой глубине.

Параметры магнитного поля, наведенного на поверхности металлической мишени, изменяются следующим образом:

  • амплитуда сигнала уменьшается по мере удаления от передатчика;
  • фаза наведенного поля определяется удельной электропроводностью металла.

По разнице амплитуды аппаратура МИ вычисляет расстояние до цели, по сдвигу фазы определяется тип металла.

На рис. ниже показана условная схема анализа информации МИ.

Металлоискатель – детектор или сканер

По своей сути МИ являются детекторными устройствами (от лат. detector – обнаружитель), указывающими на изменение параметров первичного направленного радиосигнала. Качество металлодетекции напрямую зависит от уровня сложности аппаратуры металлодетектора, обрабатывающей вторичный сигнал. На начальном этапе появления МИ оператора вполне устраивал писк в наушниках, возникающий при обнаружении металлической мишени. Развитие элементной базы для микроэлектроники существенно расширило возможности ручной металлодетекции. Профессиональные ручные металлодетекторы способны решать следующие задачи:

  • проведение идентификации «находки» по типу металла;
  • определение глубины ее нахождения;
  • оценка размеров и конфигурации обнаруженного предмета.

Используя новейшие программные разработки, ведущие производители запустили продажи МИ с возможностями построения изображения обнаруженной цели. Например, немецкая компания ОКМ разработала глубинный 3D-сканер (от англ. scan – рассматривать) модели ЕХР 6000, выводящий на экран конфигурацию металлического предмета.

На рис. ниже показан монитор МИ модели ЕХР 6000 с выведенным на экран изображением мишени.

Разновидности МИ по назначению

В соответствии с целевым предназначением, МИ подразделяют на следующие типы:

  1. Грунтовые модели, предназначенные для изысканий под землей в верхних слоях почвы. Приборы этой категории наиболее распространены среди поисков металлов и кладоискателей, способных собрать металлоискатель своими руками в домашних условиях. Простейшая самоделка обладает низкой точностью и не всегда различает металлы разного вида. Профессиональные приборы могут выявить небольшие золотые крупинки, проигнорировав прочие металлы.
  2. Глубинные модели, рассчитанные на обнаружение целей на глубине до 6 метров. Однако «увидеть» они могут только крупные предметы площадью свыше 400 кв. см. Глубинные приборы востребованы инженерными службами в качестве трассоискателей, геологами – как специализированные георадары для поисков самородного золота и т.п.
  3. Подводные устройства металлопоиска, работающие под водой. К ним предъявляются повышенные требования к герметичности поисковой системы. Условия работы подводного МИ в морской и пресной воде значительно различаются. У подводных детекторов используется только звуковая индикация.

Обратите внимание! Подводные МИ можно применять на поверхности в режиме обычного грунтового металлоискателя. Поисковикам необходимо только подогнать длину штанги и положение упора, чтобы было удобнее пользоваться прибором.

  1. Специальные металлодетекторы:
  • охранные устройства для обнаружения металлоизделий в багаже, в одежде либо на теле человека при досмотре;
  • промышленные металлодетекторы в составе конвейерных линий, сигнализирующие о наличии металлов в продукции;
  • армейские приборы, обобщенно называемые миноискателями;
  • детекторы, настроенные исключительно на золотые предметы.

На рис. ниже показан ручной досмотровый металлодетектор.

Мотивация выбора конструкции самодельного металлодетектора

Задолго до того, как собрать металлоискатель в домашних условиях, умельцу необходимо сопоставить многочисленные факторы, влияющие на работу МИ, и выбрать оптимальный вариант конструкции в полном соответствии своим запросам. При изготовлении металлодетектора своими руками учитываются следующие технико-эксплуатационные показатели:

  • общие параметры поискового прибора, определяющие его функциональные возможности;
  • рабочие частоты, в диапазоне которых предполагается работать;
  • метод поиска, определяющий схемотехническое построение прибора с заданием способа фиксации изменения реакции МИ при приближении его к металлическому объекту.

Общие параметры МИ

Для самодельной поисковой аппаратуры выделяют следующие параметры:

  1. Проникающую способность, характеризующую максимальную глубину проникновения электромагнитного поля, глубже которой прибор уже не в состоянии выявить металлический объект.
  2. Чувствительность, указывающую способность обнаруживать мелкие предметы.
  3. Разрешающую способность, чаще называемую дискриминацией МИ, дающую информацию о конкретных свойствах объекта. Для металлодетектора необходима полноценная реализация трех составляющих дискриминации:
  • геометрической – для суждения о размерах и конфигурации найденной мишени;
  • пространственной – для информации о глубине залегания мишени и месте расположения в поисковой зоне;
  • по качеству – для предположений о виде материала объекта и его вероятных характеристиках.
  1. Размеры зоны поиска, в пределах которой удается обнаружить металл.
  2. Избирательность – повышенная реакция на находки заданного типа (золото, цветные металлы, военные артефакты и т.п.).
  3. Помехоустойчивость – отсутствие реакции на электромагнитные поля посторонних источников.
  4. Энергопотребление, определяющее, на сколько времени активной работы хватит мобильного источника питания прибора.

На рис. ниже в ироничной форме показан процесс металлодетекции (металлопоиска) с применением самодельного МИ:

  • поз. «А» – отсутствие металлических мишеней;
  • поз. «В» – обнаружены металлические предметы, представляющие определенную ценность (ради чего и затевался металлопоиск).

Красным цветом выделена зона поиска металлодетектора.

Рабочие частоты самодельного МИ

Схема металлоискателя и ее сборка привязывают все параметры самодельного металлодетектора к диапазону частот, в котором оператор предполагает работать. Практика любительского металлопоиска показала ограниченную эффективность низкочастотных (vlf) и высокочастотных (hf) металлодетекторов, требующих компьютерной обработки сигналов, потребляющих много энергии и плохо работающих на минерализованных влажных грунтах. Большинство поисковиков, заинтересованных в том, как сделать металлоискатель многофункциональным к выявлению и распознаванию цветмета, чермета, при минимальной восприимчивости к особенностям грунта, ориентируются на низкочастотный и среднечастотный диапазоны в пределах от 30 кГц до 3 МГц. Работа в этом частотном диапазоне позволяет использование простого металлоискателя для обнаружения мишеней любого типа металлов.

Метод поиска

Методик нахождения металлических предметов при помощи направленного электромагнитного поля насчитывается более десятка, включая суперсовременную цифровую обработку на компьютере вторичного сигнала при профессиональном использовании МИ. При сборке самодельных металлодетекторов для металлопоиска на любительском уровне умельцы ориентируются на методики, позволяющие максимально упростить схемотехническое построение детектора и удешевить его комплектацию. Наиболее популярными при изготовлении самоделок являются следующие методы обнаружения металлов:

  • параметрический способ, для реализации которого приемник не нужен;
  • приемо-передающий способ – с использованием передатчика и приемника;
  • способ с накоплением фазы – «до щелчка»;
  • способ на биениях – «по писку».

Параметрический способ

Металлоискатели параметрического типа оснащены только одной катушкой, которая одновременно и передающая, и принимающая. При обнаружении металлической цели изменяются параметры генерирующей катушки: индуктивность, частота и амплитуда вырабатываемых колебаний, что фиксируется аппаратурой МИ. Основной проблемой при эксплуатации детектора без приемника считается выделение сравнительно слабого наведенного сигнала на фоне мощного первичного электромагнитного поля.

Приемо-передающий способ

В конструкции моделей, работающих по способу «прием-передача», предусмотрены две катушки:

  • передающая – для генерации электромагнитного поля;
  • приемная – для регистрации переизлученного от металлической мишени сигнала.

Важно! При сборке приемо-передающего МИ катушки необходимо располагать таким образом, чтобы минимизировать индуктивную связь между ними. Если оси обеих катушек будут взаимно перпендикулярны, сигнал передатчика не попадет напрямую в приемное устройство и прослушиваться не будет.

Металлодетекторы с накоплением фазы (до щелчка)

В работе фазочувствительных приборов используется процесс задерживания импульсов при переизлучении, что приводит к увеличению сдвига фаз. При достижении конкретного значения срабатывает дискриминатор, в наушниках раздается щелчок. При приближении к металлическому объекту щелчки становятся все чаще, сливаясь в звук определенной тональности. При соответствующей настойке звука непосредственно над объектом происходит срыв синхронизации, звук пропадает из-за перехода частоты движения щелчков в ультразвуковой диапазон.

Металлодетекторы на биениях (метод «по писку»)

Если делать металлодетектор на биениях, то в самодельной конструкции необходимо задействовать два генератора электромагнитного поля:

  • опорный генератор, частота которого стабилизирована и является эталонным частотным параметром;
  • рабочий (поисковый) генератор, частота которого зависит от наличия металла в поисковой зоне.

До начала поисковых работ поисковый генератор настраивается на нулевые биения (совпадение частот). При настройке добиваются невысокого звукового тона (писка), чтобы было удобно искать. По изменению тона судят о свойствах обнаруженного объекта и его расположении.

На рис. ниже показан самодельный МИ, изготовленный из подручных материалов.

Схемы самодельных МИ

Металлопоисковая аппаратура заводского изготовления представлена на рынке достаточно дорогими электронными системами профессионального уровня, поэтому энтузиасты постоянно обмениваются информацией, как сделать самодельный металлоискатель у себя дома с минимальными финансовыми затратами. Пошаговая инструкция по сборке и отладке устройства позволяет создать вполне работоспособный металлодетектор из доступных радиодеталей. Металлоискатели, в том числе и миноискатель своими руками, схема которого идентична с разработками для типовых МИ, выполняются на транзисторах и микросхемах. В комплектацию схем для самоделок входят также:

  • конденсаторы различных типов: керамические, пленочные, электролитические;
  • резисторы;
  • резонаторы;
  • контроллеры.

Дополнительная информация. Довольно часто в схемах любительской аппаратуры для металлопоиска используется микросхема NE 555, представляющая собой универсальный таймер, генерирующий одиночные и повторяющиеся импульсы стабильных временных характеристик.

Достойным конкурентом металлодетектору на микросхемах является металлоискатель на транзисторах, в котором генерирование сигналов происходит с использованием транзисторов КТ-361 и КТ-315 или аналогичных радиодеталей, производимых еще с советских времен.

Изготовление своими руками составных частей МИ

При конструировании самодельного металлодетектора мастера ориентируются на создание малогабаритного, конструктивно сбалансированного, сравнительно легкого изделия. Мобильное исполнение и продуманная эргономика должны свести к минимуму утомляемость оператора при многочасовых непрерывных поисковых работах, а качественная сборка самодельной конструкции обеспечит хорошую повторяемость результатов и высокие эксплуатационные характеристики.

МИ кустарного производства состоят из следующих составных частей:

  • блока управления;
  • рамки с поисковой катушкой;
  • штанги-держателя, на которой крепятся поисковая катушка и блок управления.

Блок управления

Для сборки блока управления необходимо подобрать пластиковый корпус коробчатого типа. В корпусе должны компактно разместиться:

  • печатная плата с электронной начинкой, собранной в соответствии со схемой;
  • элементы питания;
  • устройства для звукового и визуального оповещения о находке.

Основным элементом блока управления является печатная плата.

Изготовление своими руками печатной платы МИ

Печатная плата используется для компактного размещения радиодеталей, входящих в состав схемы МИ. Далее обобщенное описание этапов самостоятельного изготовления печатной платы с подробным изложением выполняемых операций:

  1. Выбирается схема металлодетектора. В соответствии со схемой на бумаге прорисовывается от руки либо распечатывается на принтере эскиз платы.
  2. Вырезается кусок листового текстолита под размеры платы.
  3. Любым доступным способом рисунок переносится на текстолитовую заготовку.
  4. На поверхности заготовки делается разметка мест креплений радиодеталей. Сверлятся отверстия диаметром 1,0-1,5 мм.
  5. Перманентным маркером или кисточкой с лаком прорисовываются дорожки в соответствии с бумажным шаблоном.
  6. Плата протравливается хлорным железом или медным купоросом.
  7. После травления плата протирается и зачищается наждачной бумагой.
  8. Проводится операция лужения оловом.

На рис. ниже показана печатная плата металлоискателя после лужения.

Рамка с катушкой

Поисковая рамка металлоискателя представляет собой плоский жесткий корпус с закрепленной на нем поисковой катушкой, предназначена для выполнения следующих задач:

  • жесткой фиксации поисковой катушки относительно штанги-держателя;
  • обеспечения постоянства геометрических размеров излучающей и приемной петель поисковой катушки;
  • предохранения проводов катушек от повреждений при передвижении оператора по пересеченной местности.

Корпус рамки МИ круглой или прямоугольной формы выполняется из пластиковых трубок без применения металлических элементов. Среди умельцев популярны трубки ПВХ диаметром условного прохода ½ дюйма (15 мм). Небольшие рамки делаются неразборными в виде кольца или квадрата. При изготовлении корпуса прямоугольной формы большого размера уместно использовать фитинги, чтобы не деформировать трубки на изгибах. Размер и форма корпуса должны соответствовать размерам и конфигурации катушки с учетом особенностей размещения в ней передающего и приемного контуров.

Наиболее ответственным поисковым элементом МИ, определяющим его эксплуатационные характеристики, является поисковая катушка.

Катушки МИ

Функциональные свойства МИ определяются качеством изготовления поисковой катушки. Параметры катушки и общая схема металлодетектора нуждаются во взаимной подгонке, пока не будет достигнут оптимальный результат. На показатели работы катушки влияют различные факторы, из которых определяющими являются следующие:

  • размеры катушки;
  • конструктивное исполнение кольца катушки;
  • величина индуктивности катушки;
  • степень помехозащищенности;
  • способ намотки провода корзиночной катушки;
  • способ закрепления катушки.
Размеры катушки

Практика показала, что эффективность работы катушки напрямую зависит от ее размеров. Катушки больших размеров способны глубже просветить грунт и охватить более широкую зону поиска, чем их аналоги меньших диаметров. Принята следующая градация размеров поисковых катушек:

  • диаметр 20-90 мм оптимален для поиска чермета (арматура, профили);
  • диаметр 130-150 мм удобен для поиска так называемого «пляжного золота»;
  • диаметр 200-600 мм ориентирован на габаритные металлические объекты.
Конструктивное исполнение катушки

Классической конструкцией поисковой катушки является монопетля (одинарная петля), выполненная в виде одинарного плоского кольца из витков медного провода. Ширина и толщина кольца подбираются в 15-20 раз меньше, чем усредненный диаметр кольца. МИ с монопетлей рекомендуются для начинающих, чтобы приобрести первоначальный поисковый опыт.

Более «продвинутой» конструкцией, по сравнению с монопетлей, является ДД-катушка, представляющая собой двойной детектор (отсюда и название – от англ. Double Detector). Конструктивно DD-катушка выполнена из двух полукругов, сложенных с пересечением. ДД-катушки обладают высокой чувствительностью, однако на неоднородных грунтах могут выдать ложный сигнал.

Индуктивность катушки

При сборке МИ в домашних условиях очень важно добиться соответствия параметров собственноручно изготовленной поисковой катушки тем параметрам, которые заложены в выбранной схеме детектора. На величину индуктивности влияют геометрические размеры катушки, сечение провода, количество витков, плотность укладки и другие факторы. В сетях можно найти различные методы расчета индуктивности, несложные формулы и номограммы с пояснениями, как ими пользоваться. Несоблюдение этих рекомендаций может привести к тому, что собранная схема работать не будет.

Помехоустойчивость катушки

Поскольку монопетля устроена по аналогии с рамочной антенной, она чувствительна к многочисленным помехам. Для расширения помехоустойчивых способностей прибора используются несложные устройства типа:

  • экрана Фарадея, представляющего собой стальную трубку с оплеткой либо с обмоткой из фольги;
  • симметричных намоток бифиллярного или перекрестного типа.
Корзиночные катушки

На рис. ниже показана одна из модификаций корзиночной катушки МИ.

При всех своих достоинствах корзиночная катушка наделена двумя существенными недостатками:

  • сложность и трудоемкость выполнения качественной надежной намотки;
  • методики расчетов плоской и объемной корзинок существенно различаются и требуют применения соответствующих компьютерных программ.

Важно! При кустарной намотке катушки-корзинки оправка должна быть жесткой и прочной, поскольку суммарная сила натяжения всех витков достаточно велика, чтобы деформировать или сломать оправку.

Чтобы натягиваемые при намотке провода не прорезали каркас катушки, рекомендуется предварительно в прорези каркаса вклеить куски прочного пластика и лишь после этого начинать намотку.

Крепление катушки

Крепление провода катушки довольно часто выполняется на самодельных каркасах из фанеры, пластика и других подручных материалов, даже на компьютерных дисках. У фанеры много недостатков, в том числе:

Пластики на поликарбонатной основе этих недостатков лишены. Более того, два склеенных полимерных диска представляют собой герметичный корпус, расширяющий возможности использования МИ.

Самодельная штанга-держатель

Штанга-держатель является несущим элементом металлоискателя – на ней закрепляются поисковая катушка и блок управления. Основным требованием к штанге является прочность материала изготовления, поскольку на держатель в ходе поисковых работ действует постоянная весовая нагрузка от оператора. Повреждения несущей конструкции могут произойти в условиях пересеченной местности, в лесопосадках, в гористом районе. Поломка штанги может привести к вынужденному прекращению поисковых работ.

Обратите внимание! Определенных требований к штанге металлодетектора нет, каждый пользователь МИ вправе подогнать размеры и форму держателя под свой рост и вес.

При самостоятельном изготовлении металлодетектора для корпуса штанги-держателя в качестве исходного полуфабриката нередко используются костыли под локоть (канадки), в конструкции которых уже предусмотрены регулировка высоты стойки и подлокотный упор. Также популярны среди умельцев телескопические удочки и обычные металлопластиковые водопроводные трубы, из которых получаются полноценные держатели МИ.

Самодельный подводный металлоискатель

Процесс изготовления, сборки и наладки металлодетектора, предназначенного для металлодетекции под водой, идентичен работам по созданию обычного МИ. Однако необходимо указать на два существенных отличия, сопровождающих изготовление подводного МИ:

  • вся аппаратура должна размещаться в герметичном корпусе, не допускающем соприкосновения деталей с влагой;
  • для сообщения из-под воды о найденной находке желательно применять специальные световые индикаторы.

Этапы изготовления своими руками подводного МИ:

  1. Выбор схемы для работы в речной и морской воде.
  2. Изготовление печатной платы.
  3. Подсоединение источника питания.
  4. Размещение готовой платы с источником питания в герметичной емкости. Мастера рекомендуют в качестве корпуса применить тубу от герметика. Светодиодные лампочки-индикаторы выводятся на внешнюю поверхность тубы. Каждый стык дополнительно герметизируется силиконовым герметиком.
  5. Изготовление штанги из тонкостенной нержавеющей трубы или обычной пластиковой водопроводной трубы. Довольно часто используют корпус удочки.

Важно! Штанга не должна быть излишне легкой, чтобы не всплывать, но и очень тяжелой, чтобы не уйти ко дну.

  1. Закрепление собранного блока с печатной платой на штанге.
  2. Намотка поисковой катушки. Корпус катушки – стандартная полипропиленовая труба. Намотанный провод заливается герметиком.
  3. Пайка выводов катушки к многожильному проводу.
  4. Визуальная оценка герметичности изделия. Любые щели и стыки, «не внушающие доверия» на предмет герметичности, заливаются/замазываются герметиком.
  5. Проверка герметичности в воде.

Особенности глубинных МИ

В работе глубинных МИ используется RF-технология, эффективная в высокочастотном диапазоне. Передающая и приемная катушки взаимно перпендикулярны, могут работать на нескольких частотах одновременно. К мелким мишеням глубинные приборы нечувствительны, их объекты – крупные предметы, расположенные на местности с перепадами уровней грунта.

Если обратиться к многочисленным форумам любителей металлопоиска, которыми пестрят страницы Интернета, то обращает на себя внимание высокий уровень изготовления и наладки самодельных конструкций, о которых там рассказывается. Изготовленные своими руками металлодетекторы не уступают поисковой аппаратуре заводского исполнения, хотя обходятся во много раз дешевле. На рис. ниже показан самодельный «глубинник», рамка которого выполнена из прочных полимерных трубок.

Видео

ЛУЧШИЙ МЕТАЛЛОИСКАТЕЛЬ

Почему именно Volksturm был назван лучшим металлоискателем? Главное - схема реально простая и реально рабочая. Из множества схем металлоискателей, которые я лично делал, именно здесь всё просто, глубинобойно и надёжно! Тем более при своей простоте, в металлодетекторе есть хорошая схема дискриминации - определение железо или цветной металл находится в земле. Сборка металлоискателя заключается в безошибочной пайке платы и настройке катушек в резонанс и в ноль на выходе входного каскада на LF353. Ничего тут суперсложного нет, было бы желание и мозги. Смотрим конструктивное исполнение металлоискателя и новую усовершенствованную схему Volksturm с описанием.

Так как по ходу сборки возникают вопросы, чтоб сэкономить ваше время и не заставлять перелистывать сотни страниц форума, здесь приведены ответы на 10 самых популярных вопросов. Статья в процессе написания, так что некоторые пункты будут дополнены позже.

1. Принцип работы и обнаружения целей этого металлоискателя?
2. Как проверить Работает ли плата металлоискателя?
3. Какой резонанс выбрать?
4. Какие конденсаторы лучше?
5. Как настроить резонанс?
6. Как сводить катушки в ноль?
7. Какой провод для катушек лучше?
8. Какие детали и чем можно заменить?
9. От чего зависит глубина поиска целей?
10. Питание металлоискателя Volksturm?

Принцип работы металлоискателя Volksturm

Постараюсь в двух словах о принципе работы: передача,прием и баланс индукции. В поисковом датчике металлоискателя устанавливают 2 катушки - передающую и приемную. Присутствие металла изменяет индуктивную связь между ними (в том числе и фазу), что влияет на принимаемый сигнал, который затем обрабатывается блоком индикации. Между первой и второй микросхемой стоит коммутатор управляемый импульсами генератора сдвинутого по фазе относительно передающего канала (т.е. когда передатчик работает, приемник отключен и наоборот если приемник включен передатчик отдыхает, а приемник спокойно ловит отраженный сигнал в этой паузе). Итак, вы включили металлоискатель и он пищит. Отлично, если пищит - значит многие узлы работают. Давай разберёмся почему именно он пищит. Генератор на у6Б постоянно генерирует тональный сигнал. Далее он поступает на усилитель на двух транзисторах, но унч не откроется (не пропустит тон) пока напряжение на выходе у2Б (7-й вывод) не разрешит ему этого. Данное напряжение выставляется изменением режима с помощью этого самого резистора трэш. Им надо выставить такое напряжение, чтоб унч почти открылся и пропустил сигнал с генератора. И входные пару милливольт с катушки металлоискателя пройдя усилительные каскады, превысят этот порог и он откроется окончательно и динамик запищит. Теперь проследим прохождение сигнала, точнее сигнала отклика. На первом каскаде (1-у1а) будет пару милливольт, можно до 50. На втором каскаде (7-у1Б) это отклонение увеличится, на третьем(1-у2А) будет уже пару вольт. Но без отклика везде на выходах по нулям.

Как проверить работает ли плата металлоискателя

Вообще усилитель и ключ (CD 4066) проверяется пальцем на входной контакт RX при максимальном сопротивлении сенс и максимальным фоном на динамике. Если изменение фона есть при нажатии пальцем на секунду, то ключ и операционники работают, далее подключаем катушки RX с конденсатором контура параллельно, конденсатор на катушке TX последовательно, ложим одну катушку на другую и начинаем сводить в 0 по минимальному показанию переменного тока на первой ноге усилителя U1A. Далее берем что-нибудь большое и железное и проверяем есть в динамике реакция на металл или нет. Проверим напряжение на у2Б (7-й вывод) оно должно регулятором трэш, меняться +-пару вольт. Если нет - проблема в данном каскаде ОУ. Для начала проверки платы отключаем катушки и включаем питание.

1. Должен идти звук при положении регулятора сенс на максимальное сопротивление, коснёмся пальцем на РХ - если есть реакция, все операционники работают, если нет - проверяем пальцем начиная с u2 и меняем (обследуем обвязку) нерабочего ОУ.

2. Работа генератора проверяется программой частотомер. Штекер от наушников припаять к 12 выводу CD4013 (561ТМ2) предусмотрительно выпаяв р23 (чтоб звуковую карту не спалить). В звуковой плате использовать In-lane. Смотрим частоту генерации, ее стабильность на 8192 гц. Если она сильно смещена, то надо выпаивать конденсатор с9, если и после она не четко выделена и/или много частотных всплесков рядом - заменяем кварц.

3. Проверили усилители и генератор. Если все исправно, но все равно не работает - меняем ключ (CD 4066).

Какой резонанс катушек выбрать

При подключении катушки в последовательный резонанс,увеличивается ток в катушке и общее потребление схемы. Увеличивается расстояние обнаружения цели, но это только на столе. На реальном грунте, земля будет чувствоваться тем сильнее, чем больше ток накачки в катушке. Лучше включение параллельного резонанса, а поднимать чутье входными каскадами. Да и батареек хватит намного дольше. Не смотря на то, что последовательный резонанс применяется во всех фирменных дорогих металодетекторах, в Штурме нужен именно параллельный. В импортных, дорогих приборах, хорошая схематика отстройки от земли, поэтому в этих приборах можно позволить последовательный.

Какие конденсаторы лучше установить в схему металлоискателя

Тип подключаемого к катушке конденсатора не при чём, а если экспериментально поменяли два и увидели что с одним из них резонанс лучше, то просто один из якобы 0,1 мкФ реально имеет 0,098 мкФ, а другой 0,11. Вот и разница между ними по резонансу получается. Я использовал советские К73-17 и зелёные импортные подушки.

Как настроить резонанс катушек металлоискателя

Катушка, как самый лучший вариант, получается из штукатурных терок, склеенных эпоксидной смолой с торцов до нужного вам размера. Причем, центральная ее часть с куском ручки этой самой терки, которая обрабатывается до одного широкого ушка. На штанге же, наоборот, вилка из двух ушек крепления. Такое решение позволяет решить проблему деформирования катушки, при затягивании пластикового болта. Пазы для обмоток делают обычным выжигателем, затем установка ноля и заливка. От холодного конца ТХ, оставим 50 см. провода, который изначально не заливать, а свить из него маленькую катушечку (диаметром 3 см.) и разместить ее внутри RX, перемещая и деформируя ее в небольших пределах, можно добиться точного ноля, но делать это лучше на улице, размещая катушку у земли (как при поиске) при отключенном GEBе, если он есть, затем окончательно залить смолой. Тогда отстройка от земли, работает более- менее сносно (исключение сильно минерализованный грунт). Такая катушка получается легкой, прочной, мало подверженной термодеформации, а обработанная и окрашенная очень симпатичная. И еще одно наблюдение: если металлоискатель собран с отстройкой от грунта (GEB) и при центральном расположении движка резистора выставить ноль очень маленькой шайбой, диапазон регулировки GEBа +- 80-100 мВ. Если установить ноль большим предметом- монета 10-50 коп. диапазон регулировки увеличивается до +- 500-600 мВ. За напряжением в процессе настройки резонанса не гонитесь - у меня при 12в питания около 40В при последовательном резонансе. Чтоб появилась дискриминация конденсаторы в катушках включаем параллельно (последовательное включение нужно только на этапе подбора кондеров для резонанса) - на черные металлы будет протяжный звук, цветные - короткий.

Или ещё проще. Подключаем катушки по очереди к передающему ТХ выходу. Настраиваем в резонанс одну, а настроив её - другую. Пошагово: Подключили, параллельно катушке ткнули мультиметром на пределе переменные вольты, так-же параллельно катушке припаяли конденсатор 0.07-0.08 мкф, смотрим показания. Допустим 4 В - очень слабо, не в резонансе с частотой. Ткнули параллельно первому конденсатору второй небольшой ёмкости - 0.01 мкф (0.07+0.01=0.08). Смотрим - уже показал вольтметр 7 В. Отлично, увеличим ещё ёмкость, подключим на 0.02 мкФ - смотрим на вольтметр, а там 20 В. Великолепно, едем дальше - ещё докинем пару тысяч пик ёмкости. Ага. Уже начало падать, откатим назад. И так добиться максимальных показаний вольтметра на катушке металлоискателя. Затем аналогично с другой (приёмной) катушкой. Настроить на максимум и подключить обратно к приёмному гнезду.

Как сводить катушки металлоискателя в ноль

Для настройки нуля подключаем тестер на первую ногу LF353 и понемногу начинаем сжимать, растягивать катушку. После залива из эпоксидки - нолик точно убежит. Поэтому надо заливать не всю катушку, а оставить места для регулировки, и после высыхания доводить до нуля и заливать окончательно. Взять кусок шпагата и половину катушки обвязать одним витком к середине (к центральной части,месту соединения двух катушек) вставить в петлю шпагата кусочек палочки после чего ее крутить (натягивать шпагат) - катушка будет сжиматься, поймав нолик шпагат пропитать клеем, после почти полного высыхания опять подправить нолик повернув палочку еще чуть-чуть и залить шпагат окончательно. Или проще: Передающая закреплена в пластмассе неподвижно, а приёмную накладываем на первую на 1 см, типа как свадебные кольца. На первом выводе U1A будет писк 8 кГц - можно контролировать вольтметром переменного тока, но лучше просто высокоомными наушниками. Так вот приёмную катушку металоискателя надо то надвигать, то сдвигать с передающей до тех пор, пока на выходе ОУ писк не стихнет до минимума (или показания вольтметра не упадут до нескольких милливольт). Всё, катушка сведена, фиксируем.

Какой провод для поисковых катушек лучше

Провод для намотки катушек не имеет значения. От 0.3 до 0.8 пойдёт любой, всё равно придётся немного подбирать ёмкость для настройки контуров в резонанс и на частоту 8.192 кГц. Конечно и более тонкий провод вполне подходит, просто чем он толще, тем добротность и, как следствие чутьё - лучше. Но если намотать 1 мм - будет довольно тяжеловато таскать. На листе бумаги рисуем прямоугольник 15 на 23 см. От левого верхнего и нижнего угла откладываем по 2,5 см, и соединяем их линией. С правым верхним и нижними углами проделываем тоже самое, но откладываем по 3 см. По средине нижней части ставим точку и по точке слева и справа на расстоянии 1 см. Берем фанеру, накладываем этот эскиз и вбиваем гвоздики во все точки указанные. Берем провод ПЭВ 0,3 и мотаем 80 витков провода. Но честно говоря без разницы сколько витков. Всё равно частоту 8 кГц будем выставлять в резонанс конденсатором. Сколько намотали - столько и намотали. Я мотал 80 витков и конденсатор 0.1 мкф, если намотаете допустим 50 - ёмкость соответственно где-то 0.13 мкф поставить придётся. Далее, не снимая с шаблона обматываем катушку толстой ниткой - типа как обматывают жгуты проводов. После покрываем катушку лаком. Когда высохнет, снимаем катушку с шаблона. Затем идёт обмотка катушки изоляцией - фум лента или изолента. Далее - обмотка приёмной катушки фольгой, можно взять ленту из электролитических конденсаторов. TX катушку можно не экранировать. Не забудьте оставить РАЗРЫВ в экране 10 мм, по середине катушки. Дальше идёт обмотка фольги луженым проводом. Этот провод вместе с начальным контактом катушки у нас будет массой. И наконец обмотка катушки изолентой. Индуктивность катушек около 3,5мГ. Емкость получается около 0,1мкф. Что касается заливки катушки эпоксидкой, то я не заливал её вообще. Просто туго замотал изолентой. И ничего, два сезона отходил с этим металлоискателем без ухода настроек. Обратите внимание на влагоизоляцию схемы и поисковых катушек, ведь придётся по мокрой траве косить. Всё должно быть герметично - иначе попадёт влага и настройка поплывёт. Ухудшится чувствительность.

Какие детали и чем можно заменить

Транзисторы :
BC546 - 3шт или КТ315.
BC556 - 1шт или КТ361
Операционники :

LF353 - 1шт или меняйте на более распространенную TL072.
LM358N - 2шт
Цифровые микросхемы :
CD4011 - 1шт
CD4066 - 1шт
CD4013 - 1шт
Резисторы постоянные , мощностью 0,125-0,25 Вт:
5,6К - 1шт
430К - 1шт
22К - 3шт
10К - 1шт
390К - 1шт
1К - 2шт
1,5К - 1шт
100К - 8шт
220К - 1шт
130К - 2шт
56К - 1шт
8,2К - 1шт
Резисторы переменные :
100К - 1шт
330К - 1шт
Конденсаторы неполярные :
1нФ - 1шт
22нФ - 3шт (22000пФ = 22нФ = 0.022мкФ)
220нФ - 1шт
1мкФ - 2шт
47нФ - 1шт
10нФ - 1шт
Конденсаторы электролитические :
220мкФ на 16В - 2шт

Динамик миниатюрный.
Кварцевый резонатор на 32768 Гц.
Два сверхярких светодиода разного цвета.

Если вы не можете достать импортные микросхемы, вот отечественные аналоги: CD 4066 - К561КТ3, CD4013 - 561ТМ2, CD4011 - 561ЛА7, LM358N - КР1040УД1. У микросхемы LF353 - прямого аналога нет, но смело ставим LM358N или лучше TL072, TL062. Совсем не обязательно ставить операционный усилитель именно - LF353, я просто поднял усиление на U1A заменив резистор в цепи отрицательной обратной связи 390 кОм на 1 мОм - чувствительность значительно возросла на процентов 50, правда после этой замены ушёл ноль, пришлось на катушку в определённом месте приклеить скотчем кусочек алюминиевой пластинки. Советские три копейки чувствует по воздуху на расстоянии 25 сантиметров и это при питании 6 вольт, потребляемый ток без индикации - 10 мА. И не забудь про панельки - удобство и простота настройки значительно повысятся. Транзисторы КТ814, Кт815 - в передающую часть металлоискателя, КТ315 в УНЧ. Транзисторы - 816 и 817 желательно подобрать с одинаковым коэффициентом усиления. Заменимы на любые соответствующей структуры и мощности. В генераторе металлоискателя установлен специальный часовой кварц на частоту 32768 Гц. Это стандарт абсолютно для всех кварцевых резонаторов, которые стоят в любых электронных и электромеханических часах. В том числе и наручных и дешёвых китайских настенных/настольных. Архивы с печатной платой для варианта и для (вариант с ручной отстройкой от земли).

От чего зависит глубина поиска целей

Чем больше диаметр катушки металлоискателя, тем глубже чутьё. А вообще, глубина обнаружения цели данной катушкой, зависит прежде всего от размера самой цели. Но при увеличении диаметра катушки наблюдается уменьшение точности обнаружения объекта и даже иногда потеря мелких целей. Для объектов с монету, этот эффект наблюдается при увеличении размера катушки свыше 40 см. Итого: большая поисковая катушка, имеет большую глубину обнаружения и больший захват, но менее точно обнаруживает цель, чем маленькая. Большая катушка идеальна для поиска глубоких и больших целей, таких как клады и крупные объекты.

По форме катушки делятся на круглые и эллиптичные (прямоугольные). Эллиптичная катушка металлоискателя обладает лучшей избирательностью по сравнению с круглой, потому что ширина магнитного поля у нее меньше и в поле ее действия попадает меньше посторонних объектов. Но круглая имеет большую глубину обнаружения и лучшую чувствительность к цели. Особенно на слабо минерализованных грунтах. Круглая катушка наиболее часто используется при поиске с металлоискателем.

Катушки диаметром меньше 15 см называют маленькими, катушки диаметром 15-30 см называют средними и катушки свыше 30 см - большие. Большая катушка генерирует большее электромагнитное поле, поэтому она имеет большую глубину обнаружения, чем маленькая. Большие катушки генерируют большое электромагнитное поле и соответственно, имеют большую глубину обнаружения и покрытие при поиске. Такие катушки используются для просмотра больших площадей, но при их использовании, может возникнуть проблема на сильно замусоренных площадках потому, что в поле действия больших катушек может попасться сразу несколько целей и металлоискатель среагирует на более крупную цель.

Электромагнитное поле маленькой поисковой катушки тоже маленькое, поэтому с такой катушкой лучше всего искать на территориях сильно замусоренных всякими мелкими металлическими предметами. Маленькая катушка идеальна для обнаружения маленьких объектов, но имеет небольшую площадь покрытия и сравнительно небольшую глубину обнаружения.

Для универсального поиска хорошо подойдут средние катушки. Такой размер поисковой катушки сочетает в себе достаточную глубину поиска и чувствительность к целям с разными размерами. Я делал каждую катушку диаметром примерно 16 см и обе эти катушки укладывал в круглую подставку из-под старого монитора 15". В таком варианте глубина поиска этого металлоискателя будет такая: алюминиевая пластина 50x70 мм - 60 см, гайка М5-5 см, монетка - 30 см, ведро - около метра. Данные значения получены на воздухе, в земле будет на 30% меньше.

Питание металлоискателя

Отдельно схема металлоискателя тянет 15-20 мА, при подключенной катушке + 30-40 мА, итого вместе до 60 мА. Конечно в зависимости от типа применяемого динамика и светодиодов это значение может изменяться. Простейший случай - питание взял 3 (или даже две) последовательно подключенные литий ионные батарейки от мобил на 3,7В и при заряде разряженных аккумуляторов, когда подключаем любой блок питания на 12-13в, ток заряда начинается от 0,8А и падает до 50ма за час и тогда вообще не надо что-то добавлять, хотя ограничительный резистор конечно же не помешает. Как вообще самый простейший вариант - крона на 9В. Но учтите, что металлоискатель съест её за 2 часа. Но для настройки этот вариант питания самое оно. Крона при любых обстоятельствах не выдаст большой ток, который может спалить что-то в плате.

Самодельный металлоискатель

А теперь описание процесса сборки металлодетектора от одного из посетителей. Так как из приборов имею только мультиметр, скачал с инета виртуальную лабораторию Записных О.Л. Собрал адаптер, простенький генератор и прогнал в холостую осциллограф. Вроде показывает какую-то картинку. Далее занялся поиском радиодеталей. Так как печатки в основном выкладывают в формате «lay», скачал «Sprint-Layout50». Выяснил, что такое лазерно-утюжная технология изготовления печатных плат и как их травить. Вытравил плату. К этому времени все микросхемы были найдены. Что не нашел у себя в сарайчике, пришлось покупать. Приступил к пайке перемычек, резисторов, сокетов микросхем, и кварца из китайского будильника на плату. Периодически проверяя сопротивление на шинах питания чтобы не было соплей. Решил для начала собрать цифровую часть прибора, как наиболее легкую. То-есть генератор, делитель и коммутатор. Собрал. Поставил микросхему генератора (К561ЛА7) и делитель (К561ТМ2). Микросхемы б/ушные, выдрал из каких-то плат, обнаруженных в сарайчике. Подал питание 12В контролируя ток потребления по амерметру, 561ТМ2 стала теплой. Заменил 561ТМ2, подал питание - ноль эмоций. Меряю напряжение на ногах генератора - на 1 и 2 ногах 12В. Меняю 561ЛА7. Включаю - на выходе делителя, на 13 ноге есть генерация (наблюдаю на виртуальном осциллографе)! Картинка правда не ахти какая, но за неимением нормального осциллографа - пойдет. Но на 1, 2 и 12 ногах ничего нет. Значит генератор работает, нужно менять ТМ2. Установил третью микросхему делителя - красота на всех выходах есть генерация! Для себя сделал вывод, что выпаивать микросхемы нужно как можно аккуратнее! На этом первый шаг постройки сделан.

Теперь настраиваем плату металлоискателя. Не работал регулятор "SENS" - чувствительность, пришлось выкинуть конденсатор C3 после этого регулировка чувствительности заработала как надо. Не нравился звук возникающий в крайнем левом положении регулятора "THRESH" - порог, избавился от этого заменив резистор R9 цепочкой из последовательно соединённых резистор на 5,6 кОм + конденсатор на 47,0 мкФ (отрицательный вывод конденсатора со стороны транзистора). Пока нет микросхемы LF353 вместо неё поставил LM358, с ней советские три копейки чувствует по воздуху на расстоянии 15 сантиметров.

Поисковую катушку на передачу я включил как последовательный колебательный контур, а на приём как параллельный колебательный контур. Настраивал первой передающую катушку, подключил собранную конструкцию датчика к металлоискателю, осциллограф параллельно катушке и по максимальной амплитуде подобрал конденсаторы. После этого осциллограф подключил на приёмную катушку и по максимальной амплитуде подобрал конденсаторы на RX. Настройка контуров в резонанс занимает, при наличии осциллографа, несколько минут. Обмотки TX и RX у меня содержат по 100 витков провода диаметром 0,4. Начинаем сведение на столе, без корпуса. Просто чтоб было два обруча с проводами. А чтоб убедиться в работоспособности и возможности сведения вообще - разведём катушки друг от дрга на полметра. Тогда ноль будет точно. Затем наложив катушки внахлёст примерно 1см (как свадебные кольца) сдвигать - раздвигать. Точка нуля может быть довольно точная и поймать её сразу нелегко. Но она есть.

Когда, я поднял усиление в RX тракте МД, он начал работать неустойчиво на максимальной чувствительности, это проявлялось в том что после прохождения над целью и её обнаружении выдавался сигнал, но он продолжался и после того когда цели перед поисковой катушкой ни какой уже небыло, это проявлялось в виде прерывистых и колеблющихся звуковых сигналов. При помощи осциллографа была обнаружена и причина этого: при работе динамика и незначительной просадке питающего напряжения уходит "ноль" и схема МД переходит в автоколебательный режим, выйти из которого можно только загрубив порог срабатывания звукового сигнала. Это меня не устраивало поэтому я поставил по питанию КР142ЕН5А + сверх яркий белый светодиод чтобы поднять напряжение на выходе интегрального стабилизатора, стабилизатора на более высокое напряжение у меня небыло. Такой светодиод можно использовать даже для подсветки поисковой катушки. Динамик подключил до стабилизатора, МД после этого стал сразу очень послушный всё начало работать как надо. Думаю Volksturm действительно лучший самодельный металлоискатель!

Недавно была предложенна данная схема доработки, что позволит превратить Volksturm S в Volksturm SS + GEB. Теперь прибор станет обладать хорошим дискриминатором а также селективностью металлов и отстройкой от грунта, прибор паяется на отдельной плате и подключается вместо конденсаторов с5 и с4. Схема доработки и в архиве. Отдельная благодарность за информацию по сборке и настройке металлоискателя всем, кто принимал участие в обсуждении и модернизации схемы, особенно помогли в подготовке материала Электродыч, феска, xxx, slavake, ew2bw, redkii и другие коллеги радиолюбители.

Металлодетектор используют при поиске предметов с определенными электромагнитными характеристиками, а именно металлов. В профессиональной деятельности данный прибор используется службами, проводящими досмотр, археологами, геологами и профессиональными кладоискателями. Помимо этого, прибор, обнаруживающий металлы, часто применяют в строительстве, например, для обнаружения арматуры, проводки и профилей в стенах.

Профессиональное оборудование имеет очень существенный недостаток — очень высокую стоимость , которая варьируется в зависимости от глубины обнаружения, типа интерфейса и функции распознавания металла.

Потребность в наличии металлоискателя возникает и у обычных людей. Зачастую это те, кто решил попробовать себя в роли кладоискателя. В отличие от профессионалов, которым оборудование или предоставляется организацией, начинающие любители не всегда хотят приобретать дорогой прибор. Это обуславливается тем, что такая покупка не будет использоваться для профессионального применения и вряд ли себя реализует.

Для любителя, который только начинает работу с данными аппаратами, может подойти собранный самостоятельно металлоискатель. Самодельные приборы относительно простые в изготовлении, в интернете есть много подробных инструкций. Металлоискатель своими руками может собрать любой человек при наличии желания и требуемых в сборке компонентов; и их сборка под силу даже тем, кто слабо разбирается в радиомонтаже. Самодельные приборы могут обладать как относительно слабыми характеристиками, так и не уступать фирменным дорогим товарам. Перед тем как собирать прибор, нужно знать его устройство и разновидности.

Для того чтобы понимать, какой именно металлодетектор нужно собирать, необходимо определиться с перечнем проводимых работ, а также тем, какие именно металлы будут целью поиска. Внешне похожие приборы для поиска золота и проведения строительных работ отличаются по конструктиву и техническим характеристикам. Существуют следующие общие параметры поисковых устройств:

Дискриминация поиска может происходить по трем вариантам:

  • Пространственная, которая указывает на размещение найденного объекта в зоне электромагнитного поля, а также его глубине нахождения.
  • Геометрическая, показывающая размеры и форму найденного объекта.
  • Качественная, определяющая то, какими свойствами обладает найденный материал.

Диапазон рабочих частот

Металлоискатели работают в определенном диапазоне частот:

  • Сверхнизко частотные, до нескольких сотен Гц. Мощные металлоискатели, требующие высокого напряжения, внушительные габариты, и компьютерная расшифровка сигнала делают денные приборы непригодными для любительского применения.
  • Низкочастотные, до нескольких кГц. Достаточно простые схемы и конструкция, хорошая помехоустойчивость и малочувствительны к грунту. Обладают проницанием в зависимости от подаваемого вольтажа, вплоть до 5 метров. Острее всего реагируют на черные металлы и железобетонные конструкции.
  • Повышенной частоты, до десятков кГц. Обладают более сложными схемами, но менее требовательны к катушкам. Относительная помехоустойчивость и глубина обнаружения до полутора метров. Очень плохо работают во влажных и минеральных грунтах.
  • Радиочастотные, применяются для поиска цветных металлов, например, золота. Глубина обнаружения меньше метра в сухих почвах, очень критичны к конструкции и качеству применяемых катушек.

Классификация по виду поиска

Существует много методов поиска, но многие из них применимы только в профессиональной деятельности, и нереализуемы в самодельных устройствах. К более применимым в домашних условиях можно отнести:

  • Без приемника (параметрический).
  • На биениях.
  • Накопление фазы.
  • Приемо-передающий.

Параметрический металлоискатель

В данных приборах нет приемной катушки и приемника, и обнаружение объекта происходит за счет его влияния на катушку генератора, изменение ее параметров, таких как частота и амплитуда вырабатываемых колебаний, фиксируется разными возможными способами. Достаточно просты в сборке и обладают относительно высокой помехоустойчивостью. Чаще используются как магнитодетекторы ввиду слабой чувствительности.

Приемо-передающее устройство

Прибор состоит из передающей и принимающей катушек, передатчика ЭМ колебаний, а также может оснащаться дискриминатором, который будет обнаруживать только определенные металлы.

Катушка создает электромагнитное поле ; если в ее зоне окажутся материалы, обладающие отличным электромагнитным полем, то приемник улавливает их, и подает звуковой сигнал об обнаружении. Если обнаруживается объект не обладающий электропроводными свойствами, но имеющий ферромагнитные характеристики, то он исказит электромагнитное поле за счет экранирования.

Данные приборы добиваются лучшей производительности в своем рабочем частотном диапазоне, но их самостоятельное изготовление требует качественной системы катушек, которые должны идеально располагаться относительно друг друга.

Приемо-передающий металлодетектор с одной катушкой называют индуктивным. Его создание проще за счет того, что не нужно подбирать катушки, но требуется разделять вторичный слабый сигнал относительно излучаемого первичного.

Фазочувствительный прибор

Данные металлодетекторы представлены импульсными с одной катушкой или приборами с двумя катушками, на каждую из которых воздействует отдельный генератор.

В случае с импульсным фазочувствительным металлоискателем, излучаемые импульсы при столкновении с искомым металлом задерживаются, и во время нарастающего сдвига фаз дискриминатор срабатывает и подает сигнал. Чем ближе прибор к объекту, тем чаще становятся сигналы. На этом принципе работает популярный самодельный металлоискатель «Пират» с дискриминацией металлов.

Принцип работы прибора с двумя катушками основан на том, что электромагнитные поля двух катушек синхронизируются и работают в такт; а при искажении поля происходит рассинхронизация, и дискриминатор начинает издавать сигналы. Этот вид прибора проще изготовить, чем одно катушечный, но глубина возможного обнаружения снижается.

На принципе гармоники

В данном приборе конструктивно находятся две катушки: рабочая и опорная. Опорная колебательная катушка маленькая, защищенная от посторонних наводок, или стабилизирована резонатором. Частота рабочей поисковой катушки зависит от наличия искомых предметов в зоне излучения.

Перед началом поисков они настраиваются на совпадение частот и, как следствие, однотонного звука. Изменение тональности означает попадание металлических предметов в зону электромагнитного поля, и от уровня изменения определяют размер и глубину предмета.

Катушки металлоискателя

Главным требованием к качеству самодельных приборов является грамотное изготовление катушки и ее надежное экранирование .

При создании прибора, схему прибора подгоняют под катушку до получения оптимальных значений. С неправильно подобранной катушкой металлоискатель если и будет работать, то с очень плохими характеристиками. В связи с этим при выборе варианта для изготовления нужно внимательно смотреть на описание катушки. Если оно недостаточно полное, лучше изготовить другой прибор.

Размер катушки также важен. Широкие глубже прозванивают грунт, но в случае обнаружения крупных предметов, их сигнал забьет потенциально нужные мелкие предметы. Также, чтобы увеличить глубину обнаружения, нужно иметь более широкую катушку.

Общепринято использовать катушки диаметром до 90 мм при поисках профилей и арматуры, до 150 мм на мелочевку, а диаметры до 600 мм для поиска крупногабаритного железа.

Будет идеально, если металлоискатель рассчитан на работу с катушками разных габаритов.

Помехоустойчивость

Катушки хорошо ловят различного вида наводки, и существует 2 распространенных способа повысить помехоустойчивость:

Корзинки

Данные катушки представлены плоским и объемным вариантами, они стабильны, менее чувствительны к наводкам, обладают высокой дискриминацией. Для новичка проще наматывать плоскую катушку.

В качестве ее оправки могут выступать компьютерные диски, тарелки и блюдца, а рассчитать обмотку можно самостоятельно. Объемный же вариант намотать без расчёта с применением компьютерных программ невозможно.

Простой металлоискатель своими руками

Данный вариант самодельного металлоискателя состоит из дешифратора сигналов, сигнального устройства и катушки. Для его сборки потребуются:

  • Микросхема PIC12F675 или ее аналоги и программатор для прошивки.
  • Резонатор на 20 мГц.
  • Стабилизатор напряжения AMS1117.
  • Конденсаторы на 15 пФ и 100 нФ керамические, электролитический на 10 мкФ и пленочный на 100 нФ.
  • Резисторы 470 Ом, 10 кОм.
  • Звуковой излучатель.

Пайка производится навесным или монтажным способом, для питания схемы требуется напряжение 9−12 В. Стабилизатор контролирует выходные 3,3 В.

Катушка наматывается на оправку 10 см проводом сечения 0,3 мм. Требуется плотно намотать 90 витков, и полученную конструкцию плотно обмотать скотчем и поместить в экран Фарадея.

Получается достаточно мощный металлоискатель для глубинного поиска, которому можно задать дискриминацию: при обнаружении черных и цветных металлов будет издаваться звук разной частоты.

Профессиональные металлодетекторы зачастую довольно дорогие и не по карману любителям. В интернете существуют схемы металлоискателей, некоторые из них можно собрать своими руками, не имея особых навыков радиомонтажа и профессионального оборудования. При желании можно собрать даже подводный металлодетектор, который будет одинаково работать как на суше, так и в воде.

Для того чтобы самостоятельно собранный прибор идеально выполнял все возможные требования, необходимо разбираться в конструкции металлоискателя, определиться с видом поисковых работ, которые будут проводиться с прибором после его сборки. Это поможет подобрать именно тот вариант исполнения металлодетектора, который необходим начинающему кладоискателю.

При необходимости отыскать предметы, свойства которых отличаются от тех, что обычно присутствуют в почве, используют металлоискатель (металлодетектор). Принцип действия подобных приборов основан на определении отличий в магнитном поле соленоида, который оказывается в зоне расположения аномального предмета.

При желании нетрудно приобрести недорогой анализатор наличия металла. Сделать металлоискатель своими руками сумеет любой человек, способный держать в руках паяльник и отвертку.

Зачем нужен металлодетектор?

Многие полагают, что подобные инструменты нужны только для поиска металлов (монеты, оружие, предметы быта на местах боев), взрывчатых веществ там, где могли устанавливаться мины. На самом деле круг использования подобных средств гораздо шире. Ими пользуются при досмотре пассажиров в аэропортах, геологи ищут залежи руды, врачи определяют присутствие стали или сплавов в теле человека. При прокладке магистралей внутри населенных пунктов уточняется расположение трубопроводов с водой, газом или канализационных стоков.

Металлоискатель востребован у любителей, желающих проводить поиски за пределами собственного дома:

  • кладоискателей можно увидеть в местах, где производится снос старых зданий. Там возможны предметы и денежные средства, откладываемые на «черный» день. Почти каждую неделю появляются сообщения о находках тех или иных кладов, в которых присутствуют монеты и украшения;
  • поисковики на местах былых сражений ищут оружие, снаряды и патроны, каски, предметы быта. Прибор помогает найти случайные захоронения участников боев. По наградам и иным источникам определяют имена погибших. Ищут родственников, чтобы сообщить им о месте захоронения их отца, деда, а чаще и прадеда;
  • представители вооруженных сил ведут поиск минно-взрывных предметов, представляющих опасность для мирных жителей. За последние несколько месяцев на территории Сирии были извлечены более 120 тонн опасных веществ, снарядов и мин. Страшные закладки не сработали, они не унесли жизнь детей, женщин и остального населения, желающего жить мирной жизнью.

У молодежи и людей среднего возраста может возникнуть идея по поиску каких-либо предметов. Некоторые интересуются возможностью создания металлоискателя, которым можно пользоваться не только на суше, но и под водой. В прибрежной зоне, особенно около пляжей часто находят монеты, потерянные крестики и кольца.

«Металлисты» (люди сдающие металлолом в больших количествах) заняты поиском забытых труб, металлоконструкций и крупных залежей ненужного металла. Сдавая подобные предметы, они зарабатывают на жизнь.

Внимание! Не стоит отчаиваться тем, кто практически не сталкивается с электротехникой или радиоэлектроникой. Здесь будут изложены варианты изготовления простейших металлодетекторов, которые можно самостоятельно сделать своими руками, не прибегая к использованию сложной аппаратуры. Если с пайкой есть определенные сложности, то проводки можно скручивать между собой, получая неплохой результат.

Принцип работы

Принцип действия металлоискателя основан на исследовании изменений электромагнитной индукции. В конструкции прибора имеются:

  • синтезатор электромагнитных колебаний;
  • усилитель колебаний;
  • катушка для передачи изменений магнитного поля (дискриминации металла);
  • катушка для приема информации о состоянии магнитного поля в зоне излучения;
  • приемник с усилителем сигнала;
  • приборы для учета дискриминирующего сигнала или устройства для индикации.

Довольно часто функции некоторых элементов объединяют в одном и том же приборе:

  • прием и передача производятся одним усилителем;
  • одна и та же катушка выдается переменное электромагнитное поле в зону исследования, а затем принимает сигнал о наличии или отсутствии искажений.

При изменении магнитного поля катушка воспринимает измененный сигнал.
Его регистрируют по показаниям на шкале прибора или по звуку в микрофоне

Общее представление, как работает прибор можно изложить в следующей последовательности:

  1. Катушкой в зоне поиска создается переменное магнитное поле (см. поз. А).
  2. При попадании на исследуемую территорию предмета, имеющего какие-либо отличительные свойства по сравнению с окружающими, внутри поля катушки возникают вихревые токи (их еще называют токами Фуко).
  3. Возникающие токи создают иное электромагнитное поле (ЭМП).
  4. В результате само поле изменяется по своим характеристикам (см. поз. Б).
  5. Все изменения регистрируются приборами (оптическими или звуковыми индикаторами). Оператор по изменению сигналов может определить наличие предмета, обладающего ферромагнитными свойствами. Определяются также металлы, проводящие электрический ток.

Для металлоискателя главным является наличие определенных отличий в токопроводимости окружающего грунта от имеющегося в толще земли предмета. Прибор определяет разницу между электрическими и магнитными свойствами.

Несколько слов о геосканерах

Геосканеры – это специальные приборы, способные прорисовывать трехмерную картинку о состоянии грунта на значительной территории и глубине. Это довольно дорогие приборы, которые используют для получения информации о наличии источников воды, проложенных магистральных трубопроводах на значительной глубине. Получаемая информация выводится на экран компьютера или ноутбука.

Подобные исследования проводят специальные выездные лаборатории. Принято называть их боковым картонажем.

Какими бывают металлоискатели?

Общие параметры

Основной принцип действия, в котором анализируется величина электромагнитной индукции в определенной части пространства, реализуется разным техническим исполнением. Прибор для поиска пляжного золота, включая и другие драгоценные материалы (серебро, платина), а также устройства для поиска трубопроводов, спрятанных в глубине, внешне могут выглядеть одинаково. Но при внимательном ознакомлении с конструкцией будут видны кардинальные отличия в схемах и техническим возможностям.

Приступая к созданию собственного металлодетектора, нужно довольно четко определиться с требованиями, которые будут предъявляться к прибору. Специалисты выделяют ряд характерных параметров для поисковых устройств:

  1. Глубина проникновения сигнала в толщу грунта (проникающая способность). Эта характеристика зависит от свойств, заложенных в приемную катушку.
  2. Территория поиска по размеру следа активной катушки, излучающей электромагнитное поле.
  3. Уровень чувствительности характеризует способность обнаруживать небольшие по размеру и массе предметы (монеты, гильзы, пули, крестики, небольшие украшения).
  4. Избирательные показатели. Для некоторых категорий поисковиков важна особая реакция на драгоценные (изделия из золота или серебра) или цветные металлы. Создают даже специальные фильтры, которые пропускают информацию о нахождении в глубине предметов из подобным материалов.
  5. Помехоустойчивость определяет способность не воспринимать влияние линий электропередач, находящихся недалеко ретрансляторов или телевизионных станций. Возможны и иные источники помех, которые могут ухудшить показатели поискового прибора. Как показывает практика, именно вблизи источников электромагнитных колебаний чаще происходят потери наиболее интересных предметов, которыми интересуются искатели.
  6. Небольшие размер и способность использовать для работы малогабаритные источники энергии (мобильность устройств) являются довольно важной характеристикой. С тяжелым и громоздким металлоискателем человек довольно быстро устает, производительность труда окажется невысокой. С легким и малогабаритным металлодетектром можно преодолевать небольшие препятствия, перемещаясь по пересеченной местности.
  7. Дискриминация – этот параметр характеризует возможность разделять по типу получаемого сигнала основные параметры находки, расположенной на некоторой глубине. Эффективность поиска возрастает.

Среди специалистов дискриминацию прибора принято соотносить по показателям информационных табло и звукового сопровождения. Она должна уметь определять свойства найденного предмета. Принято выделять составляющие:

  1. Пространственная характеристика определяет особенности расположение объекта в зоне поисковых работ. Показывает возможную глубину расположения.
  2. Геометрические характеристики дают представление о массе и возможных размерах находки.
  3. Качественная определяет свойства материала, из которого изготовлен найденный предмет. Для золота желателен один тип сигнала, а для железосодержащих изделий – другой.

Рабочая частота

Наличие переменного магнитного поля, создаваемого самим поисковым устройством, определяет особенности работы. Например, при понижении частоты глубина проникновения магнитных волн в глубину грунта возрастает. Можно добиться и большей ширины захвата прибора. Однако, невозможно значительно снижать величину частоты. Металлоискатель потребует больших затрат энергии для сохранения работоспособности. Это приведет к необходимости использовать более массивный аккумулятор. Принято считать, что основные параметры металлодетектора зависят от рабочей частоты. Поэтому классификация по рабочей частоте представляется в виде:

  1. Сверхнизкочастотные (СНЧ) работают до 100…150 Гц. Такие приборы относят к профессиональным устройствам. Реализовать на практике мобильный металлоискатель пока не удалось. Энергопотребление измеряется десятками Ватт (ВТ). Подобные поисковые средства располагают на автотранспорте. Сигнал анализируется с помощью компьютеров.
  2. Низкочастотные (НЧ) работают в диапазоне 150…2000 ГЦ. Эти устройства отличаются несложной схемой исполнения, собрать сумеет даже начинающий мастер. Конструкция довольно проста. Отличается довольно большой глубиной проникновения электромагнитного импульса (до 4…5 м). Однако, подобные приборы обладают малой чувствительностью. Дискриминация по размерам и составу материала практически отсутствует. Подобные металлоискатели хорошо реагируют черные металлы, в составе которых присутствует железо в разных видах соединений. Но при нахождении крупных бетонных или каменных конструкций поисковик найдет и их. Подобные приборы классифицируют под названием магнитодетекторы. Подобные приборы хуже различают свойства грунтов и находящихся в них предметов.
  3. Повышенной частоты (ПЧ) приборы используют рабочий диапазон 1700…75000 Гц. Конструкция подобных металлоискателей гораздо сложнее. Их сигнал проникает на глубину до 1,0…1,5 м. Сравнительно неплохая помехоустойчивость. Чувствительность оценивается довольно высоко. Дискриминация также довольно высокая. Недостатки подобных приборов поиска проявляются при наличии неоднородной породы в толще грунта. Возможны нестабильные показатели при высоком стоянии грунтовых вод. Подобные металлоискатели применяют для работы в импульсном режиме, к которому придется прийти несколько позже.
  4. Высокой частоты (ВЧ), иногда профессионалы называют подобные приборы, работающими на радиочастотах (РЧ). В этих устройствах дискриминация на тяжелые драгоценные металлы работает отлично. Глубина поиска может достигать 0,5…0,8 м. Глубже обычно они просветить не в состоянии. Эти металлоискатели довольно требовательны к качеству изготовления катушки. Любая небрежность приведет к резкому ухудшению показателей прибора.

Для приборов по пунктам 2…4 отмечается низкое энергопотребление. Комплект батарей типа АА (пальчиковые) могут работать непрерывно до 12 часов.

Особенностью импульсных металлоискателей является работа не в постоянной подаче сигнала заданной частоты. Подаются периодические импульсы. Можно настроить периодичность посыла и длительность воздействия. Создавая подобный прибор, можно получить устройство, в котором будут получены положительные характеристики от устройств НЧ, ПЧ и ВЧ. Однако, подобные схемы требуют специальной сборки и наладки. Для начинающих поисковиков и мастеров подобные устройства могут оказаться сложными в исполнении. Поэтому самодельнуюконструкцию начинать нужно с простых приборов.

Метод поиска

На практике существует около десятка методов поиска предметов, располагающихся в глубине грунта с применением электромагнитного поля. К сожалению, часть из них довольно сложные. Исполнить предложенные методики под силу крупным предприятиям, где имеется возможность приобретать дорогостоящие комплектующие.

Для реального использования используют приборы со сравнительно недорогими комплектующими и схемами. Их может реализовать даже начинающий мастер:

  • параметрический метод поиска, осуществляется по сопоставлению параметров до и после;
  • приемо-передающий основан на использовании отраженного сигнала, который предварительно был послан передающим устройством;
  • с накоплением фазы обычно оборудуют двумя катушками;
  • на биениях. Этот метод реализуется на двух сигналах.

Без приемника (параметрические устройства)

Параметрический метод не требует наличия приемника. Отсутствует даже сама приемная катушка. При поиске изменяется индуктивность, которая воспринимается самой генерирующей катушкой. При нахождении предмета с определенными свойствами, меняющими индуктивность в зоне воздействия электромагнитного поля, происходит частотная модуляция в колебаниях приборов. Изменяются:

  • частота колебаний, это изменение можно услышать в динамике или наушниках;
  • увеличивается амплитуда, что ведет к получению большей громкости на детекторном устройстве звукового сигнала.

Подобные металлоискатели отличаются дешевизной. У них неплохая помехоустойчивость. Однако, пользователю придется потренироваться, чтобы суметь воспользоваться таким прибором. Слабая чувствительность ограничивает возможности использования.

С приемником и передатчиком

Приборы, в которых реализован принцип приема и передачи сигнала, позволяют получать значительно лучшие показатели в работе. При определенной сложности в изготовлении (катушки нужно создавать, строго следуя описанию и конструктивным особенностям).

Принято определять устройства по таким показателям:

  • металлоискатели с одной катушкой принято называть индукционными. Недостаток – это трудность определения вторичный сигнал;
  • металлоискатели с двумя катушками настраивать сложнее. Здесь важно обеспечить полную идентичность обеих соленоидов. Но вторичный сигнал определяется гораздо лучше, че может предложить однокатушечная схема.

Если реализуется импульсное приемопередающее устройство, то легче проявляются дискриминационные свойства. По типу вторичного сигнала в начале или конце фазы легче предположить тип найденного металла.

До щелчка (с накоплением фазы)

Метод реализуется в устройствах с накоплением фазы. Конструктивно исполнение бывает:

  • однокатушечным с импульсной подачей сигналов;
  • двухкатушечным, оснащенным двумя генераторами сигналов (каждый подается питание к своей катушке).

В первом варианте происходит некоторая задержка между излучаемыми и воспринимаемыми импульсами. Оператор слышит щелчок. Он соответствует разнице между поданным импульсом и принятым. Когда в зоне поиска появляется интересующий объект, частота щелчков увеличивается. Если масса найденного предмета довольно большая, и он расположен довольно близко, то щелчки сливаются в шум определенной частоты звучания.

Внимание! Металлоискатели под общим названием «Пират» построены на подобной схеме.

При наличии двухкатушечного устройства необходимость в создании импульсного прибора отпадает. Генераторы работают каждый на свой соленоид. Если происходит искажение ЭМП, то также возникают щелчки. Можно настроить на дополнительное получение звучания определенного тона.

На пляжах и в местах, где наблюдается пребывание большого количества туристов, курортные старатели используют чаще всего подобные металлоискатели. Их даже делают защищенными от пресной и морской воды. Тогда возможен поиск небольших предметов в воде.

Практика показывает, что подобные приборы способны почувствовать небольшие серьги, имеющие массу всего 0,3 г на глубине до 40 см.

К сожалению, подобные устройства плохо работают в местах, где структура грунта неоднородная. Здесь они начинают реагировать даже на ветки.

По писку (на биениях)

Наличие двух сигналов, подаваемых с разной частотой, позволяет слышать не сами подаваемые частоты, а их разность.

  1. На один подается частота 1 МГц = 1 000 000 Гц.
  2. На второй частота 1,0005 Мгц = 1 000 500 Гц.
  3. Пользователь будет слышать сигнал, равный разности между вторым и первым значением подаваемых частот – 1 000 500 – 1 000 000 = 500 Гц.

На разных типах устройства подбирают свои частоты, которые используют в дальнейшей работе.

В системе управления имеется возможность настраивать одну из частот, что позволяет слышать звуки (биения) разной частоты. Можно даже свести эту разность к нулю, если обеспечить равенство подаваемых колебаний.

Перед поиском сводят различия к порогу слышимости. У некоторых людей он составляет 20-25 Гц. Когда металлоискатель оказывается в зоне воздействия металлического предмета, то разность между частотами сигналов меняется. Оператор слышит тон иного звучания.

Для распознания свойств найденного объекта можно менять настройку на втором генераторе. Тогда будут слышаться иные звуки от взаимодействия с найденным объектом. Оператор по ряду предварительных тренировок может достаточно точно определить, что располагается в толще грунта, какова масса и размеры находки.

Рекомендуется выполнять настройку на звук «ля» первой октавы, которому соответствует частота 432 Гц. Этот тон звучит на радиостанциях в момент кратковременного перерыва. Практика показывает, что приборы, настроенные на подобное звучание улавливают даже довольно мелкие предметы, масса которые составляет несколько десятых грамма.

Многие «золотоискателя» на пляжах пользуются подобными приборами. Они надежнее работают в неоднородных почвах.

Влияние катушки на работоспособность установки

Среди мастеров, изготавливающих катушки для своих приборов, имеются разные мнения о том, как следует изготавливать эту часть металлоискателя. Новички часто не задумываются о конструкции. Они могут приобрести брендовое изделие, рассчитывая потом получать только дивиденды от своего вложения. К сожалению, даже самая «крутая» катушка может показать невысокую работоспособность. Должно быть соответствие между соленоидом и остальной схемой устройства.

Разрабатывая конструкцию металлодетектора, стараются подогнать параметры каждого элемента между собой. Иногда приходится подбирать некоторые параметры опытным путем. Разброс в характеристиках радиодеталей бывает весьма значительным. Нужна не только грубая, но и тонкая настройка.

Какие размеры нужны катушке?

Чем больше размер катушки, тем большую площадь охватывает ее сигнал. Есть некоторые мастера, которые изготавливают соленоиды диаметром 1500 мм и более. Они утверждают, что подобный прибор позволяет охватывать широкую площадь. Но носить такой инструмент приходится на плечах. При необходимости перемещаться в лесу или в насаждениях такой прибор не позволит проникнуть между кустами и деревьями. Проще несколько раз провести рукой катушкой, размещаемой на штанге.

  • Ø 20…100 мм используется для поиска арматуры и профилей, закопанных в земле;
  • Ø 130…150 мм применяют золотодобытчики на пляжах и в людный местах;
  • Ø 200…600 мм изготавливают катушки металлисты, ведущие поиск металлолома в больших количествах.

Монопетля в качестве катушки

Распространены конструкции, в которых за основу взята монопетля. Для изготовления используется длинный провод. Толщина намотки должна быть в 15-20 раз меньше, чем диаметр используемой петли.

Пользователи отмечают преимущества подобного устройства:

  • работа металлоискателя, оснащенного подобным принимающим устройством практически не зависит от свойств грунта;
  • масса подобного приспособления сравнительно невысокая, поэтому ее можно перемещать в течение длительного времени по территории;
  • обнаружив в глубине металл, можно меняя настройки передающего устройства, распознать ценность находки.

Есть и недостатки:

  • приходится постоянно вносить коррективы в настройку прибора;
  • любые радиоприборы вносят помехи в работу. Поэтому на пляжах охотники за «золотом» часто испытывают воздействие от работающих устройств;
  • для эффективного использования необходимо тренироваться с разными предметами из различных материалов, чтобы научиться распознавать нужный предмет и начать его добывать.

Указанные недостатки не снижают ценности подобного соленоида. Начинающие пользователи могут взять монопетлю за основу своей первой конструкции. Сделать ее несложно. В руках окажется вполне добротный металлоискатель.

Пошаговое изготовление простейшей катушки

На практике применяют много разных вариантов изготовления. Одним из них будет такой, где используются современные материалы: пластиковые трубы. Они изначально позволяют предотвратить попадание влаги на провода соленоида.


Нужно иметь следующие материалы: провод эмалированный диаметром 0,5 мм. Его длина рассчитывается из необходимости намотать 25 витков на окружность Ø150 мм. 3,14·150·25 = 11775 мм. С учетом выхода концов можно принять 12 м; трубка пластиковая с внутренним диаметром 12,5 мм, ее длина должна быть не менее 3,15·150 = 471 мм; тройник от полипропиленовых труб Ø 20 мм; фрагменты полипропиленовой трубы Ø 20 мм (2 шт., длиной по 15 мм); экранированный телевизионный провод длиной 120 см.

Перед началом работы следует проверить, насколько удобно можно изготовить из пластиковой трубки круг. Если имеется жесткая заготовка, тогда при изготовлении нужно будет ее прогревать горячей водой или с помощью фена. Сворачивается пробное кольцо, оценивается вид получаемой окружности.

В тройнике нужно просверлить отверстие Ø6 мм. Через него будут вводится провода внутрь будущей катушки. Края желательно зачистить от заусенцев.

Дополнительные вставки из полипропиленовой трубы аккуратно обрабатываются. Их нужно впаять в тройник. При этом в каждый фрагмент нужно вставить пластик.

Придется подбирать длину пластиковой трубки, чтобы получить окружность точно заданного диаметра. Если не подогнать размеры, то может не хватить провода. Делаются пробные вводы во фрагменты.

Проверяется, насколько плотно можно вставить трубки друг в друга. После окончательной примерки можно прогреть стыки и спаять их между собой.

Небольшая подвижность при соединении позволит корректировать размер будущего изделия. Приходится проверять получаемый диаметр.

Пришло время проталкивать провод внутрь пластиковой трубки. Это самый трудоемкий процесс.

Когда провод установлен на место, можно оценить, насколько качественно выполнена работа. Возможно, придется подтянуть некоторые витки. Желательно, чтобы укладка выглядела лучше.

Концы провода следует припаять к экранированному кабелю.

Катушка готова. Следует подумать, как закрепить ее на штанге.

Если подобный процесс кажется сложным, то можно подойти к вопросу изготовления катушки иначе.


На листе ориентированно-стружечной плиты (OSB) нужно вычертить контуры будущей катушки.

Лобзиком выпиливается окружность необходимого диаметра.

Провод наматывается по внешнему контуру получившегося круга.

Из полипропиленовых труб сваривается штанга. Ее нетрудно закрепить к самой катушке.

В результате металлоискатель приобретает товарный вид.

После изоляции катушки ее желательно покрасить алкидной эмалью. Слоя краски предотвратить попадание влаги на OSB.

Как рассчитать индуктивность катушки?

При разработке конструкции металлоискателя может возникнуть необходимость рассчитать значение индуктивности. Для точного расчета имеется специальная методика, где в расчет берутся основные параметры. Но для быстрого определения искомой величины проще применить номограмму.

Номограмма для оперативного определения индуктивности катушек

  • индуктивность L = 10 мГн;
  • средний диаметр кольца D = 20 см;
  • высота и толщина кольца, l = t = 1 см.

Пользуясь номограммой, определяют количество витков w, которое следует намотать при изготовлении катушки. Задаются плотность укладки k = 0,5. По принятым размерам определяется площадь сечения S = klt , здесь l – высота слоев катушки; t – ширина слоев.

Разделив значение S на w величину, получают диаметр d (намоточного провода). При получении d = 0,5…0,8 мм расчет прекращается. Если получилось больше, то корректируют толщину и ширину кольца.

Помехоустойчивость катушки

Схожесть с рамочной антенной обуславливает высокую активность катушки. Она восприимчива к помехам, возникающим со стороны. Для устранения возможного внешнего воздействия изготовленную катушку помещают внутрь металлической оплетки. Создают специальный экран, придуманный Фарадеем.

Наличие подобного экрана предотвращает поступление внешних электромагнитных импульсов.

Новичкам следует внимательно изучить конструкцию. Положение заземляющего контакта должно быть строго по оси симметрии. Иначе возможны сбои в работе самой поисковой катушки. Конец от экранирующего провода соединяется в общую схему устройства. Если пренебречь требованиям симметрии, то ухудшатся характеристики соленоида, а помехи окончательно подавят искомые сигналы.

Наличие экрана несколько снижает величину электромагнитного поля. Чувствительность несколько снижается. Приходится увеличивать напряжение питания, подаваемого на обмотку.

Экранированным проводом соединяют саму катушку со схемой устройства. Тогда влияние помех максимально снижается. Металлоискатель работает более надежно.

На приведенном рисунке показаны способы намоток: а – бифилярная; б – перекрестная.

Из практики использования катушек в поисковых приборах установлено, что привычная бифилярная намотка неэффективна. При нахождении в толще почвы ферромагнетиков сигнал начинает угасать. Если же использована перекрестная намотка, то при нахождении предмета строго по центру катушки сигнал усиливается.

Поэтому некоторые радиолюбители не берутся наматывать перекрестным способом множество витков. Они предпочитают создавать катушку корзиночного типа. Она проще в изготовлении.

Катушка-корзинка

К недостаткам самодельщики относят необходимость точного изготовления подобного устройства. Нужна довольно прочная оправка. При натяжении проводов, когда производится намотка, возможна деформация.

При создании корзинки у изготовителя имеются варианты:

  • получить объемную конструкцию;
  • изготовить плоскую корзиночную катушку.

У довольно известного металлоискателя «Пират» используется корзиночка объемного типа. Новичкам проще изготовить плоское изделие. Они получили название «бабочка».

Конструкция корзиночной катушки

Расчет проводят по формулам:

  1. Сначала нужно задаться значением диаметра D₂. Он принимается равным диаметру имеющейся оправки за минусом 2…4 мм.
  2. Значение D₁ определяется, как D₁ = 0,5·D₂.
  3. Рассчитывают число витков по формуле:

где L – индуктивность катушки, рассчитанная по формуле

k – поправочный коэффициент, определяемый по таблице.

Таблица: определение поправочного коэффициента

D₂+D₁ k
1,2 3,31
1,5 2,98
1,8 2,72
2,0 2,58
3,0 2,07
5,0 1,57
8,0 2,23
10,0 1,03

Зная разность D₂ – D₁, рассчитывают диаметр провода. Полагают, что плотность укладки составляет 0,85.

Монопетля и двойная петля

Обозначение ДД свидетельствует об использовании двойной петли (Double Detector). Наличие двух обмоток позволяет значительно усилить восприимчивость катушки. Она анализирует не сам новый возникающий сигнал. В этих схемах производится анализ искажений, которые возникают при попадании металла в зону действия соленоидов.

Предварительно их балансируют так, чтобы в разных плечах существовали одинаковые импульсы. Размещают подобные петли параллельно.

При попадании черного металла генерируются низкие звуки. А если присутствует цветной металл или золото, то оператор услышит изменение сигнала к звукам более высокой частоты.

Во всех металлоискателях, обозначенных символами GOLD, применяется Double Detector. С ними работать интереснее. Но следует помнить, что в рыхлых грунтах подобные катушки могут запищать даже от скопления муравьев.

Как самостоятельно закрепить катушку?

При желании специальный каркас для своей катушки можно заказать в сети. Цены варьируют в довольно широких пределах. Поэтому многие используют фанеру в качестве основы.

Варианты изготовления каркаса: а – из фанеры; б – из CD-дисков

  1. Многим кажется, что проще всего использовать обычную фанеру. Ее легко пилить. Она обладает достаточной прочностью.
    На практике оказывается, что фанера способна впитывать влагу. В результате работоспособность прибора может оказаться крайне низкой.
  2. Лучшие результаты получаются при использовании CD-дисков. Между ними оставляют зазор около 5…7 мм. Можно вклеить кусочки пенопласта. Потом по образующей обматывают скотчем или изоляционной лентой. Получается надежная и прочная объемная конструкция.
  3. При использовании сотового поликарбоната толщиной 6 или 8 мм получается легкий и довольно прочный каркас. Нужно только закрыть соты, чтобы в них не попадала влага. Подойдет обычный скотч. Профессионалы используют силиконовый герметик, он надежно заполнит отверстия на входе в соты. Доказано, что такой каркас самый удачный. Он не наводит дополнительные помехи.

Несколько конструкций металлоискателей

Параметрический прибор обнаружения металлов

Для поиска черного металла и трубопроводов в земле. Нахождения электропроводки в стенах используют простые и надежные схемы. В их основе применяют транзистор МП40, цена которого сегодня составляет несколько рублей (дешевле, чем проехать на трамвае). Возможна замена на более мощную модель КТ361 (учитывать, что у него обратная полярность, при подключении питания следует поменять способ включения батарейки).

Простейший металлоискатель

Этот прибор работает на низкой частоте. Подбор частоты звучания осуществляется изменением емкости конденсатора С₁. При нахождении металла тон заметно понижается. Поэтому при начальной настройке стараются задать писк, подобный комариному.

Когда в зоне работы прибора окажется металл, оператор услышит низкий басовитый звук. Его частота соответствует 50 Гц. Именно такой ток протекает в бытовой и промышленной электропроводке.

Импульсный параметрический прибор

Схема прибора для поиска металлов с простым кварцевым фильтром

Данная конструкция реализуется на базе старого транзисторного приемника, работающего на средних волнах. Его используют только потому, что внутри имеется ферритовая антенна. Именно она задает нужную частоту колебаний.

Все устройство питается от двух батареек типа АА (пальчиковые). Энергопотребление довольно низкое.

Схема довольно простая, спаять ее нетрудно. Детали стоят недорого. Набор комплектующих обойдется (отечественные детали) в пределах 200 руб.

Многих отпугивает подобная конструкция тем, что требуется длительная и тщательная отладка. Приходится подбирать резисторы и конденсаторы. Раньше подобные радиоприборы использовали детали с большим разбросом показателей. С той поры разброс никто не устранял.

Приемопередающие металлоискатели

Схема приемопередающего прибора

При желании создать эффективный прибор для поиска цветных и драгоценных металлов ориентируются на использование металлоискателей, оснащенных передатчиком и приемником.

Здесь работают ДД катушки, на которые подается питание с частотой 2000-2500 Гц. Подобные устройства могут обнаруживать сплавы цветных металлов на глубине 9-11 см. Черные металлы массой до 100 г диагностируются на глубине около 20 см. Крупные предметы из чугуна или стали можно обнаруживать на глубине до 60-70 см.

Иногда подобные устройства помещают в герметичные оболочки, получают глубинные металлоискатели для работы под водой. Подводный металлодетектор расширяет круг поиска ценных предметов

При создании подобных металлоискателей катушки наматывают по специальным шаблонам

Пошаговая технология изготовления и испытания металлоискателя


Заготавливается провод Ø 0,65 мм. Его потребуется немногим более 14 м. Будет уложено 30 витков на диаметре 150 мм.

В качестве образца для вычерчивания окружности нужного диаметра используется крышка от пластикового ведра. Она имеет необходимый диаметр.

На доске получается окружность. Она послужит основой для последующих действий.

Для наматывания проволоки нужно вбить гвозди. Используются метизы длиной 30 мм. Для получения качественной окружности желательно забить их не менее 16 шт. Можно и больше.

Можно начинать наматывать провод. Один конец закрепляется.

При наматывании нужно стараться плотнее укладывать витки.

Полученную катушку следует изолировать. Сначала ее обматывают малярным скотчем.

Изготовив первую катушку, подобным образом изготавливают и вторую.

Приемопередающее устройство изготавливается по предлагаемой схеме.

Для получения звукового сигнала нужен наушник от телефона.

На одной плате собирается вся схема прибора.

Подбирается подходящая металлическая коробка, в которой будет располагаться плата.

Внутри имеется место не только для платы. Здесь помещается батарейка. Профессионалы стараются пользоваться малогабаритными аккумуляторами.Их можно заряжать. Имея с собой два-три аккумулятора, можно не беспокоиться, что прибор окажется обесточенным.

Катушки размещаются листе, вырезанном из сотового поликарбоната.

Штанга изготавливается из полипропиленовых труб.

Для удобства пользования рукоятка имеет полукольцо. Им проще управлять при поиске металлических предметов.

Разбросав разные предметы, можно провести диагностику работоспособности металлоискателя. Оценить расстояния определения каждого вида металла. Проводится настройка прибора.

Можно приступать к поиску металлов на природе. Идти следует, не торопясь. Катушки перемещаются по сторонам, стараются охватить максимальную ширину.

Обнаружив предмет в грунте, можно приступать к его откапыванию. Находясь в местах, где были бои, следует придерживаться правил безопасного извлечения предметов.

Даже небольшие монеты, можно найти в глубине.

Поиск простых решений

Если есть желание попробовать себя в новом деле, а желания создавать схемы пока не пришло, то можно изготовить самый простой металлодетектор без микросхем и пайки.

Самый простой металлодетектор

Понадобятся:

  1. Самый дешевый радиоприемник. В нем должен быть средневолновый диапазон. Его обычно помечают АМ. В таких приемниках устанавливали ферритовую магнитную антенну.
  2. Калькулятор, выпущенный в конце 20 века. Их можно купить на развалах у старушек.
  3. Небольшая книжка или только ее обложка. Картонная будет предпочтительнее. У нее будет определенная прочность.

Теперь придется немного повозиться. Устроен подобный прибор крайне просто:

  1. Раскрывается обложка.
  2. На каждую сторону нужно наклеить двухсторонний скотч.
  3. С одной стороны подклеивается калькулятор.
  4. На другой стороне приклеивается радиоприемник. Нужно следить, чтобы в закрытом состоянии они точно совпадали.
  5. Включается приёмник на самую высокую громкость. Нужно найти диапазон, в котором нет никаких радиостанций. Желательно, чтобы эфирные шумы отсутствовали.
  6. Включается калькулятор. При включении второго устройства в приемнике будет наводиться сигнал. Он должен отреагировать на включение второго прибора. Послышится рев или какой-то иной шум. Если шумов нет, придется поискать диапазон, где будет слышно включение калькулятора.
  7. Нужно сложить обложку до тех пор, пока тон не станет тише. Он может исчезнуть совсем. Обычно такое наблюдается, когда приборы будут расположены под углом 90 ⁰.
  8. Теперь нужно зафиксировать это положение. Используют резинки или иной подсобный материал.

Теперь можно начинать поиск. При поднесении подобного устройства к металлическим предметам появится шум. В зависимости от вида металла будет синтезироваться разный шум. После экспериментов с железными предметами, можно послушать, какая реакция будет у цветных металлов и золота.

Остается обложку закрепить на штанге и приступать к поиску сокровищ.

Еще идеи по созданию металлоискателя

Весьма необычные конструкции предлагают пользователи из интернета. Можно попробовать и их.