Подключение lcd экрана. Используем символьный LCD

LCD дисплей Arduino позволяет визуально отображать данные с датчиков. Расскажем, как правильно подключить LCD монитор к Arduino по I2C и рассмотрим основные команды инициализации и управления LCD 1602. Также рассмотрим различные функции в языке программирования C++, для вывода текстовой информации на дисплее, который часто требуется использовать в проектах на Ардуино.

Видео. Arduino LCD Display I2C 1602

LCD 1602 I2C подключение к Arduino

I2C - последовательная двухпроводная шина для связи интегральных схем внутри электронных приборов, известна, как I²C или IIC (англ. Inter-Integrated Circuit). I²C была разработана фирмой Philips в начале 1980-х годов, как простая 8-битная шина для внутренней связи между схемами в управляющей электронике (например, в компьютерах на материнских платах, в мобильных телефонах и т.д.).

В простой системе I²C может быть несколько ведомых устройств и одно ведущее устройство, которое инициирует передачу данных и синхронизирует сигнал. К линиям SDA (линия данных) и SCL (линия синхронизации) можно подключить несколько ведомых устройств. Часто ведущим устройством является контроллер Ардуино, а ведомыми устройствами: часы реального времени или LCD Display.

Как подключить LCD 1602 к Ардуино по I2C

Жидкокристаллический дисплей 1602 с I2C модулем подключается к плате Ардуино всего 4 проводами — 2 провода данных и 2 провода питания. Подключение дисплея 1602 проводится стандартно для шины I2C: вывод SDA подключается к порту A4, вывод SCL – к порту A5. Питание LCD дисплея осуществляется от порта +5V на Arduino. Смотрите подробнее схему подключения жк монитора 1602 на фото ниже.

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • LCD монитор 1602;
  • 4 провода «папа-мама».

После подключения LCD монитора к Ардуино через I2C вам потребуется установить библиотеку LiquidCrystal_I2C.h для работы с LCD дисплеем по интерфейсу I2C и библиотека Wire.h (имеется в стандартной программе Arduino IDE). Скачать рабочую библиотеку LiquidCrystal_I2C.h для LCD 1602 с модулем I2C можно на странице Библиотеки для Ардуино на нашем сайте по прямой ссылке с Google Drive.

Скетч для дисплея 1602 с I2C

#include // библиотека для управления устройствами по I2C #include // подключаем библиотеку для LCD 1602 LiquidCrystal_I2C lcd(0x27,20,2); // присваиваем имя lcd для дисплея 20х2 void setup () // процедура setup { lcd.init (); // инициализация LCD дисплея lcd.backlight (); // включение подсветки дисплея lcd.setCursor (0,0); // ставим курсор на 1 символ первой строки lcd.print ("I LOVE"); // печатаем сообщение на первой строке lcd.setCursor (0,1); // ставим курсор на 1 символ второй строки lcd.print ("ARDUINO"); // печатаем сообщение на второй строке } void loop () // процедура loop { /* это многострочный комментарий // изначально процедура void loop() в скетче не используется lcd.noDisplay(); // выключаем подсветку LCD дисплея delay(500); // ставим паузу lcd.display(); // включаем подсветку LCD дисплея delay(500); // ставим паузу */ }

Пояснения к коду:

  1. библиотека LiquidCrystal_I2C.h содержит множество команд для управления LCD дисплея по шине I²C и позволяет значительно упростить скетч;
  2. скетч содержит многострочный комментарий /* ... */ , который позволяет закомментировать сразу несколько строк в программе.
  3. перед выводом информации на дисплей, необходимо задать положение курсора командой setCursor(0,1) , где 0 — номер символа в строке, 1 — номер строки.

При создании собственного устройства не редко возникает необходимость оперативного вывода разнообразной информации. Например, если вы создаёте контроллер умного дома, то разумно оснастить прибор устройством вывода, позволяющим быстро узнать текущее состояние систем. Лучшим решением является жидкокристаллический дисплей. Энергопотребление при отключённой подсветке минимально а работа с дисплеем предельно проста и не требует сильного вмешательства в код программы. Фактически, вывод информации на ЖК дисплей не многим отличается от вывода в серийный порт. В статье рассмотрено подключение знакогенерирующего дисплея на базе популярного чипа HD44780 к контроллеру Arduino.

Как работает жидкокристаллический текстовый дисплей

Для понимания некоторых нюансов полезно знать как работает знакогенерирующий дисплей. Особенностью работы дисплеев такого типа является наличие своего контроллера с собственной памятью. DDRAM — память дисплея. Для вывода символа на экран необходимо загрузить символ в ячейку памяти, а затем передать команду на отображение ячейки памяти. При передаче символы кодируются ASCII кодами. Например, при записи в память кода 0×31 на дисплей будет выведен символ «1 ». Соответствие кода символа его отображению на экране (т.е. «картинке» символа) хранится в памяти CGROM. CGROM не изменяемая память. Поэтому, дисплей может отображать только те символы, которые «зашиты» в контроллер. Именно поэтому не каждый дисплей способен отображать, например, русские символы. Дисплеи, продающиеся в нашем магазине, к сожалению, не русифицированы. Есть ещё CGRAM память. Она изменяемая. Мы можем создавать собственные символы и отображать их на дисплее. Стоит учитывать, что можно создать не более восьми символов.

Вся эта «подкапотная» работа важна только для понимания некоторых нюансов. Для Arduino существует простая и понятная библиотека, которая выполняет за вас всю черновую работу, позволяя контролировать вывод на дисплей легко и просто.

Подключение жидкокристаллического дисплея к Arduino

Для подключения дисплея его, разумеется, нужно установить на макетную плату. Обратите внимание: дисплеи, продающиеся у нас в магазине продаются без припаянного штырькового разъёма. Если вы хотите получить дисплей сразу готовый к установке на макетку, отметьте галочку «припаять разъём» на странице товара и мы припаяем разъём для вас. Передача данных на дисплей может быть организована двумя способами: по 4 или по 8 бит за раз. Соответственно, потребуется либо 4, либо 8 выводов Arduino. На практике, выигрыша в скорости при использовании восьмибитного интерфейса не будет. Поэтому, нам потребуется только 4 цифровых вывода для передачи данных. Ещё 3 вывода потребуются для задания режима работы дисплея. Итого для подключения дисплея понадобится всего 7 цифровых выходов контроллера. Контакты на дисплее подписаны, что позволит не запутаться при подключении:

Выводы нумеруем слева направо:

  • 1-(VSS ) Земля дисплея. Подключается к рельсе земли.
  • 2-(VDD ) Питание дисплея. Подключается к рельсе питания.
  • 3-(VO ) Вход потенциометра (входит в комплект). С помощью потенциометра регулируется контрастность дисплея. К выводу дисплея подключается средний выход потенциометра.
  • 4-(RS ) Вход «командного» сигнала. Подключается к любому цифровому выводу Arduino. В примере подключён к выводу №12.
  • 5-(RW ) Устанавливает режим «чтения» или «записи». Мы собираемся записывать. Подключаем контакт к земле.
  • 6-(E ) Enable. Ещё один «командный» вывод. Когда на вывод подаётся единица, дисплей выполняет переданную ранее команду. Подключается к любому цифровому выводу. В примере подключен к выводу №11.
  • 7-10 (D0-D3 ) оставляем не подключёнными. Это контакты передачи данных, который используются в восьмибитном интерфейсе. Нам не нужны.
  • 11-14 (D4-D7 ) Контакты для передачи данных в четырёхбитном режиме. Подключаются опять таки к любым цифровым выводам. В примере подключены соответственно к 5,4,3 и 2 выводам (D4 к 5 выводу, D5 к 4 и т.д.).
  • 15 (A ) Анод светодиода подсветки. Токоограничительный резистор уже установлен в дисплее, поэтому анод подключается просто к рельсе питания. Поскольку в подсветке используется самый обычный светодиод, вы можете подключить его к любому выводу, поддерживающему и управлять яркостью подсветки программно.
  • 16 (K ) Катод подсветки. Подключается к рельсе земли.

Визуальная схема подключения:

Программирование

Вместе с Arduino IDE поставляется прекрасная библиотека для жидкокристаллических дисплеев - LiquidCrystal . Библиотека содержит примеры, полностью раскрывающие возможности экрана. Для начала воспользуйтесь стандартным примером «HelloWorld» (Файл -> Примеры -> LiquidCrystal -> HelloWorld) или загрузите в плату следующий код:

/* *RS вывод дисплея к 12 выводу arduino *Enable вывод дисплея к 11 выводу arduino *D4 вывод дисплея к 5 выводу arduino *D5 вывод дисплея к 4 выводу arduino *D6 вывод дисплея к 3 выводу arduino *D7 вывод дисплея к 2 выводу arduino *R/W вывод дисплея к земле *Выход потенциометра к VO выводу дисплея */ // подключаем библиотеку: #include ; // Инициализируем дисплей // Перечисляем выводы arduino к которым подключены // RS, E, D4, D5, D6, D7 контакты дисплея LiquidCrystal lcd(12, 11, 5, 4, 3, 2); void setup() { // Указываем количество столбцов и строк дисплея: lcd.begin(16, 2); // Выводим сообщение на дисплей. lcd.print("hello, world!"); } void loop() { // устанавливаем курсор в 0 (нулевой) столбец первой строки // фактически курсор установится во вторую (нижнюю) строку // нумерация строк и столбцов начинается с нуля lcd.setCursor(0, 1); // выводим на дисплей количество секунд, // прошедших с момента загрузки платы: lcd.print(millis()/1000); }

*RS вывод дисплея к 12 выводу arduino

*Enable вывод дисплея к 11 выводу arduino

*D4 вывод дисплея к 5 выводу arduino

*D5 вывод дисплея к 4 выводу arduino

*D6 вывод дисплея к 3 выводу arduino

*D7 вывод дисплея к 2 выводу arduino

*R/W вывод дисплея к земле

*Выход потенциометра к VO выводу дисплея

// подключаем библиотеку:

#include ;

// Инициализируем дисплей

// Перечисляем выводы arduino к которым подключены

// RS, E, D4, D5, D6, D7 контакты дисплея

void setup () {

// Указываем количество столбцов и строк дисплея:

lcd . begin (16 , 2 ) ;

// Выводим сообщение на дисплей.

lcd . print ("hello, world!" ) ;

void loop () {

// нумерация строк и столбцов начинается с нуля

lcd . setCursor (0 , 1 ) ;

// выводим на дисплей количество секунд,

// прошедших с момента загрузки платы:

lcd . print (millis () / 1000 ) ;

После загрузки этого кода в плату Arduino на экране отобразится надпись «hello, world!»(англ. «привет, Мир!» ) на первой строке и таймер, отсчитывающий секунды на второй строке.

Как обычно и бывает, код простой и понятный. Однако, мы всё же разберём его более подробно:

  • LiquidCrystal lcd (12, 11, 5, 4, 3, 2) - эта строка создаёт объект дисплея, с которым мы будем работать в будущем. В скобках в качестве аргументов передаются номера пинов, к которым подключены контакты дисплея. Соответственно: RS, E, D4, D5, D6, D7. Как уже отмечалось выше, номера выводов при подключении можно выбирать совершенно произвольно.
  • lcd.begin (16, 2) - здесь мы настроили размеры дисплея. В данном примере 16 столбцов и 2 строки. Для нашего дисплея 20Х4 эта строчка выглядела бы так: lcd.begin (20, 4).
  • lcd.print («hello, world!») - выводит текст на дисплей. После указания размера дисплея (lcd.begin) курсор устанавливается в левый верхний угол дисплея. Поэтому, этот текст будет выведен на первой (верхней) строке слева.
  • lcd.setCursor (0, 1) - устанавливает курсор на указанную позицию. В данном случае указана крайняя левая позиция второй строки. В скобках задаётся номер столбца, затем номер строки. И строки и столбцы нумеруются с нулевой позиции. Таким образом: lcd.setCursor(0, 0) - установит курсор в левый верхний угол, lcd.setCursor(15, 0) - правый нижний.
  • lcd.print (millis()/1000) - уже описано выше. Здесь вместо текста в качестве параметра передаётся формула для вычисления. Результат выводится на экран.

Теперь, когда мы разобрались с простейшим примером, можно перейти к примерам посложнее. А если вы уже всё поняли и готовы купить ЖК дисплей, то я собрал для вас ссылки на проверенных мной китайских продавцов дисплеев:

Символьные ЖК дисплеи

Размер дисплея (столбцы*строки) Цвет подстветки Статус
20*4 Синий проверено
20*4 Жёлтый проверено
16*2 Синий проверено
16*2 Жёлтый проверено
16*2 Зелёный проверено

Обзор других примеров библиотеки LiquidCrystal

В стандартных примерах, поставляющихся вместе с библиотекой LiquidCrystal можно найти следующие скетчи:

    • Autoscroll - демонстрирует возможность прокрутки текста в автоматическом режиме. Некое подобие бегущей строки. При выводе символа предыдущие символы сдвигаются. Таким образом, новый символ выводится на одном и том же месте.

    • Blink - демонстрирует возможность включить отображение мигающего курсора в виде прямоугольника.

    • Cursor - демонстрирует возможность включить отображение курсора в виде мигающей горизонтальной черты.

    • CustomCharacter - показана возможность создания собственных символов для отображения их на дисплее. Кстати, в этом скетче ошибка. Подробности ниже.

    • Display - показывает способ «выключать» дисплей. То есть показывать или скрывать выведенный текст.

    • Scroll - демонстрирует возможность прокрутки текста в ручном режиме.

    • SerialDisplay - отображает на экране текст, напечатанный в окне монитора порта (т.е. текст, передающийся через серийный порт).
    • setCursor - заполняет дисплей буквами, демонстрируя возможность установки курсора в любую позицию экрана.
    • TextDirection - демонстрирует возможность изменять направление вывода текста (с права налево или слева направо).

Рассмотрим более подробно процедуры, возможности которых демонстрируют эти примеры:

lcd.autoscroll()

После вызова этой процедуры, текст на экране будет автоматически прокручиваться. Для остановки прокрутки, следует вызвать lcd.noAutoscroll() .

lcd.blink()

После вызова процедуры курсор примет вид мигающего прямоугольника. Для отключения следует вызвать lcd.noBlink()

lcd.cursor()

После вызова процедуры курсор примет вид мигающей горизонтальной черты. Для отключения следует вызвать lcd.noСursor() . Курсор снова станет невидимым.

lcd.createChar()

Процедура загружает в изменяемую таблицу символов экрана (в память CGRAM) символ, описанный в виде байтового массива. В качестве аргумента передаётся номер символа и массив байт, описывающий символ. Остановимся на этом более подробно. Внести в память дисплея можно не более восьми символов. Для добавления своего символа нужно:

  1. Создать байтовый массив, описывающий символ.
  2. Записать символ в память дисплея, присвоив ему номер в таблице символов. Символы нумеруются в диапазоне от нуля до семи.
  3. Вывести символ на экран с помощью процедуры lcd.write() (не путать с lcd.print() ), в качесте аргумента которой передать номер символа.

Баг среды разработки и особенности библиотеки вылились в невозможность вывести на экран символ под номером 0 (ноль). Компилятор повстречав строку lcd.write(0) выдаст ошибку: «call of overloaded ‘write(int)’ is ambiguous «. Именно такая строка встречается в примере CustomCharacter библиотеки. При попытке скомпилировать стандартный пример, вы получите ошибку:

CustomCharacter.ino: In function ‘void setup()’: CustomCharacter:115: error: call of overloaded ‘write(int)’ is ambiguous /home/nazarovd/arduino-1.0.5/libraries/LiquidCrystal/LiquidCrystal.h:82: note: candidates are: virtual size_t LiquidCrystal::write(uint8_t) /home/nazarovd/arduino-1.0.5/hardware/arduino/cores/arduino/Print.h:49: note: size_t Print::write(const char*)

CustomCharacter . ino : In function ‘void setup () ’:

CustomCharacter : 115 : error : call of overloaded ‘write (int ) ’is ambiguous

/ home / nazarovd / arduino - 1.0.5 / libraries / LiquidCrystal / LiquidCrystal . h : 82 : note : candidates are : virtual size_t LiquidCrystal :: write (uint8_t )

/ home / nazarovd / arduino - 1.0.5 / hardware / arduino / cores / arduino / Print . h : 49 : note : size_t Print :: write (const char * )

Для устранения ошибки достаточно изменить строку lcd.write(0 ) на lcd.write((byte)0 ).
Теперь небольшой пример по созданию своего символа. Давайте выведем на дисплей символ рубля .

// Подключаем библиотеку #include ; // Инициализируем дисплей LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // Описываем свой символ. // Просто "рисуем" символ единицами // Единицы при выводе на экран окажутся закрашенными точками, нули - не закрашенными byte rubl = { 0b00000, 0b01110, 0b01001, 0b01001, 0b01110, 0b01000, 0b11110, 0b01000, }; void setup() { // записываем свой символ в память экрана // аргументами передаём номер символа // и байтовый массив, описывающий наш символ lcd.createChar(0, rubl); // настраиваем дисплей lcd.begin(16, 2); } void loop() { // устанавливаем курсор в левый верхний угод экрана lcd.setCursor(0,0); // выводим символ с номером ноль на экран lcd.write((byte)0); // ничего не делаем 10 секунд delay(10000); }

// Подключаем библиотеку

#include ;

// Инициализируем дисплей

LiquidCrystal lcd (12 , 11 , 5 , 4 , 3 , 2 ) ;

  • Модуль FC-113 сделан на базе микросхемы PCF8574T, которая представляет собой 8-битный сдвиговый регистр - «расширитель» входов-выходов для последовательной шины I2C. На рисунке микросхема обозначена DD1.
  • R1 - подстроечный резистор для регулировки контрастности ЖК дисплея.
  • Джампер J1 используется для включения подсветки дисплея.
  • Выводы 1…16 служат для подключения модуля к выводам LCD дисплея.
  • Контактные площадки А1…А3 нужны для изменения адреса I2C устройства. Запаивая соответствующие перемычки, можно менять адрес устройства. В таблице приведено соответствие адресов и перемычек: "0" соответствует разрыву цепи, "1" - установленной перемычке. По умолчанию все 3 перемычки разомкнуты и адрес устройства 0x27 .

2 Схема подключения ЖК дисплея к Arduino по протоколу I2C

Подключение модуля к Arduino осуществляется стандартно для шины I2C: вывод SDA модуля подключается к аналоговому порту A4, вывод SCL - к аналоговому порту A5 Ардуино. Питание модуля осуществляется напряжением +5 В от Arduino. Сам модуль соединяется выводами 1…16 с соответствующими выводами 1…16 на ЖК дисплее.


3 Библиотека для работы по протоколу I2C

Теперь нужна библиотека для работы с LCD по интерфейсу I2C. Можно воспользоваться, например, вот этой (ссылка в строке "Download Sample code and library").

Скачанный архив LiquidCrystal_I2Cv1-1.rar разархивируем в папку \libraries\ , которая находится в директории Arduino IDE.

Библиотека поддерживает набор стандартных функций для LCD экранов:

Функция Назначение
LiquidCrystal() создаёт переменную типа LiquidCrystal и принимает параметры подключения дисплея (номера выводов);
begin() инициализация LCD дисплея, задание параметров (кол-во строк и символов);
clear() очистка экрана и возврат курсора в начальную позицию;
home() возврат курсора в начальную позицию;
setCursor() установка курсора на заданную позицию;
write() выводит символ на ЖК экран;
print() выводит текст на ЖК экран;
cursor() показывает курсор, т.е. подчёркивание под местом следующего символа;
noCursor() прячет курсор;
blink() мигание курсора;
noBlink() отмена мигания;
noDisplay() выключение дисплея с сохранением всей отображаемой информации;
display() включение дисплея с сохранением всей отображаемой информации;
scrollDisplayLeft() прокрутка содержимого дисплея на 1 позицию влево;
scrollDisplayRight() прокрутка содержимого дисплея на 1 позицию вправо;
autoscroll() включение автопрокрутки;
noAutoscroll() выключение автопрокрутки;
leftToRight() задаёт направление текста слева направо;
rightToLeft() направление текста справа налево;
createChar() создаёт пользовательский символ для LCD-экрана.

4 Скетч для вывода текста на LCD экран по шине I2C

Откроем образец: Файл Образцы LiquidCrystal_I2C CustomChars и немного его переделаем. Выведем сообщение, в конце которого будет находиться мигающий символ. В комментариях к коду прокомментированы все нюансы скетча.

#include // подключаем библиотеку Wire #include // подключаем библиотеку ЖКИ #define printByte(args) write(args); // uint8_t heart = {0x0,0xa,0x1f,0x1f,0xe,0x4,0x0}; // битовая маска символа «сердце» LiquidCrystal_I2C lcd(0x27, 16, 2); // Задаём адрес 0x27 для LCD дисплея 16x2 void setup() { lcd.init(); // инициализация ЖК дисплея lcd.backlight(); // включение подсветки дисплея lcd.createChar(3, heart); // создаём символ «сердце» в 3 ячейке памяти lcd.home(); // ставим курсор в левый верхний угол, в позицию (0,0) lcd.!"); // печатаем строку текста lcd.setCursor(0, 1); // перевод курсора на строку 2, символ 1 lcd.print(" i "); // печатаем сообщение на строке 2 lcd.printByte(3); // печатаем символ «сердце», находящийся в 3-ей ячейке lcd.print(" Arduino "); } void loop() { // мигание последнего символа lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print("\t"); delay(500); lcd.setCursor(13, 1); // перевод курсора на строку 2, символ 1 lcd.print(" "); delay(500); }

Кстати, символы, записанные командой lcd.createChar(); , остаются в памяти дисплея даже после выключения питания, т.к. записываются в ПЗУ дисплея 1602.

5 Создание собственных символов для ЖК дисплея

Немного подробнее рассмотрим вопрос создания собственных символов для ЖК экранов. Каждый символ на экране состоит из 35-ти точек: 5 в ширину и 7 в высоту (+1 резервная строка для подчёркивания). В строке 6 приведённого скетча мы задаём массив из 7-ми чисел: {0x0, 0xa, 0x1f, 0x1f, 0xe, 0x4, 0x0} . Преобразуем 16-ричные числа в бинарные: {00000, 01010, 11111, 11111, 01110, 00100, 00000} . Эти числа - не что иное, как битовые маски для каждой из 7-ми строк символа, где "0" обозначают светлую точку, а "1" - тёмную. Например, символ сердца, заданный в виде битовой маски, будет выглядеть на экране так, как показано на рисунке.

6 Управление ЖК экраном по шине I2C

Загрузим скетч в Arduino. На экране появится заданная нами надпись с мигающим курсором в конце.


7 Что находится «за» шиной I2C

В качестве бонуса рассмотрим временную диаграмму вывода латинских символов "A", "B" и "С" на ЖК дисплей. Эти символы имеются в ПЗУ дисплея и выводятся на экран просто передачей дисплею их адреса. Диаграмма снята с выводов RS, RW, E, D4, D5, D6 и D7 дисплея, т.е. уже после преобразователя FC-113 «I2C параллельная шина». Можно сказать, что мы погружаемся немного «глубже» в «железо».


Временная диаграмма вывода латинских символов "A", "B" и "С" на LCD дисплей 1602

На диаграмме видно, что символы, которые имеются в ПЗУ дисплея (см. стр.11 даташита, ссылка ниже), передаются двумя полубайтами, первый из которых определяет номер столбца таблицы, а второй - номер строки. При этом данные «защёлкиваются» по фронту сигнала на линии E (Enable), а линия RS (Register select, выбор регистра) находится в состоянии логической единицы, что означает передачу данных. Низкое состояние линии RS означает передачу инструкций, что мы и видим перед передачей каждого символа. В данном случае передаётся код инструкции возврата каретки на позицию (0, 0) ЖК дисплея, о чём также можно узнать, изучив техническое описание дисплея.

И ещё один пример. На этой временной диаграмме показан вывод символа «Сердце» на ЖК дисплей.


Опять, первые два импульса Enable соответствуют инструкции Home() (0000 0010 2) - возврат каретки на позицию (0; 0), а вторые два - вывод на ЖК дисплей хранящийся в ячейке памяти 3 10 (0000 0011 2) символ «Сердце» (инструкция lcd.createChar(3, heart); скетча).

Сегодня попробуем остановиться на выводе на текстовый дисплей. Наиболее популярным является чип HD44780 (или совместимый с ним KS0066). Перечислим их плюсы и минусы:

Плюсы:

  1. Невысокая цена.
  2. Простота программирования, код будет одинаков для любой модели.
  3. Многообразие моделей - наиболее распространённые: 8x1, 16x2, 20x4. Также можно встретить довольно экзотические модели 40x4, т.е. четыре строки по 40 символов в каждой.
  4. Возможность подключить несколько дисплеев к одной Arduino.
  5. Возможность задавать собственные символы.

Минусы:

  1. Далеко не все дисплеи поддерживают русские символы. Подробнее надо смотреть в описании к конкретному дисплею.
  2. Подключение без использования I2C-шины требует использования 10-16 проводов, что очень плохо. с I2C - 4 провода.

Исходя из вышеизложенного буду рассматривать только подключение дисплея через I2C.

Давайте попробуем.

Что нам понадобится.

  1. Arduino (Я взял модель Nano)
  2. Дисплей на чипе HD44780 с модулем I2C или без него (тогда понадобится отдельно плата LC1602 IIC) - в нашем случае 16x2 без I2C модуля
  3. Резистор на 10Ком (Если нужно ручное управление подсветкой).
  4. Потенциометр (Если нужно ручное управление подсветкой).
  5. Макетная плата Breadboard.
  6. Библиотека LiquidCrystal_I2C. http://www.ansealk.ru/files/LiquidCrystal_V1.2.1.zip

Небольшое отступление №1: Как отличить дисплей с I2C-модулем?

На самом деле все довольно просто. Если, перевернув дисплей мы видим длинную колодку разъемов (как правило 16 штук) то модуля I2C на дисплее нет:

А вот так выглядит дисплей с уже установленным I2C-модулем:

Контакты SCL, SDA, VCC, GND используются для подключения Arduino. Два контакта слева - на картинке они замкнуты перемычкой - нужны для работы подсветки.

Если модуль не подключен - придется сделать это самостоятельно. Главное, на что стоит обратить внимание - соединить контакты в правильном порядке. Как правило первый и 16 пины помечены. Иногда бывает, что 15-16 контакты, через которые осуществляется управление подсветкой, могут располагаться перед первым (в этом случае они будут пронумерованы). На самом же модуле первый пин также может быть обозначен не цифрой, а квадратом вокруг самого пина.

Схемы:

Соберем следующую схему:

Обращу внимание на следующие моменты:

  1. Если вам попался дисплей с уже припаянным I2C-модулем, то провода, помеченные серым, не понадобятся. В остальном - ничего не меняется.
  2. Если мы не хотим менять яркость дисплея - то схема упростится:

как заметили, два пина на I2C-модуле с маркировкой LED отвечают за подсветку дисплея. Если не хотим использовать управление яркостью - их просто можно замкнуть.

Теперь давайте разберем код.

Тут почти все нам должно быть знакомо. В строке 5 указываем адрес устройства. В строках 16 и 17 - количество символов в строке и количество строк. В строках 20-22 - Создаем объект для работы с дисплеем и описываем параметр работы с ним.

Небольшое отступление №2: Как узнать адрес I2C-устройства?

В большинстве своем адрес можно посмотреть в даташите к микросхеме, на которой построено I2C-устройство. Если же такой возможности нет вот ссылка на архив со скетчем и схемами - http://www.ansealk.ru/files/Arduino_lcd_i2c.zip который определяет адреса всех устройств, подключенных по I2C-шине. Достаточно только подключить устройство к Arduino, загрузить скетч, открыть консоль и увидеть адрес.

Тут мы видим функцию, которая, собственно, и будет заниматься выводом на дисплей. Принцип вывода примерно такой:

Задаём позицию начала вывода функцией setCursor()

Печатаем строку функцией print()

После этого следующая функцию print() начнет вывод со следующей позиции, после которой закончился предыдущий ввод. Также обращу внимание на то, что, в отличие от вывода в консоль, тут не используется функция println() для завершения вывода и перевода строки.

Таким образом у нас на экране в первой строке появится надпись "Test LCD1602", а во второй будет указано разрешение дисплея и счетчик, показывающий, сколько циклов отработал наш скетч.

Но, если нам надо будет выводить много значений переменных на экран, этот метод не совсем удобен. Дело в том, что процедура вывода на дисплей - очень энергоёмкая и медленная, а вывод мы делаем в этой функции аж 7 раз. Гораздо проще будет заранее сформировать строку заранее, а затем вывести её целиком. В этом нам поможет функция форматированного ввода sprintf().

Небольшое отступление №3: Функция форматированного ввода sprintf().

В Языке C существует несколько очень удобных функций для вывода строк - они называются функциями форматированного вывода - printf (от слов print и format). В нашем конкретном случае нас интересует функция sprintf, которая не выводит ничего на экран, а формирует строку для последующего вывода. Выглядит она примерно так:

sprintf (str , "Строка %d для вывода ", i );

Функция формирует строку (помечено синим) с использованием шаблона (желтым), в который подставляются значения переменных (зеленым). Полученный результат будет записан в строковую переменную (красным).

Шаблонов и переменных может быть несколько. В этом случае переменные записываются через запятую. Главное, следите за тем, чтобы количество шаблонов в строке соответствовало количеству переменных. Переменные для шаблонов берутся последовательно, т.е. в первый шаблон подставляется значение первой переменной, во второй - второй переменной и т.д.

Что же такое шаблоны? Любой шаблон начинается символом "%" и заканчивается одним из десяти (в случае Arduino - семи) символов типа. Между ними может быть указано довольно много информации о том, как выводить значение, а может быть не указано и ничего.

Давайте разберем что же может быть в шаблоне. В общем случае шаблон имеет такой вид:

%[флаг ][ширина ][.точность ]типа

Квадратные скобки показывают, что элемент заключенный в них может отсутствовать. Вертикальная черта говорит о том, что в этом поле должно быть выбрано одно из указанных значений (в нашем случае одна из букв H, I, или L).

Давайте сначала разберемся с обязательным элементом шаблона - типом. Он указывает, какой тип переменной будет выводится и может принимать одно из следующих значений:

Символ Значение
c Один символ
s Строка символов
d,i Целое десятичное со знаком
o Целое восьмеричное
u Целое десятичное без знака
x, X Целое шестнадцатеричное
p Указатель (в шестнадцатеричном виде)
f Дробное число в фиксированном формате
e, E Дробное число в научном формате
g, G Дробное число в научном или фиксированном формате

Серым помечены те типы, которые не применимы при работе с Arduino. Таким образом, для вывода строки надо указать "%s", а для вывода целого числа - "%d".

Далее рассмотрим поле ширины. Число в нем указывает минимальную ширину поля, в котором будет выведен шаблон. Если размер значения в переменной меньше - поле будет добито пробелами, если больше - запись выйдет за пределы поля. Таким образом шаблон "%6d" для числа 385 выведет 385 (обратим внимание на три пробела перед числом).

Спецификатор точности всегда начинается с точки и следующее за ним число указывает различные действия в зависимости от типа значения. Для типов "d,o,u,x" он укажет минимальное количество символов, которое должно появится при обработке. Для типа "f" - число знаков после запятой. Для типа "s" - максимальное число символов стоки, который будут выведены. Например, "%6.1f" для числа 34.2345 выведет "34.1" (обращу внимание, что точка также считается знаком и перед числом будет присутствовать два пробела). Или шаблон "%.3s" от строки "точность" выведет только первые три символа - "точ".

Флаг позволяет изменить отображение выводимого значения:

Более подробно о шаблонах функции printf можно прочитать интернете. Здесь же я дал краткий обзор наиболее часто используемых возможностей.

Таким образом, наша функция вывода, переписанная с учетом использования форматированного вывода будет выглядеть следующим образом:

Заметим, что в строках 33 и 37 мы формируем целую строку для вывода, а в строках 34 и 38 - выводим их.

Наконец, наши любимые функции setup и loop.

В строке 47 мы задаем разрешение дисплея, в строке 48 - включим подсветку (яркость которой можно отрегулировать потенциометром). В строке 49 установим счетчик циклов в ноль. Увеличивать его будем на единицу в 37-й строке при выводе (помните конструкцию count++?). Наконец, в строке 56 вызываем рассмотренную раннее функцию вывода на дисплей. Все.

Что можно поменять или улучшить?

К примеру, можно сделать автоматическое управление подсветкой в зависимости от освещенности, использовав фоторезистор или датчик освещенности из рассмотренной несколькими статьями ранее метеостанции. Допустим, при сильном освещении - увеличить яркость подсветки, а в ночное время - уменьшить. Или прикрутить датчик движения и зажигать подсветку при появлении объект перед дисплеем, или... В общем, я думаю, вы уже поняли, что при желании, заменив один или несколько компонентов и написав кусок кода можно довольно серьезно улучшить удобство работы с дисплеем. Также мы можем использовать для вывода на дисплей собственноручно разработанные символы.

Все эти вопросы я тут не рассматриваю, так как они выходят за рамки обзора для начинающих.

А на сегодня у меня все.

Arduino. Подключаем LCD-дисплей

26 оценок, Средняя оценка: 5 из 5

Все давно привыкли, что у каждого электронного устройства есть экран, с помощью которого оно дает человеку всякую полезную информацию. MP3-плеер показывает название играемого трека, пульт квадрокоптера отображает полетную телеметрию, даже стиральная машина выводит на дисплей время до конца стирки, а на смартфоне вообще размещается целый рабочий стол персонального компьютера!

Скорее всего, вашему очередному устройству тоже не помешает какой-нибудь небольшой дисплейчик 🙂 Попробуем сделать простые электронные часы! А в качестве табло используем распространенный и дешевый символьный жидкокристаллический дисплей 1602. Вот прямо такой, как на картинке:

Кроме 16х2, достаточно популярным считается символьный дисплей 20х4 (четыре строки по 20 символов), а также графический дисплей с разрешением 128х64 точек. Вот они на картинках:

1. Подключение символьного ЖК дисплея 1602

У дисплея 1602 есть 16 выводов. Обычно они нумеруются слева-направо, если смотреть на него так как на картинке. Иногда выводы подписываются, типа: DB0, DB1, EN и т.п. А иногда просто указывают номер вывода. В любом случае, список выводов всегда одинаковый:

1 — «GND», земля (минус питания);
2 — «Vcc»,­ питание +5В;
3 — «VEE», контраст;
4 — «RS», выбор регистра;
5 — «R/W», направление передачи данных (запись/чтение);
6 — «EN», синхронизация;
7-14 — «DB0­», «DB1», .., «DB7″­- шина данных;
15 — анод подсветки (+5В);
16 — катод подсветки (земля).

Линии VEE, RS и четыре линии данных DB4, DB5, DB6, DB7 подключаем к цифровым выводам контроллера. Линию «R/W» подключим к «земле» контроллера (так как нам потребуется только функция записи в память дисплея). Подсветку пока подключать не будем, с этим, я полагаю, вы сами легко разберетесь 🙂

Принципиальная схема подключения дисплея к Ардуино Уно

Внешний вид макета

На всякий случай еще и в виде таблички:

ЖК дисплей 1602 1 2 4 6 11 12 13 14 15 16
Ардуино Уно GND +5V 4 5 6 7 8 9 +5V GND

2. Программируем «Hello, world!»

Для работы с ЖК дисплеями различных размеров и типов, в редакторе Arduino IDE имеется специальная библиотека LiquidCrystal . Чтобы подключить библиотеку, запишем первой строчкой нашей программы следующее выражение:

LiquidCrystal lcd(4, 5, 6, 7, 8, 9);

Здесь первые два аргумента — это выводы RS и EN, а оставшиеся четыре — линии шины данных DB4-DB7.

Lcd.begin(16, 2);

Напоминаю, в нашем дисплее имеется две строки, по 16 символов в каждой.

Наконец, для вывода текста нам понадобится простая функция «print». Вывод с помощью этой функции всем известной фразы будет выглядеть следующим образом:

Lcd.print("Hello, world!");

Полностью программа будет выглядеть так:

#include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); lcd.print("Hello, world!"); } void loop(){ }

Загружаем её на Ардуино Уно, и смотрим что творится на дисплее. Может быть три основных ситуации 🙂

1) На дисплее отобразится надпись «Hello, world!». Значит вы все правильно подключили, и контраст каким-то чудесным образом оказался изначально правильно настроен. Радуемся, и переходим к следующей главе.

2) На дисплее отобразится целый ряд черных прямоугольников — требуется настройка контраста! Именно для этого мы добавили в цепь потенциометр с ручкой. Крутим его от одного края, до другого, до момента пока на дисплее не появится четкая надпись.

3) Два ряда черных прямоугольников. Скорее всего, вы что-то напутали при подключении. Проверьте трижды все провода. Если не найдете ошибку — попросите кота проверить!

3. Программируем часы

Теперь когда дисплей точно работает, попробуем превратить наше нехитрое устройство в настоящие электронные часы.

Внимание! Для вывода времени нам потребуется библиотека «Time». Если она еще не установлена, то можно скачать архив по ссылке . Подключим ее:

#include

Затем установим текущие дату и время с помощью функции «setTime»:

SetTime(23, 59, 59, 12, 31, 2015);

Здесь все понятно: часы, минуты, секунды, месяц, число, год.

Для вывода даты используем кучу функции:

  • year() — вернет нам год;
  • month()­ — месяц;
  • day() ­- день;
  • hour() ­- час;
  • minute() — вернет минуту;
  • second() -­ секунду.

Теперь обратим внимание вот на какой факт. Если посчитать количество символов в типовой записи даты: «31.12.2015 23:59:59», получим 19. А у нас всего 16! Не влазит, однако, в одну строчку.

Решить проблему можно еще одной полезной функцией — «setCursor». Эта функция устанавливает курсор в нужную позицию. Например:

Lcd.setCursor(0,1);

Установит курсор в начало второй строчки. Курсор — это место символа, с которого начнется вывод текста следующей командой «print». Воспользуемся этой функцией для вывода даты в первой строчке, а времени во второй.

С выводом даты и времени теперь все ясно. Остались рутинные вещи. Например, после каждого заполнения дисплея, мы будем его чистить функцией «clear()»:

Lcd.clear();

А еще нам нет смысла выводить данные на дисплей чаще чем раз в секунду, поэтому между двумя итерациями сделаем паузу в 1000 миллисекунд.

Итак, сложив все вместе, получим такую программу:

#include #include LiquidCrystal lcd(4, 5, 6, 7, 8, 9); void setup(){ lcd.begin(16, 2); setTime(7,0,0,1,10,2015); // 7 утра, десятого января 2015 года } void loop(){ lcd.clear(); lcd.print(day()); lcd.print("."); lcd.print(month()); lcd.print("."); lcd.print(year()); lcd.setCursor(0, 1); lcd.print(hour()); lcd.print(":"); lcd.print(minute()); lcd.print(":"); lcd.print(second()); delay(1000); }

Загружаем скетч на Ардуино Уно, и наблюдаем за ходом часиков! 🙂 Для того чтобы закрепить полученные знания, рекомендую прокачать наши часы до полноценного будильника. Всего-то на всего потребуется добавить пару кнопок и зуммер 🙂