Четырёх ядерный процессор. Что лучше многоядерность или более высокая частота? Это интересно: экспериментальные многоядерные чипы

Одним из этапов совершенствования архитектуры фон Неймана является распараллеливание потоков (Thread Level Parallelism , TLP ). Различают одновременную многопоточность (Simultaneous Multithreading , SMT ) и многопоточность на уровне кристалла (Chip - level Multithreading , CMT ). Эти два подхода в основном различаются представлением о том, что такое поток. Типичным представителем SMT является так называемая технология HTT (Hyper - Threading Technology ).

Первыми представителями архитектурыCMP стали процессоры, предназначенные для использования в серверах. Это был простой тандем, в таких приборах на одной подложке размещались два, по сути, независимых ядра (Рис.8,). Развитием этой схемы сначала стала структура с общей кэш – памятью рис. 9, а затем структура с многпоточностью в каждом ядре.

Преимущества многоядерных процессоров состоят в следующем.

    Простота (естественно относительная) проектирования и производства. Разработав одно эффективное ядро, его можно тиражировать в кристалле, дополняя архитектуру нужными системными компонентами.

    Заметно уменьшается энергопотребление. Если, к примеру, на кристалле разместить два ядра и заставить их работать на тактовой частоте, обеспечивающей производительность равную производительности, одноядерного «собрата», а потом сравнить энергопотребление обоих, то обнаружится, что энергопотребление уменьшается в несколько раз, поскольку оно растет почти пропорционально квадрату частоты.

В целом же, если внимательно посмотреть на рисунки 8 и 9, можно увидеть, что принципиальной разницы между, скажем, 2-х процессорной системой и ЭВМ на 2-х ядерном процессоре нет. Проблемы одинаковые. И одна из первых – соответствующая операционная система.

Способы организации работы процессоров

Главным стимулом развития архитектуры ЭВМ является повышение производительности. Один из способов повышения производительности ЭВМ - специализация (как отдельных элементов ЭВМ, так и создание специализированных вычислительных систем).

Специализация процессоров началась с 60-х годов, когда центральный процессор больших ЭВМ был освобожден от выполнения рутинной операции по вводу-выводу информации. Эта функция была передана процессору ввода-вывода, осуществляющему связь с периферийными устройствами.

Другой путь повышения производительности – отход от последовательной архитектуры фон Неймана, ориентация на параллелизм. М. Флин обратил внимание на то, что существует всего две причины, порождающие вычислительный параллелизм - независимость потоков команд, одновременно существующих в системе, и несвязанность данных, обрабатываемых в одном потоке команд. Если первая причина параллелизма вычислительного процесса достаточно известна (это прост мультипроцессирование), то на параллелизме данных остановимся более подробно, поскольку в большинстве случаев он существует скрыто от программистов и используется ограниченным кругом профессионалов.

Простейшим примером параллелизма данных является последовательность из двух команд: А=В+С; D=E*F;

Если строго следовать принципу фон Неймана, то вторая операция может быть запущена на исполнение только после завершения первой операции. Однако очевидно, что порядок выполнения этих команд не имеет никакого значения - операнды А, В и С первой команды никак не связаны с операндами D, Е и F второй команды. Другими словами, обе операции являются параллельными именно потому, что операнды этих команд не связаны между собой. Можно привести множество примеров последовательности из трех и более команд с несвязанными данными, которые приведут к однозначному выводу: практически любая программа содержит группы операций над параллельными данными.

Другой вид параллелизма данных, как правило, возникает в циклических программах обработки массивов данных. Например, при сложении элементов двух массивов одна команда может обрабатывать большой массив (множественный поток) данных. Подобные команды называются векторными, а процессор, реализующий такой режим – векторным. Можно дать такое определение: «Векторный процессор - процессор, обеспечивающий параллельное выполнение операции над массивами данных (векторами). Он характеризуется специальной архитектурой, построенной на группе параллельно работающих процессорных элементов, и предназначен для обработки изображений, матриц и массивов данных».

Существует несколько достаточно близких по смыслу классификаций программного параллелизма, из которых наиболее признанной считается классификация по шести уровням (Рис.10). Три верхних уровня параллелизма занимают крупные программные объекты - независимые задания, программы и процедуры программы. Несвязанные операторы, циклы и операции образуют нижние уровни параллелизма. Если совместить такое ранжирование с категориями М. Флина «параллельные потоки команд» и «параллельные потоки данных», то видно, что параллелизм верхнего уровня в основном достигается за счет множества независимых потоков команд, а параллелизм нижнего уровня обязан своим существованием главным образом несвязанным потокам данных.

Конвейерная обработка и конвейерные структуры

Одним из эффективных способов повышения производительности ЭВМ является конвейеризация. На рис. 11а) показана обработка в одиночном универсальном блоке, а на рис.11 б) и в) – в конвейере. Идея конвейерной обработки заключается в разбиении функции, реализуемой универсальным функциональным блоком (ФБ), между несколькими, специализированными. Все функциональные блоки конвейера должны работать с одинаковой скоростью (хотя бы в среднем). На практике последнего добиться удается редко и, как следствие, производительность конвейера снижается, поскольку период поступления входных данных определяется максимальным временем их обработки в каждом функциональном блоке. Для компенсации флуктуаций времени работы ФБ между ними включают буферные регистры. Более универсальным приёмом является включение буферных запоминающих устройств типа FIFO (рис 11 в ). Следует обратить внимание на ещё одно различие между рисунками б) и в) . В структуре в) отсутствует линия синхронизации СИ. Это не значит, что её не может быть в подобной структуре, просто существует два типа конвейеров: синхронные с общей линией синхронизации и асинхронные , без таковой. Первые ещё называют с управлением командами , а вторые – с управлением данными . Примером асинхронных конвейеров могут служить систолические массивы.

Конвейер не всегда представляет собой линейную цепочку блоков. Иногда оказывается выгодным, функциональные блоки соединят между собой не последовательно, а по более сложной схеме в соответствии с логикой обработки, при этом одни блоки в цепочке могут пропускаться, а другие – образовывать циклические структуры. Структура нелинейного конвейера, способного вычислять две функции X и Y, и диаграммы, в которой функциями X и Y востребуются те или иные функциональные блоки приведена на рис. 12

В последние годы производители процессоров не стремятся к достижению максимальной тактовой частоты - вместо этого они наращивают мощь CPU, увеличивая количество ядер.
Расскажем, выиграют ли пользователи при покупке новых многоядерных чипов.

Первый многоядерный чип был выпущен в 2001 году. Процессор под названием Power4 от компании IBM мог похвастаться двумя 64битными ядрами на основе микроархитектуры PowerPC, но применялся исключительно для решения узкопрофильных задач. Пользователям же персональных ПК пришлось ждать появления двуядерного CPU еще долгих четыре года. Наконец, в мае 2005-го, сразу вслед за двуядерным 64-битным микропроцессором
Opteron для серверных систем от компании AMD, вышел в свет двуядерный Intel Pentium D для домашних персональных компьютеров. В ноябре 2007 года переполох в компьютерной индустрии устроила компания AMD, которой удалось уместить четыре ядра на одном кристалле, в результате чего был создан процессор AMD Phenom Х4 с микроархитектурой К10. Впрочем, из-за огрехов разработки нового творения полноценной революции не получилось, а главным игроком на рынке в то время стала фирма Intel, запустившая в продажу первый «четырехъядерник» Intel Core 2 Quad.

В 2009 году в продуктовых линейках двух давних конкурентов произошли существенные изменения. На смену устаревшему семейству Intel Core 2 Duo пришли новые процессоры Intel серий Core i3, i5 и i7. Они обзавелись микроархитектурой Sandy Bridge и производятся по 32-нанометровому техпроцессу. Также 14 октября 2011 года увидел свет новейший шестиядерный процессор Intel Core i7-3960X на базе архитектуры Sandy Bridge-E, являющийся на сегодняшний день самым быстрым CPU от компании Intel для домашних пользователей. Тем временем AMD существенно доработала свой четырехъядерный Phenom Х4, увеличив объем кеш-памяти и освоив 45-нанометровый технологический процесс, а в апреле 2010 года анонсировала «шестиядерник» AMD Phenom II Х6 под кодовым именем Thuban, который позволил не отпустить Intel слишком далеко вперед. Более того, совсем недавно состоялась презентация процессоров AMD на основе новейшей микроархитектуры Bulldozer. Одним из важнейших нововведений является модульный принцип расположения ядер в системе х86 - по два на каждом модуле. Благодаря этой особенности компании несложно выстроить модельный ряд, предлагая решения с различными количеством вычислительных блоков и тактовыми частотами. В свете своих последних творений компания AMD настроена на серьезное противостояние с процессорами Intel.
Мы протестировали и сравнили производительность топовых четырех-, шести- и восьмиядерных CPU от Intel и AMD и решили разобраться, стоит ли вообще сегодня переплачивать за лишние ядра.

Параллельные вычисления

Еще при появлении первых процессоров производители старались максимально увеличить их мощность. В 1995 году университетом Вашингтона была выдвинута идея поддержки «одновременной многопоточности», которая была подхвачена и реализована компанией Intel в виде технологии Hyper-Threading. На практике это выглядело как разделение одного физического CPU на два виртуальных и значительная оптимизация работы процессора. Первым микрочипом с поддержкой данной технологии стал Intel Pentium 4, выпушенный 14 ноября 2002 года. По словам представителей компании, внедрение технологии Hyper-Threading вместе с необходимым увеличением площади кристалла на 5% позволило повысить производительность чипа на 15-30%. Правда, данные цифры напрямую зависели от программ, используемых для вычислений. Если говорить о создании аналогичной технологии со стороны AMD, то здесь компания Intel значительно опередила своих конкурентов.

ПРЕИМУЩЕСТВА МНОГОЯДЕРНЫХ.

Итак, создание многоядерных процессоров можно считать логическим развитием технологии HyperThreading. Производители стараются разделить работу CPU на множество потоков, которые процессорные ядра смогут обрабатывать параллельно. Однако для этого многоядерность должна полностью поддерживаться не только операционной системой, но и конкретными программами. Сейчас же, несмотря на доминирование «многоядерников» на рынке, количество оптимизированных под них приложений минимально. Обычно здесь идет речь о мультимедийных или узкоспециализированных программах, которые, в большинстве своем, «дружат» с новыми процессорами и используют всю мощь их ядер. С игровыми продуктами ситуация следующая: многие игры уже оптимизированы для работы с двумя и четырьмя ядрами, а со временем будут использоваться и многоядерные ресурсы современных CPU. Пока же наиболее практично и актуально в мире компьютеров смотрятся процессоры с четырьмя ядрами, а шести- и восьмиядерные чипы, пожалуй, стоит покупать лишь в том случае, если вы собираетесь запускать на своей системе программы с поддержкой многопоточности.

МИНУСЫ МНОГОЯДЕРНЫХ CPU

Недостатков у шести- и восьмиядерных процессоров куда больше. Одним из самых важных является внушительное энергопотребление, а значит, сильное тепловыделение и высокие температуры чипа при работе под нагрузкой. Производители борются с этим, осваивая все более «тонкие» технологические процессы и разрабатывая более совершенные схемы питания. Также тормозит массовое развитие «многоядерников» уже упомянутый дефицит соответствующего программного обеспечения: большая часть потенциала микрочипа остается попросту нереализованной. Кроме того, себестоимость многоядерных процессоров пока обуславливает отнюдь не привлекательную для рядового пользователя цену, которая тоже сдерживает спрос.

Результаты тестирования: Intel - быстрее, AMD - выгоднее

Для тестирования мы выбрали лучшие многоядерные процессоры от компаний Intel и AMD различных категорий. Наиболее интересным нам казалось противостояние «исполинов», только сошедших с конвейера, - первого в мире восьмиядерного чипа AMD FX-8150 на базе микроархитектуры Bulldozer и мощного «шестиядерника» Intel Core i7-3960X. К сожалению, никакой борьбы не получилось: чип от Intel на базе микроархитектуры Sandy Bridge-E значительно опередил по производительности грозный, казалось бы, «бульдозер» AMD. Более того, новый процессор от AMD потерпел сокрушительное поражение по всем фронтам, проиграв по итогам двух тестов даже далеко не новому AMD Phenom II Х4 980 BE с четырьмя ядрами.
Приятно удивил еще один четырехъядерный CPU - Intel Core i7 2600К. Выпушенный в начале прошлого года, он лишь немного отстал по производительности от своего старшего «собрата» - и это при том, что последний стоит в три раза дороже. Еще один баснословно дорогой шестиядерный CPU Intel Core i7-990X линейки Extreme Edition показывал неплохие результаты при тестировании, но в итоге проиграл более дешевому четырехъядерному чипу Intel Core i7-2600K. А эффективнее всего, как ни странно, многоядерность оказалась реализована у шестиядерного AMD Phenom II Х6 HOOT Black Edition, который при весьма демократичной цене в тесте Gordian Knot умудрился выиграть целых 39 с (29%) у заклятых соперников Intel Core i73960Х и Intel Core i7-2600K. Последние, правда, немного отыгрались в заключительном раунде, набрав чуть больше FPS в игре Unreal Tournament III, которая обеспечивает поддержку многоядерных CPU.
Таким образом, если речь идет об абсолютной мощности центрального процессора вне зависимости от его стоимости, здесь нет равных современным чипам от компании Intel. Если же мы попробуем теоретически подсчитать эффективность работы конкретного? CPU от каждой затраченной на его покупку копейки, то выиграют как раз модели производства AMD в целом и шестиядерный AMD Phenom II Х6 1100Т Black Edition в частности.

Тенденции развития: что обещает нам будущее?

Как будет выглядеть компьютерный микропроцессор через несколько дет? Давайте попробуем заглянуть в будущее, основываясь на известных сегодня разработках и планах производителей. Компания Intel остается верна своей стратегии «Тик-Так» и использует плавный переход на новые микроархитектуру и технологический процесс. В рамках этапа «Так» была представлена Sandy Bridge-E, теперь же следующей ступенью «Тик» в нынешнем году станет переключение производства на 22-нанометровый технологический процесс с помощью уникальных трехмерных транзисторов Intel 3D Tri-Gate и выпуск новых восьмиядерных процессоров на базе микроархитектуры Ivy Bridge. Однако одновременно идет работа нал следующими этапами создания CPU: не так давно исполнительный директор Intel Пол Отеллини заявил, что компания уже закончила разработку архитектуры Haswell, которая должна стать преемником Ivy Bridge в 2013 году.
У фирмы AMD на рынке центральных процессоров разработки, похоже, продвигаются со сложностями. Анонсированный ранее выпуск CPU Komodo неожиданно был отменен - на смену им придет новое семейство многоядерных (до восьми включительно) чипов AMD Vishera на основе архитектуры Piledriver (логическое развитие системы Bulldozer) и новой платформы Volan.
Аналитики предполагают, что в ближайшие годы нынешняя модель процессоростроения не изменится. У Кремний, которому уже давно предрекают «уход на пенсию», останется основной строительной
единицей. Впрочем, ему дышат в спину новые интересные элементы, например графон - кристалл углерода с миниатюрной толщиной в один атом. А в более отдаленной перспективе процессоры столкнутся с революционными изменениями, что приведет к появлению квантовых, оптических и даже молекулярных компьютеров.

Это интересно: экспериментальные многоядерные чипы

2006 год. Intel представила прототип 80-ядерного CPU, изготовленного по 32-нанометровому технологическому процессу.
2009 год. Компания Tilera продемонстрировала прототип серверного 100-ядерного процессора, в котором каждое ядро представляет собой отдельный чип с кеш-памятью первого и второго уровней.
2009 год. Intel показала «облачный» компьютер, представляющий собой 48-ядерный CPU. При этом все 48 ядер такого ПК сообщаются между собой как сетевые узлы.
2011 год. Intel разработала новую микроархитектуру Many Integrated Core (MIC). Новые процессоры на ее основе получат более 50 ядер и начнут производиться по 22-нанометровому техпроцессу уже в 2012 году.
2011 год. Компания Adapteva представила 64-ядерные микропроцессоры Epiphany IV, которые показывают производительность до 70 гигафлопс (количество операций с плавающей запятой в секунду), при этом потребляя менее 1 Вт электроэнергии. Данные чипы не могут быть использованы в качестве центральных процессоров, однако компания Adapteva предлагает применять их в качестве сопроцессора для таких сложных задач, как распознавание лиц или жестов пользователя.
2012 год. Компания ZiiLabs - дочернее предприятие Creative Technology - анонсировала 100-ядерную систему на чипе ZMS-40. Пиковая производительность системы при вычислениях с плавающей запятой составила 50 гигафлопс.

Мобильные четырехъядерные процессоры

В конце прошлого года компания NVIDIA основательно взволновала всех энтузиастов выпуском мобильного процессора NVIDIA Tegra 3, который располагает пятью ядрами Cortex А9. Четыре из них работают на частоте 1,4 ГГц, но активируются только в случае необходимости, а
дополнительное, пятое ядро, разгоняясь до 500 МГц, функционирует постоянно и служит для решения простых задач. Ищите качественные, рабочие прокси листы, можно купить свежие списки прокси по минимальной цене. Подобная технология позволяет значительно снизить энергопотребление CPU. Первым устройством на основе нового процессора стал планшет ASUS Transformer Prime. Кроме того, не стоит забывать об амбициозных планах компании AMD, которая, в частности, обещает выпустить в этом году четырехъядерный мобильный чип со встроенным графическим ядром под кодовым названием Trinity с поддержкой DirectX 11.

В чем различия между четырехъядерными и восьмиядерными процессорами смартфонов? Объяснение достаточно простое. В восьмиядерных чипах в два раза больше процессорных ядер, чем в четырехъядерных. На первый взгляд восьмиядерный процессор представляется вдвое более мощным, не так ли? На самом деле ничего подобного не происходит. Чтобы понять, почему восьмиядерность процессора не удваивает производительность смартфона вдвое, потребуются некоторые пояснения. уже наступило. Восьмиядерные процессоры, о которых совсем недавно можно было только мечтать, получают все большее распространение. Но, оказывается, их задача состоит не в том, чтобы повысить производительность устройства.

Четырех- и восьмиядерные процессоры. Производительность

Сами термины «восьмиядерный» и « четырехъядерный» отражают число ядер центрального процессора.

Но ключевое различие между этими двумя типами процессоров — по крайней мере по состоянию на 2015 год — состоит в способе установки процессорных ядер.

В четырехъядерном процессоре все ядра способны работать одновременно, обеспечивая быструю и гибкую многозадачность, делая более ровными 3D-игры и повышая скорость работы камеры, а также осуществляя другие задачи.

Современные восьмиядерные чипы, в свою очередь, просто состоят из двух четырехъядерных процессоров, которые распределяют между собой различные задачи в зависимости от их типа. Чаще всего в восьмиядерном чипе присутствует набор из четырех ядер с более низкой тактовой частотой, чем во втором наборе. Когда требуется выполнить сложную задачу, за нее, разумеется, берется более быстрый процессор.


Более точным термином, чем «восьмиядерный» стал бы «двойной четырехъядерный». Но это звучит не так красиво и не подходит для маркетинговых задач. Поэтому эти процессоры называют восьмиядерными.

Зачем нужны два набора процессорных ядер?

В чем причина сочетания двух наборов процессорных ядер, передающих задачи один другому, в одном устройстве? Для обеспечения энергоэффективности.

Более мощный центральный процессор потребляет больше энергии и батарею приходится чаще заряжать. А аккумуляторные батареи намного более слабое звено смартфона, чем процессоры. В результате — чем более мощен процессор смартфона, тем более емкая батарея ему нужна.

При этом для большинства задач смартфона вам не понадобится столь высокая вычислительная производительность, какую может обеспечить современный процессор. Перемещение между домашними экранами, проверка сообщений и даже веб-навигация — не столь требовательные к ресурсам процессора задачи.

Но HD-видео, игры и работа с фотографиями такими задачами являются. Поэтому восьмиядерные процессоры достаточно практичны, хотя элегантным это решение назвать трудно. Более слабый процессор обрабатывает менее ресурсоемкие задачи. Более мощный — более ресурсоемкие. В итоге сокращается общее энергопотребление по сравнению с той ситуацией, когда обработкой всех задач занимался бы только процессор с высокой тактовой частотой. Таким образом, сдвоенный процессор прежде всего решает задачу повышения энергоэффективности, а не производительности.

Технологические особенности

Все современные восьмиядерные процессоры базируются на архитектуре ARM, так называемой big.LITTLE.

Эта восьмиядерная архитектура big.LITTLE была анонсирована в октябре 2011 года и позволила четырем низкопроизводительным ядрам Cortex-A7 работать совместно с четырьмя высокопроизводительными ядрами Cortex-A15. ARM с тех пор ежегодно повторяла этот подход, предлагая более способные чипы для обоих наборов процессорных ядер восьмиядерного чипа.

Некоторые из основных производителей чипов для мобильных устройств сосредоточили свои усилия на этом образце «восьмиядерности» big.LITTLE. Одним из первых и наиболее примечательных стал собственный чип компании Samsung, известный Exynos. Его восьмиядерная модель использовалась начиная с Samsung Galaxy S4, по крайней мере в некоторых версиях устройств компании.

Сравнительно недавно Qualcomm также начала применение big.LITTLE в своих восьмиядерных чипах Snapdragon 810 CPU. Именно на этом процессоре базируются такие известные новинки рынка смартфонов, как и G Flex 2, ставший компании LG.

В начале 2015 года NVIDIA представила Tegra X1, новый суперпроизводительный мобильный процессор, который компания предназначает для автомобильных компьютеров. Основной функцией X1 является его вызываемый консольно («console-challenging») графический процессор, который также основывается на архитектуре big.LITTLE. То есть он также станет восьмиядерным.

Велика ли разница для обычного пользователя?

Велика ли разница между четырех- и восьмиядерным процессором смартфона для обычного пользователя? Нет, на самом деле она очень мала, считает Йон Манди.

Термин «восьмиядерный» вносит некоторую неясность, но на самом деле он означает дублирование четырехъядерных процессоров. В итоге получаются два работающих независимо четырехъядерных набора, объединенных одним чипом для повышения энергоэффективности.

Нужен ли восьмиядерный процессор в каждом современном смартфоне. Такой необходимости нет, полагает Йон Манди и приводит пример Apple, обеспечивающих достойную энергоэффективность своих iPhone при всего двухъядерном процессоре.

Таким образом, восьмиядерная архитектура ARM big.LITTLE является одним из возможных решений одной из самых важных задач, касающихся смартфонов — времени работы от одной зарядки батареи. По мнению Йона Манди, как только найдется другое решение этой задачи, так и прекратится тренд установки в одном чипе двух четырехъядерных наборов, и подобные решения .

Знаете ли вы другие преимущества восьмиядерных процессоров смартфонов?

О твечая на вопрос, на что влияет количество ядер в процессоре, хочется сразу сказать – на производительность компьютера. Но это настолько сильное упрощение, что оно даже в какой-то момент становится ошибкой.

Ладно бы пользователи просто заблуждались и ничего не теряли. Проблема в том, что неправильное понимание сути многоядерности приводит к финансовым потерям. Пытаясь увеличить производительность, человек тратит деньги на процессор с большим количеством ядер, но не замечает разницы.

Многоядерность и многопоточность

Когда мы изучали вопрос, то обратили внимание на особенность процессоров Intel – в стандартных инструментах Windows отображается разное число ядер. Это обусловлено работой технологии Hyper-Threading, которая обеспечивает многопоточность.

Чтобы вы больше не путались в понятиях, разберемся раз и навсегда:

  • Многоядерность – чип оснащен несколькими физическими архитектурными ядрами. Их можно увидеть, потрогать руками.
  • Многопоточность – несколько одновременно обрабатываемых потоков информации.
    Ядро может быть физически одно, но программные технологии на его основе создают два потока выполнения задач; два ядра – четыре потока и т.д.

Влияние количества ядер на производительность

Увеличение производительности на многоядерном процессоре достигается за счет разбиения выполнения задач. Любая современная система делит процесс на несколько потоков даже на одноядерном процессоре – так достигается та самая многозадачность, при которой вы можете, например, слушать музыку, набирать документ и работать с браузером. Очень любят и постоянно используют многопоточность следующие приложения:

  • архиваторы;
  • медиапроигрыватели;
  • кодировщики видео;
  • дефрагментаторы;
  • антивирусы;
  • графические редакторы.

Важен принцип разделения потоков. Если компьютер работает на одноядерном процессоре без технологии Hyper-Threading, то операционная система производит моментальные переключения между потоками, так что для пользователя процессы визуально выполняются одновременно. Все действия выполняются в течение миллисекунд, поэтому вы не видите серьезную задержку, если не нагружаете сильно ЦП.

Если же процессор многоядерный (или поддерживает многопоточность), то в идеале переключений не будет. Система посылает на каждое ядро отдельный поток. В результате увеличивается производительность, потому что нет необходимости переключаться на выполнение другой задачи.

Но есть еще один важный фактор – поддерживает ли сама программа многозадачность? Система может разделить процессы на разные потоки. Однако если вы запускаете очень требовательную игру, но она не оптимизирована под работу с четырьмя ядрами, но никакого прироста производительности по сравнению с двухъядерным процессором не будет.

Разработчики игр и программ в курсе об этой особенности, поэтому постоянно оптимизируют код под выполнение задач на многоядерных процессорах. Но эта оптимизация не всегда успевает за увеличением количества ядер, поэтому не стоит тратить огромные деньги на самые новые мощные процессоры с максимально возможным числом поддерживаемых потоков – потенциал чипа не будет раскрываться в 9 программах из 10.

Так сколько ядер выбирать?

Прежде чем покупать процессор с 16 ядрами, подумайте, потребуется ли такое количество потоков для выполнения задач, которые вы будете ставить перед компьютером.

  • Если компьютер приобретается для работы с документами, серфинга в интернете, прослушивания музыки, просмотра фильмов, то хватит двух ядер. Если взять процессор с двумя ядрами из верхнего ценового сегмента с хорошей частотой и поддержкой многопоточности, то не будет проблем при работе с графическими редакторами.
  • Если вы покупаете машину с расчетом на мощную игровую производительность, то сразу ставьте фильтр на 4 ядра минимум. 8 ядер с поддержкой многопоточности – самый топ с запасом на несколько лет. 16 ядер – перспективно, но велика вероятность, что пока вы раскроете потенциал такого чипа, он устареет.

Как я уже говорил, разработчики игр и программ стараются не отставать от прогресса процессоров, но пока огромные мощности просто не нужны. 16 ядер подойдут пользователям, которые занимаются рендерингом видео или серверными вычислениями. Да, в магазинах такие процессоры называют игровыми, но это только для того, чтобы они продавались – геймеров вокруг точно больше, чем тех, кто рендерит видео.

Преимущества многоядерности можно заметить только при очень серьезной вычислительной работе в несколько потоков. Если, условно, игра или программа оптимизирована только под четыре потока, то даже ваши восемь ядер будут бессмысленной мощностью, которая никак не повлияет на производительность.

Это как перевозить стул на огромной грузовой машине – задача от этого не выполняется быстрее. Но если правильно использовать имеющиеся возможности (например, загрузить кузов полностью другой мебелью), то производительность труда увеличится. Помните об этом и не ведитесь на маркетинговые штучки с добавлением слова «игровой» к процессорам, которые даже на самых последних играх не раскроют весь свой потенциал.

Ещё на сайте:

На что влияет количество ядер процессора обновлено: Январь 31, 2018 автором: admin

Многие люди при покупке процессора стараются выбрать что-нибудь покруче, с несколькими ядрами и большой тактовой частотой. Но при этом мало кто знает, на что влияет количество ядер процессора в действительности. Почему, например, обычный и простенький двухъядерник может оказаться быстрее четырехядерника или тот же "проц" с 4 ядрами будет быстрее "проца" с 8 ядрами. Это довольно интересная тема, в которой определенно стоит разобраться более детально.

Вступление

Прежде чем начать разбираться, на что влияет количество ядер процессора, хотелось бы сделать небольшое отступление. Еще несколько лет назад разработчики ЦП были уверены в том, что технологии производства, которые так стремительно развиваются, позволят выпускать "камни" с тактовыми частотами до 10 Ггц, что позволит пользователям забыть о проблемах с плохой производительностью. Однако успех достигнут не был.

Как бы ни развивался техпроцесс, что "Интел", что "АМД" уперлись в чисто физические ограничения, которые попросту не позволяли выпускать "процы" с тактовой частотой до 10 Ггц. Тогда и было принято решение сфокусироваться не на частотах, а на количестве ядер. Таким образом, началась новая гонка по производству более мощных и производительных процессорных "кристаллов", которая продолжается и по сей день, но уже не столь активно, как это было на первых порах.

Процессоры Intel и AMD

На сегодняшний день "Интел" и "АМД" являются прямыми конкурентами на рынке процессоров. Если посмотреть на выручку и продажи, то явное преимущество будет на стороне "синих", хотя в последнее время "красные" стараются не отставать. У обоих компаний имеется хороший ассортимент готовых решений на все случаи жизни - от простого процессора с 1-2 ядрами до настоящих монстров, у которых количество ядер переваливает за 8. Обычно подобные "камни" используются на специальных рабочих "компах", которые имеют узкую направленность.

Intel

Итак, на сегодняшний день у компании Intel успехом пользуются 5 видов процессоров: Celeron, Pentium, и i7. Каждый из этих "камней" имеет разное количество ядер и предназначенные для разных задач. Например, Celeron имеет всего 2 ядра и используется в основном на офисных и домашних компьютерах. Pentium, или, как его еще называют, "пенек", также используется в дому, но уже имеет гораздо лучшую производительность, в первую очередь за счет технологии Hyper-Threading, которая "добавляет" физическим двум ядрам еще два виртуальных ядра, которые называют потоками. Таким образом, двухъядерный "проц" работает как самый бюджетный четырехъядерник, хотя это не совсем корректно сказано, но основная суть именно в этом.

Что же касается линейки Core, то тут примерно схожая ситуация. Младшая модель с цифрой 3 имеет 2 ядра и 2 потока. Линейка постарше - Core i5 - имеет уже полноценные 4 или 6 ядер, но лишена функции Hyper-Threading и дополнительных потоков не имеет, кроме как 4-6 стандартных. Ну и последнее - core i7 - это топовые процессоры, которые, как правило, имеют от 4 до 6 ядер и в два раза больше потоков, т. е., например, 4 ядра и 8 потоков или 6 ядер и 12 потоков.

AMD

Теперь стоит сказать про AMD. Список "камушков" от данной компании огромен, смысла перечислять все нет, поскольку большинство из моделей уже попросту устарели. Стоит, пожалуй, отметить новое поколение, которое в некотором смысле "копирует" "Интел" - Ryzen. В данной линейке также присутствуют модели с номерами 3, 5 и 7. Главное отличие от "синих" у Ryzen заключается в том, что самая младшая модель уже сразу предоставляет полноценные 4 ядра, а у старшей их не 6, а целых восемь. Кроме этого, и количество потоков меняется. Ryzen 3 - 4 потока, Ryzen 5 - 8-12 (в зависимости от кол-ва ядер - 4 или 6) и Ryzen 7 - 16 потоков.

Стоит упомянуть и о еще одной линейке "красных" - FX, которая появилась в 2012 году, и, по сути, данная платформа уже считается устаревшей, но благодаря тому, что сейчас все больше и больше программ и игр начинает поддерживать многопоточность, линейка Vishera вновь обрела популярность, которая наряду с низкими ценами только растет.

Ну а что касается споров касательно частоты процессора и количества ядер, то, по сути, правильнее смотреть в сторону второго, поскольку с тактовыми частотами уже давно все определились, и даже топовые модели от "Интел" работают на номинальных 2. 7, 2. 8, 3 Ггц. Помимо этого, частоту всегда можно поднять при помощи оверклокинга, но в случае с двухъядерником это не даст особого эффекта.

Как узнать сколько ядер

Если кто-то не знает, как определить количество ядер процессора, то сделать это можно легко и просто даже без скачивания и установки отдельных специальных программ. Достаточно лишь зайти в "Диспетчер устройств" и нажать на маленькую стрелочку рядом с пунктом "Процессоры".

Получить более подробную информацию о том, какие технологии поддерживает ваш "камень", какая у него тактовая частота, номер его ревизии и многое другое можно при помощи специальной и маленькой программки CPU-Z. Скачать ее можно бесплатно на официальном сайте. Есть версия, которая не требует установки.

Преимущество двух ядер

В чем может быть преимущество двухъядерного процессора? Много в чем, например, в играх или приложениях, при разработке которых основным приоритетом была однопоточная работа. Взять хотя бы для примера игру Wold of Tanks. Самые обычные двухъядерники типа Pentium или Celeron будут выдавать вполне приличный результат по производительности, в то время как какой-нибудь FX от AMD или INTEL Core задействуют гораздо больше своих возможностей, а итог будет примерно таким же.

Чем лучше 4 ядра

Чем 4 ядра могут быть лучше двух? Лучшей производительностью. Четырехъядерные "камни" рассчитаны уже на более серьезную работу, где простые "пеньки" или "селероны" попросту не справятся. Отличным примером тут послужит любая программа по работе с 3D-графикой, например 3Ds Max или Cinema4D.

Во время процесса рендеринга данные программы задействуют максимум ресурсов компьютера, включая оперативную память и процессор. Двухъядерные ЦП будут очень сильно отставать по времени обработки рендера, и чем сложнее будет сцена, тем больше времени им потребуется. А вот процессоры с четырьмя ядрами справятся с данной задачей гораздо быстрее, поскольку им на помощь придут еще и дополнительные потоки.

Конечно, можно взять и какой-нибудь бюджетный "процик" из семейства Core i3, например, модель 6100, но 2 ядра и 2 дополнительных потока все равно будут уступать полноценному четырехядернику.

6 и 8 ядер

Ну и последний сегмент многоядерников - процессоры с шестью и восемью ядрами. Их основное предназначение, в принципе, точно такое же, как и у ЦП выше, только вот нужны они там, где обычные "четверки" не справляются. Кроме этого, на базе "камней" с 6 и 8 ядрами строят полноценные профильные компьютеры, которые будут "заточены" под определенную деятельность, например, монтаж видео, 3Д-программы для моделирования, рендеринг готовых тяжелых сцен с большим количеством полигонов и объектов и т. д.

Помимо этого, такие многоядерники очень хорошо себя показывают в работе с архиваторами или в приложениях, где нужны хорошие вычислительные возможности. В играх, которые оптимизированы под многопоточность, равных таких процессорам нет.

На что влияет количество ядер процессора

Итак, на что же еще может влиять количество ядер? В первую очередь на повышение энергопотребления. Да, как бы это ни прозвучало удивительно, но это так и есть. Особо переживать не стоит, потому как в повседневной жизни данная проблема, если можно так выразиться, заметна не будет.

Второе - это нагрев. Чем больше ядер, тем лучше нужна система охлаждения. Поможет измерить температуру процессора программа, которая называется AIDA64. При запуске нужно нажать на "Компьютер", а затем выбрать "Датчики". Следить за температурой процессора нужно, потому как если он будет постоянно перегреваться или работать на слишком высоких температурах, то через какое-то время он просто сгорит.

Двухъядерники незнакомы с такой проблемой, потому как не обладают слишком высокой производительностью и тепловыделением соответственно, а вот многоядерники - да. Самыми "горячими" считаются камни от AMD, особенно серии FX. Например, возьмем модель FX-6300. Температура процессора в программе AIDA64 находится в отметке около 40 градусов и это в режиме простоя. При нагрузке цифра будет расти и если случится перегрев, то комп выключится. Так что, покупая многоядерник, нужно не забывать о кулере.

На что влияет количество ядер процессора еще? На многозадачность. Двухъядерные"процы" не смогут обеспечить стабильную производительность при работе в двух, трех и более программ одновременно. Самый простой пример - стримеры в интернете. Помимо того, что они играют в какую-нибудь игру на высоких настройках, у них параллельно запущена программа, которая позволяет транслировать игровой процесс в интернет в режиме онлайн, работает и интернет-браузер с несколькими открытыми страницами, где игрок, как правило, читает комментарии смотрящих его людей и следит за прочей информацией. Обеспечить должную стабильность может даже далеко не каждый многоядерник, не говоря уже о двух- и одноядерных процессорах.

Также стоит сказать пару слов о том, что у многоядерных процессоров есть очень полезная вещь, которая называется "Кеш третьего уровня L3". Этот кеш имеет определенный объем памяти, в который постоянно записывается различная информация о запущенных программах, выполненных действиях и т. д. Нужно это все для того, чтобы увеличить скорость работы компьютера и его быстродействие. Например, если человек часто пользуется фотошопом, то эта информация сохранится в памяти каша, и время на запуск и открытие программы значительно сократиться.

Подведение итогов

Подводя итог разговора о том, на что влияет количество ядер процессора, можно прийти к одному простому выводу: если нужна хорошая производительность, быстродействие, многозадачность, работа в тяжелых приложениях, возможность комфортно играть в современные игры и т. д., то ваш выбор - процессор с четырьмя ядрами и больше. Если же нужен простенький "комп" для офиса или домашнего пользования, который будет использоваться по минимуму, то 2 ядра - это то что нужно. В любом случае, выбирая процессор, в первую очередь нужно проанализировать все свои потребности и задачи, и только после этого рассматривать какие-либо варианты.