Модифицированный симплексный метод решения задач целевого программирования. Модифицированный симплекс-метод

3. Модифицированный симплекс-метод

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Способность хороша для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс – разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана – Гаусса. Особенности заключаются в наличии двух таблиц – основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.

Зная оптимальный план этой задачи, на основе соотношений получаем оптимальный план исходной задачи.

Таким образом, процесс нахождения решения задачи нелинейного программирования включает следующие этапы:

1. Первоначальную задачу сводят к задаче линейного программирования.

2. Находят решение линейной задачи

Используя соотношения, определяют оптимальный план исходной задачи и находят максимальное значение целевой функции нелинейной задачи.

Первый этап: Получение задания к курсовой работе

1. Все числовые данные, касающиеся предполагаемых производственных и экономических процессов, берутся на основе шестизначного шифра:

Под каждую цифру записываются буквы a, b, c, d, e, f в следующем виде:

из последней строки таблицы индивидуальных заданий находим столбцы соответствующие буквам a, b, c, d, e, f. Тогда числовыми данными, необходимыми для выполнения данной курсовой работы, будут данные находящиеся в а – том столбце в строке 9, b – том столбце в строке 5, c – том столбце в строке 5, d – том столбце в строке 8, e – том столбце в строке 7и f – том столбце в строке 2.

По таблице исходных заданий для любого варианта заданий по столбцу а исполнитель получает вариант выполняемого задания. В моем случае для цифры 9 соответствует вариант 9.

На некотором заводе производится три вида продукта и при этом расходуется два вида ресурсов. Производственная функция каждого вида продукта на предприятии опишется равенствами:


где С i и - постоянные величины, i = 1, 2, 3;

X 1 – трудовые ресурсы в человеко-днях;

Х 2 – денежно-материальные средства, в тенге;

У i – получаемый продукт

Х 1 = а 1 х 1 + b 1 x 2 + c 1 x 3

Х 2 = а 2 х 1 + b 2 x 2 + c 2 x 3

Найти все неотрицательные базисные решения и определить оптимальный план F = y 1 + y 2 + y 3 .

Известно, что продукт для производства j – того вида затрачивается a ij единиц i – того ресурса. Эти затраты даются в таблицах 3.9.1. – 3.9.10

Последующие числовые данные берутся только из таблицы исходных данных выбранного варианта задания т.е. из таблицы №3.9.11.

2. По столбцу таблицы №3.9.11 для строки 8 исходной таблицей затрат единиц ресурса, будет таблица №3.9.4 т.е. следующая таблица:

Продукты ресурсы

I 8 4 6
II 160 240 200

3. По столбцу c – на 3 строке находим с 1 =6, α 1 =0,6

4. По столбцу d – на 5 строке определяем с 2 =5, α 2 =0,5

5. По столбцу e – по 4 строке установим, что с 3 =8, α 3 =0,4.

6. И наконец по столбцу f – в 1 строке найдем Т чел.дней =1000, П тенге = 280000

Для производства имеются трудовые ресурсы Т чел.дней и денежно-материальные средства П тенге.

Требуется найти оптимальный план выпуска продукции, при котором выпускаемый продукт будет наибольшим.


Второй этап – составление математической модели задачи

1. На основании полученных в первом этапе исходных данных и описания заданного производственного процесса составляется следующая таблица:

Продукты ресурсы

I 8 4 6 1000
II 160 240 200 280000

Через Х 1 обозначим ресурсы I вида.

Через Х 2 обозначим ресурсы II вида.

2. Обращаясь к условиям задачи, определяем все возможные ограничения, объединяя их в систему ограничений.

8Х 1 + 4Х 2 + 6Х 3 ≤ 1000

240Х 1 + 200Х 2 + 160Х 3 ≤ 280000

Таким образом, получили задачу нелинейного программирования. Такие задачи называются задачами нелинейного программирования.

Решение задач нелинейного программирования осуществляется приведением их к задачам линейного программирования.

Для решения задачи линейного программирования применяется симплекс – метод.

Третий этап – выбор метода решения полученной математической задачи

1. Для решения задач линейного программирования симплекс – методом задача приводиться к каноническому виду:


8Х 1 + 4Х 2 + 6Х 3 + Х 4 = 1000

240Х 1 + 200Х 2 + 160Х 3 + Х 5 = 280000


Разрабатываются методы отыскания экстремальных значений целевой функции среди множества ее возможных значений, определяемых ограничениями. Наличие ограничений делает задачи математического программирования принципиально отличными от классических задач математического анализа по отысканию экстремальных значений функции. Методы математического анализа для поиска экстремума функции в задачах...



Нахождение точки Куна-Таккера обеспечивает получение оптимального решения задачи нелинейного программирования. Теорему 2 можно также использовать для доказательства оптимальности данного решения задачи нелинейного программирования. В качестве иллюстрации опять рассмотрим пример: Минимизировать при ограничениях С помощью теоремы 2 докажем, что решение является оптимальным. Имеем Так...



Лучей, исходящих из одной точки, называется многогранным выпуклым конусом с вершиной в данной точке. 1.4 Математические основы решения задачи линейного программирования графическим способом 1.4.1 Математический аппарат Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n = 2 и n = ...

Положит в такой симплекс-таблице текущие базисные переменные равными Ai,0, а свободные - нулю, то будет получено оптимальное решение. Практика применения симплекс метода показала, что число итераций, требуемых для решения задачи линейного программирования обычно колеблется от 2m до 3m, хотя для некоторых специально построенных задач вычисления по правилам симплекс метода превращаются в прямой...

Основная идея модифицированного симплекс-метода заключается в использовании текущей обратной матрицы (и исходных данных задачи) при выполнении вычислений, необходимых для определения включаемой и исключаемой переменных. Представление обратной матрицы в мультипликативной форме позволяет вычислять последовательность обратных матриц непосредственно по исходным данным без использования многократных операций обращения каждого базиса. Как и в обычном симплекс-методе, в данном случае исходный базис всегда представляет собой единичную матрицуI, обратной к которой является сама эта матрица. Поэтому, если
- последовательность обратных матриц, соответствующих итерациям 1, 2,…,i, а
- последовательность соответствующих им матриц, то

Последовательность подстановок приводит к следующей формуле:

(2.23)

Следует подчеркнуть, что мультипликативное представление обратной матрицы не является необходимой процедурой для реализации вычислительной схемы модифицированного симплекс-метода, и на каждой итерации можно применять любой из способов обращения текущего базиса. При использовании модифицированного симплекс-метода важно то, что обратные матрицы вычисляются способом, позволяющим уменьшить влияние машинных ошибок округления.

Шаги алгоритма модифицированного симплекс-метода, по существу, такие же, как и в алгоритме обычного симплекс-метода. После нахождения начального базиса Iопределяется соответствующий ему вектор коэффициентов целевой функции, элементы которого формируются в зависимости от того, являются ли начальные базисные переменные остаточными (избыточными) или искусственными.

        1. 2.7.2. Мультипликативное представление обратной матрицы

При мультипликативном представлении обратной матрицы используется операция алгебры матриц, позволяющая вычислять элементы матрицы, обратной к новой матрице базисных векторов, по известной обратной матрице предыдущего базиса при условии, что два рассматриваемых базиса отличаются только одним вектор-столбцом. Такой способ представления обратной матрицы удобно использовать именно в вычислительной схеме симплекс-метода, так как базисы, соответствующие каждым двум последовательным итерациям, отличаются лишь одним столбцом (в результате замены исключаемого вектор-столбца текущего базиса новым вектор-столбцом). Другими словами, текущая базисная матрица и новая базисная матрица
, соответствующая следующей итерации, отличаются только одним столбцом. При мультипликативном представлении обратной матрицы
, соответствующей новому базису, она вычисляется путём умножения слева обратной текущей матрицы
на формируемую по определённым правилам матрицу.

Определим единичную матрицу следующим образом:

(2.24)

где - единичный вектор-столбец сi-м элементом, равным единице, и остальными элементами, равными нулю. Допустим, что известны матрицыи
, и векторматрицызаменяется новым вектором; как принято при описании симплекс-метода, векторопределяется как включаемый в базис, а вектор- как исключаемый из базиса. Для упрощения записи математических соотношений используем следующее определение
,при этомбудет представлять собойk-й элемент
. Тогда новую обратную матрицу
можно вычислить по следующей формуле:

(2.25)

при условии, что
. Если
, матрицы
не существует. Заметим, что матрицаполучается из матрицыпутём замены еёr-го вектор-столбцастолбцом.

МОДИФИЦИРОВАННЫЙ СИМПЛЕКС МЕТОДСимплекс-метод – не самая эффективная
компьютерная процедура, так как она вычисляет и
хранит информацию, которая не нужна для текущей
итерации и может вообще не использоваться для
принятия решений при последующих итерациях. Для
коэффициентов неосновных переменных в уравнении
(0), коэффициентов введенных основных переменных
в других уравнениях и правых частях уравнений при
каждой итерации используется только релевантная
информация. Поэтому нужна процедура, которая
может получать эту информацию эффективно, без
вычислений и хранения всех других коэффициентов
(это и есть модифицированный симплекс-метод).

Он вычисляет и хранит только информацию,
необходимую на данный момент, а важные данные
передает в более компактной форме.
Он использует операции с матрицами, поэтому
необходимо описывать задачу используя матрицы.
ЗАГЛАВНЫЕ буквы, выделенные жирным шрифтом
представляют матрицы, прописные буквы,
выделенные жирным шрифтом представляют
векторы.
Курсив – это скалярные величины, выделенный ноль
(0) обозначает нулевой вектор (его элементы равны
нулю, как строки, так и столбцы), ноль (0)
представляет обычное число 0. С использованием
матриц стандартная форма модели линейного
программирования принимает форму:

Максимизировать Z = c x,
согласно
A x ≤ b and x ≥ 0,
где c вектор-строка
x, b, и 0 векторы-столбцы

A - матрица
Для дополненной формы, вектор-столбец
фиктивных переменных:
Ограничения:
I = (m × m единичная матрица)
0 = (n + m элементы нулевого вектора)

Нахождение базового допустимого решения
Общий подход симплекс-метода – получение
последовательности улучшающихся ОД решений до
тех пор, пока не будет найдено оптимальное
решение. Одна из ключевых особенностей
модифицированного симплекс-метода – то, как он
находит новое ОД решение после определения его
основных (базисных) и неосновных (небазисных)
переменных. Имея эти переменные, получающееся
основное решение – решение m уравнений
В котором n небазисных переменных из n + m
элементов
устанавливаются равными нулю.

Исключая эти n переменных приравниванием к нулю,
получаем систему уравнений m с m переменными
(основными (базисными) переменными):
где вектор базисных переменных:
получен исключением небазисных (неосновных)
переменных:

И базисная матрица
Полученная исключением столбцов, соответствующих
коэффициентам небазисных переменных из .
(В дополнение, элементы xB, и столбцы B в разном
порядке). Симплекс метод вводит только базисные
переменные, такие что B - невырожденная, так что
обратная матрица B-1 всегда будет существовать.
Чтобы решить B x B = b, обе стороны умножаются на B-1:
B-1 B x B = B-1 b.

cB – вектор, чьи элементы - коэффициенты
целевых функций (включая нули для фиктивных
переменных) для соответствующих элементов xB.
Целевая функция для этого базисного решения:

Пример:
- Итерация 0
so
so

10.

- Итерация 1
so
so

11.

- Итерация 2
so
so

12. Матричная форма для текущего множества уравнений

Матричная форма для множества уравнений,
появляющаяся в симплекс-таблице для любой итерации
исходного симплекс-метода. Для исходной системы
уравнений, матричная форма такая:
Алгебраические операции, выполняемые симплексметодом (умножить уравнение на константу и прибавить
произведение одного уравнения на другое) выражаются в
виде матрицы, предварительно умножив обе части
исходной системы уравнений на соответствующие
матрицы

13.

14.

Эта матрица будет иметь те же элементы, что и единичная
матрица, за исключением того, что каждое произведение
для определенной алгебраической операции займет
место, необходимое для выполнения этой операции,
используя перемножение матриц. Даже после серии
алгебраических операций в течение нескольких итераций,
мы все еще можем сделать вывод, что эта матрица
должна быть для всей серии, используя то, что мы знаем о
правой стороны новой системы уравнений. После любой
итерации, xB = B-1b и Z = cB B-1b, поэтому правые стороны
новой системы уравнений приняли вид

15.

Так как мы выполняем одни и те же серии
алгебраических операций с обеими сторонами
исходного множества, для умножения правой и
левой части, мы используем одну и ту же матрицу.
Следовательно,
Желаемая матричная форма системы уравнений
после любой итерации:

16.

Example: матричная форма, полученная после итерации 2
для задачи о стекольном заводе, используя B-1 и cB:

17.

Используя величины xB = B-1 b и Z = cB B-1 b:

18.

Только B-1 должна быть получена для вычисления
всех чисел симплекс-таблицы из исходных
параметров задачи (A, b, cB). Любое из этих чисел
может быть получено индивидуально, как
правило, выполняют только векторное умножение
(одна строка на один столбец) вместо полного
матричного умножения. Необходимые числа для
выполнения итераций симплекс-метода можно
получить по мере необходимости, не проводя
ненужные вычисления, чтобы получить все числа.

19. Краткий обзор модифицированного симплекс метода

1. Инициализация: Как в исходном симплекс методе.
2. Итерация: Шаг 1 Определить введенные базисные (основные)
переменные: Как в исходном симплекс методе.
Шаг 2 Определить уходящие базисные переменные: Как в исходном
симплекс методе, за исключением подсчета только необходимых для
этого чисел [коэффициенты введенных базисных переменных в
каждом уравнении за исключением Ур. (0), а затем, для каждого строго
положительного коэффициента, правая часть этого уравнения].
Шаг 3 Определить новое ОД решение: Получить B-1 и задать xB=B-1b.
3. Анализ на оптимальность: Как в исходном симплекс методе, за
исключением подсчета только необходимых для этого анализа чисел,
т.е., коэффициентов небазисных (неосновных) переменных в
Уравнении (0).
На шаге 3 итерации, B-1 можно получить каждый раз используя
стандартную компьютерную программу для обращения (инверсии)
матрицы. Так как B (затем B-1) мало изменяется от одной итерации к
другой, более эффективно получать новое B-1 (обозначаем B-1 new) из
B-1 на предыдущей итерации (B-1 old). (Для исходного ОД решения).

Для решения задач линейного программирования существует множество методов. Рассмотрим один из них улучшенный (модифицированный) симплекс-метод

Для начала расскажем, что такое симплекс-метод. Слово SIMPLEX в обычном смысле означает простой, несоставной, в противоположность слову COMPLEX.

Данный метод получил несколько различных форм (модификаций) и был разработан в 1947 году Г. Данцигом.

Сущность симплекс-метода заключается в том, что если число неизвестных больше числа уравнений, то данная система неопределенная с бесчисленным множеством решений. Для решения системы все неизвестные произвольно подразделяют на базисные и свободные. Число базисных переменных определяется числом линейно-независимых уравнений. Остальные неизвестные свободные. Им придают произвольные значения и подставляют в систему. Любому набору свободных неизвестных можно придать бесчисленное множество произвольных значений, которые дадут бесчисленное множество решений. Если все свободные неизвестные приравнять к нулю, то решение будет состоять из значений базисных неизвестных. Такое решение называется базисным.

В теории линейного программирования существует теорема, которая утверждает, что среди базисных решений системы можно найти оптимальное, а в некоторых случаях и несколько оптимальных решений, но все они обеспечат экстремум целевой функции. Таким образом, если найти какой-либо базисный план, а затем улучшить его, то получится оптимальное решение. На этом принципе и построен симплекс-метод.

Одним из модификаций симплекс-метода является улучшенный симплекс-метод. В литературе этот метод встречается также под названием метода обратной матрицы или модифицированного симплекс-метода.

При решении задач линейного программирования, в которых n (количество переменных) существенно больше m (количество ограничений), улучшенный симплекс-метод требует по сравнению с другими значительно меньшего количества вычислительных операций и объема памяти ЭВМ.

В улучшенном симплекс-методе реализуется та же основная идея, что и в обычном симплекс-методе, но здесь на каждой итерации пересчитывается не вся матрица A -1 , обратная матрице ограничений A, а лишь та часть, которая относится к текущему базису A x .

Рассмотрим поэтапно шаги решения задачи линейного программирования улучшенным симплекс-методом:

  • 1. В начале первого цикла нам известны обратная матрица (единичная матрица), базисное решение x b = b.
  • 2. Образуем для каждой небазисной переменной характеристическую разность j , используя уравнение:

j = c j -- = c j -- P j , (2)

где - двойственные переменные, которые можно найти следующим образом:

где c x - вектор коэффициентов целевой функции при базисных переменных.

3. Предполагая, что используется стандартное правило выбора вводимого столбца, находим:

  • 4. Если s 0 - процедура останавливается. Текущее базисное решение является оптимальным.
  • 5. Если s 0, вычисляем преобразованный столбец:

= (, ...,) . (2.4)

Если все 0 - процедура останавливается: оптимум неограничен.

7. В противном случае находим выводимую из базиса переменную:

8. Строим увеличенную матрицу:

и трансформируем ее с ведущим элементом. Первые m столбцов дают матрицу, обратную новому базису.

9. Преобразуем базисное решение:

x b i x b i -- * , i r, (2.7)

и переходим к этапу 2.

Этот вариант называют также модифицированным симплекс-методом, поскольку он уменьшает объем вычислений на каждом шаге. Идея заключается в том, что на каждом шаге каноническую форму задачи для текущего базиса можно получить независимо от других таких форм непосредственно из исходной записи стандартной задачи ЛП.

Для этого нужно:

  • 1. Сохранять исходную запись задачи на протяжении всей работы метода, это та цена, которую приходится платить за больше быстродействие;
  • 2. Использовать так называемые симплекс - множители р - коэффициенты для непосредственного перехода от исходной записи задачи к ее текущей канонической форме базиса;
  • 3. Использовать обращенный базис ВО№ - матрицу размера m x m, позволяющую вычислять на каждом шаге ведущий столбец aґs и обновлять симплекс - множители р.

Улучшенный симплекс-метод, обладает значительными преимуществами по сравнению со стандартной формой. Это относится к точности, скорости и требованиям к памяти. Большая часть этих преимуществ определяется тем фактором, что, как правило, матрицы больших линейных задач (то есть с n>m>100) являются слабо заполненными, содержат малый процент ненулевых элементов.

Обычной является плотность 5% или менее. Улучшенная форма симплекс-метода в большей степени способна использовать преимущества, вытекающие из этого факта. В этой форме характеристические разности и ведущий вектор вычисляются непосредственно по исходным данным. Поскольку исходная матрица слабо заполнена, а перемножение следует производить только тогда, когда оба сомножителя отличны от нуля, то время вычислений значительно сокращается.

В дополнение к этому использование только исходных данных приводит к тому, что уменьшается возможность накопления ошибок округления. Наоборот, стандартные симплексные таблицы, даже если они первоначально являются слабо заполненными, в ходе итеративного процесса быстро заполняются ненулевыми элементами. Таким образом, время вычислений увеличивается, и, поскольку каждая таблица вычисляется из предшествующей, накопление ошибок может начать играть более серьезную роль.

Модифицированный симплекс-метод

В модифицированном методе матрица

не пересчитывается, хранится и пересчитывается только матрица. В остальном алгоритм похож на вышеописанный.

1. Вычисляем двойственные переменные

2. Проверка оптимальности. преобразуется в.

Проверка заключается в вычислении для всех столбцов. Столбец со значением < 0 можно вводить в базис.

Часто выбирают минимальное значение, но для этого нужно перебрать все столбцы.

Чаще выбирают значение, меньшее некоторого заданного значения

Если такого столбца не обнаружится, за принимается максимальное найденное абсолютное значение и соответствующий столбец вводится в базис.

3. Определение выводимого.

Пусть - вводимый столбец, соответствующий переменной Базиный план - это решение системы Увеличиваем.

Умножим слева на, т.е.

Здесь - базисный план, - разложение вводимого столбца по базису.

Находим максимальное значение, при котором все значения не отрицательны. Если может быть взято как угодно велико, решение не ограничено. В противном случае один из элементов выйдет на нулевое значение. Выводим соответствующий столбец из базиса.

4. Пересчет опорного(базисного) плана.

Вычисляем новый опорный план по уже приведенной формуле с найденным значением.

5. Пересчитываем обратную к базисной.

Пусть - выводимый столбец.

Матрица B представима в виде

где - базисная матрица без выводимого столбца.

После замены столбца базисная матрица будет иметь вид

Нам нужно найти матрицу, такую что

Замечание.

При пересчете матрицы накапливаются ошибки округления. Во избежание получения больших ошибок время от времени матрица пересчитывается полностью. Этот процесс называется «повторением».

Мультипликативный вариант симплекс-метода

В мультипликативном варианте матрица не хранится, хранятся лишь множители

При решении экономических задач часто матрица ограничений разреженная, в таком случае мультипликативный вариант получает дополнительные преимущества - можно хранить мультипликаторы в сжатом виде (не хранить нули).

Другие варианты симплекс-метода

Во избежание накопления ошибок округления может использоваться LU-разложение матрицы.

При подавляющем числе ограничений типа «неравенство» может быть использован метод переменного базиса .

Метод основан на том, что базисная матрица может быть представлена в виде

Обратная к ней имеет вид

При относительно небольших размерах матрицы остальная часть матрицы может не храниться.

Таким подходом удается решить задачи с десятками миллионов строк ограничений (например, из теории игр).

Двойственный симплекс-метод

Для реализации двойственного метода необходимо перейти от задачи на минимум к задаче на максимум (или наоборот) путем транспонирования матрицы коэффициентов. При переходе от задачи на минимум целевая функция примет вид:

при ограничениях

Теорема двойственности . Если из пары двойственных задач одна обладает оптимальным планом, то и другая имеет решение, причем экстремальные значения линейных функций этих задач равны.

Если линейная функция одной из задач не ограничена, то другая не имеет решения.