Стабильный диапазонный генератор. §2.12

Современный радиоприемник трудно наладить без соответствующей измернч тельной аппаратуры. При этом в первую очередь необходим сигнал-генератор, т. е. генератор, создающий высокочастотные колебания в определенном диапазоне частот, С его помощью можно настроить резонансные усилители высокой н промежуточной частоты, проверить сопряжение контуров в супергетеродиниом приемнике, определить собственную частоту колебательных контуров и провести ряд других измерений.

Принципиальная схема снгнал-генератора приведена на рис. 1. Он состоит из генератора высокой частоты, генератора низкой частоты (модулятора), выпрямителя и выходного устройства. Прибор позволяет получать высокочастотные модулированные или иемодулнрованные колебания, а также низкочастотные колебания с частотой порядка 400 гц. Диапазон частот сигнал-генератора 100 кгц- 16 Мгц разбит на следующие поддиапазоны: 100-250 кгц; 250-700 кгц; 700-2000 кгц; 2-5,5 Мгц и 5,5-16 Мгц. Величина выходного напряжения иа выходе сигнал-генератора может достигать 0,8-1 ей зависит от добротности контуров. Питание прибора осуществляется от сети переменного тока напряжением 127 или 220 в,

Генератор высокой частоты выполнен на левом триоде лампы Л1 по трехточечной схеме с автотрансформаторной обратной связью. На каждом из поддиапазонов колебательный контур образован одной из катушек индуктивности LI- L5, одним из подстроечных конденсаторов С1-С5 и переменным конденсатором С7. Переход с одного поддиапазона на другой осуществляется с помощью переключателя В1. Постоянное напряжение иа аиод лампы подается через резистор R3. Плавное изменение частоты производится конденсатором переменной емкости С7. Функции гридлика выполняют конденсатор С6 и резисторы Rl, R2. По высокой частоте аиод лампы заземлен конденсатором С8.

Модулятор представляет собой обычный генератор звуковой частоты с емкостной обратной связью. В качестве контурной катушки используется обычный дроссель Др1 низкой частоты. Колебательный контур низкочастотного генератора образован катушкой дросселя Др1 и конденсаторами постоянной емкости СИ, С12. Модулятор собран на правом триоде лампы Л1. Для уменьшения содержания гармоник (улучшения формы кривой низкочастотного напряжения) в катод правого триода включен резистор R12. Выключение звукового генератора производится выключателем ВЗ.

В схеме сигиал-генератора применена анодная модуляция. Переменное напряжение низкой частоты с анода правого триода подается иа анод левого триода одновременно с питающим напряжением через резистор R3. Благодаря происходящим в лампе высокочастотного генератора нелинейным процессам и осуществляется процесс модуляции.

Выходное устройство снгнал-генератора состоит из плавного делителя R2, шкала которого разделена на 10 делений. Для дальнейшего уменьшения выходного напряжения служит ступенчатый делитель, образованный резисторами R4-R11. Каждая ячейка, срдержащая два резистора, понижает напряжение в 10 раз. Необходимое ослабление сигнала снимаемого с плавного делители (называемого иногда аттенюатором, т. е. ослабителем) в 1, 10, 100, 1000 и 10.000_раз производится переключателем В2. Например, при установке переключателя В2 в положение «10-1» иа выходное гнездо ВЧ с резистора R5 поступает напряжение, равное десятой доле напряжения, снимаемого с потенциометра R2; девять десятых последнего напряжения гасится на резисторе R4, сопротивление которого в 9 раз превышает сопротивление правой части делителя между точками а-б. Таким образом, четыре ячейки делителя позволяют уменьшить напряжение в /0 4 раз, что при установке плавного делителя в положение, соответствующее 0,1 в, позволяет получить наименьшее напряжение порядка 10 мкв.

Следует отметить, что в сигнал-геиераторе простейшего типа амплитуда колебаний по диапазонам и в пределах каждого диапазона довольно сильно меняется, поэтому применение подобных делителей позволяет лишь косвенно судить о фактическом напряжении сигнал-генератора.

Резистор R1 служит для уменьшения влияния нагрузки сигнал-генератора на частоту колебаний. На рнс. 1 указаны фактические значения сопротивлений резисторов R4-R11. Оии подбираются из ближайших номиналов резисторов, выпускаемых нашей промышленностью,-

Напряжение низкой частоты для проверки различных усилительных низкочастотных устройств снимается с потенциометра RI3 и поступает иа гнездо НЧ. Резистор R17, являясь сопротивлением утечки сетки, одновременно уменьшает реакцию нагрузки на режим работы низкочастотного генератора.

Выпрямитель смонтирован по обычной однополупернодной схеме на двух германиевых диодах Д1 и Д2. Для уменьшения вероятности пробоя диодов последние зашунтнрованы резисторами R18, R19. Переключение обмотки трансформатора Tpl для работы от сети с различными напряжениями осуществляется предохранителем Пр. Фильтр выпрямителя двухзвениый и состоит из конденсаторов С13, С14 и резисторов R15, R16.

Снгнал-генератор смонтирован на угловом шасси нз дюралюминия толщиной 1,5 мм. Для того, чтобы предохранить проверяемую аппаратуру от непосредственного излучения цепей генератора (помимо аттенюатора), все контуры, переключатель и конденсатор переменной емкости необходимо заключить в отдельный экран.

Катушки наматываются на керамических каркасах диаметром 10 мм и имеют для подстройки сердечники типа СЦР-1. Намотка катушек L1-L4 типа суиивер- саль», ширина намотки 5 мм. Катушка L1 содержит 850 витков провода ПЭЛШО 0,12 с отводом от 200-го витка; L2 - 275 витков провода ПЭЛШО 0,2 с отводом от 70-го витка; L3-112 витков провода лицеидрат 7X0,07 с отводом от, 45-го витка; L4 - 42 витка провода лицендрат 7X0,07 с отводом от 15-го витка. Катушка L5 однослойная, имеет 11 витков рядовой иамотки, провод ПЭЛШО 0,51 с отводом от 5-го витка. Катушки можно намотать и иа пропитанные церезином бумажные или бакелитовые каркасы соответствующих размеров. При выполнении иамотки виавал необходимо сделать щечки. Число витков в этом случае будет отличаться от указанных.

Переменный конденсатор С7 можно применить любой, но желательно прныо- частотный, тогда при градуировке можно получить равномерное размещение делений на шкале. Переключатель диапазонов лучше всего применить керамический.

Дроссель Др1 выполнен иа сердечнике Ш16, толщина набора 16 мм. На каркас до заполнения наматывают провод ПЭЛ 0,15. Практически можно использовать любой междуламповый трансформатор.

Трансформатор Tpl имеет сердечник Ш22, толщина набора 32 мм. Сетевая обмотка состоит из двух секций. Секция I содержит 763 витка провода ПЭЛ 0,31, секция 11-557 витков провода ПЭЛ 0,2. Повышающая обмотка III содержит 1140 витков провода ПЭЛ 0,2, обмотка накала ламп IV - 44 витка провода ПЭЛ 1,0. В данной конструкции можно применить любой силовой трансформатор от приемников «Москвич-В», «Волиа», АРЗ и др.

Для удобства работы с прибором вращение ротора переменного конденсатора С7 осуществляется с помощью верньерного устройства, конструкцию которого легко уяснить из рис. 2.

Передняя панель прибора имеет размеры 210X160 мм. Монтаж основных деталей осуществлен иа горизонтальной панели.размером 200X120 мм. В зависимости от типа примененных деталей размеры шасси могут изменяться.

Налаживание прибора начинают с проверки генерации, прослушивая сигнвл иа заведомо исправном приемнике. Для этого с помощью отрезка коаксивльиого кабеля, иа конце которого имеется специальный штеккер, высокочастотный выход сигнал-генератора соединяют со входом приемника. Наличие генерации можно также проверить с помощью авометра, работающего в режиме измерения постоянных напряжений, который присоединяют к аноду левого триода. Если при закорачивании управляющей сетки левого триода на катод напряжение на аноде не-, сколько падает, генератор работает. Обычно при исправных деталях и лампе он сразу начинает работать.

Работу звукового генератора легко проверить путем подачи низкочастотного напряжения с выхода скгиал-геиератора на гнезда звукоснимателя вещательного приемника. Требуемая частота генерации устанавливается изменением емкости конденсаторов C1I, С12′.

Установив, что высокочастотный генератор работает при всех положениях переключателя В1 н имеет место нормальная модуляция, приступают к подгонке границ отдельных поддиапазонов. Регулировку начинают с длинноволнового уча-, стка первого диапазона (при максимальной емкости переменного конденсатора С7). Вращением сердечника или изменением чнсла’витков катушки L1 устанавливают частоту, равной 100 кгц. Затем ручку настройки переводят в другое крайнее положение (соответствующее минимальной емкости конденсатора С7) и определяют частоту генератора. Если она будет выше требуемой, увеличивают емкость подстроечиого конденсатора С/ и настройку повторяют вновь. Для установки границ второго поддиапазона также устанавливают конденсатор С7 в положение максимальной емкости и подбором индуктивности катушки L2 добиваются, чтобы в начале шкалы этого поддиапазона частота генератора была несколько ииже частоты (250 кгц) иа коице шкалы первого поддиапазона. Границы остальных поддиапазонов устанавливаются аналогичным образом. Градуировка С Г производится по общепринятой методике - с помощью ГСС по методу биений, с помощью контрольного приемника или гетеродинного индикатора резонанса - ГИРа.

Прибор, принципиальная схема которого приведена иа рис. 1, представляет собой звуковой генератор, работающий в диапазоне частот от 23 гц до 32 кгц. Весь диапазон частот разбит на четыре поддиапазона 23-155 гц, 142-980 гц, 800-5500 гц, 4.9-32 кгц. В приборе имеется индикатор выходного напряжения, а также делители плавный и ступенчатый, с помощью которых можио регулировать выходное напряжение от 10 мв до 10 в. Коэффициент нелинейных искажений ие превышает 3%. Точность измерения выходного напряжения 3%.

Как видно из рис. 1, звуковой генератор состоит из двухкаскадиого возбудителя JI1, катодного повторителя Л2, выходного устройства и выпрямителя.

Возбудитель собран по схеме с реостатно-емкостной настройкой и представляет собой двухкаскадный усилитель низкой частоты с положительной обратной связью. Первый каскад усиления собран иа левом триоде лампы Л1 с нагрузкой в виде резистора R17. Второй каскад усиления собран на правом триоде лампы Л1. В качестве нагрузки используется резистор R18. Связь между каскадами осуществляется через конденсатор Сб. Необходимая для возникновения колебаний положительная обратная связь подается из анодной цепи правого триода на управляющую сетку левого триода через конденсатор большой емкости С5 и делитель, состоящий из двух участков: резистора R14, соединенных последовательно конденсаторов С1, С2 и резистора R7 и соединенных параллельно конденсаторов СЗ, С4. Напряжение, воздействующее на управляющую сетку левого триода Л1, снимается с параллельного участка делителя R7. СЗ, С4. Применение частотно- зависимого делителя позволяет получить условия самовозбуждения только для одиой частоты, при которой сдвиг фаз между напряжением положительной обратной связи иа управляющей сетке левого триода (делителе R7, СЗ, С4) и аноде правого триода Л1 равен иулю. Это позволяет получить с помощью такого генератора синусоидальные колебания.

Для изменения частоты генерации необходимо изменять параметры элементов, входящих в цепочки делителя. В данной схеме плавное изменение частоты осуществляется изменением емкости сдвоенного конденсатора CI, С4, а скачкообразное - переключателем В1, который изменяет величины резисторов, входящих в цепочки делителя (R5, R6 и R12, R13; R3, R4 и R10, Rll; Rl, R2 и R8, R9).

Как показывают расчеты, при любой частоте иа управляющую сетку левого триода лампы Л1 будет всегда поступать достаточно большое напряжение, поэтому каскады усилителя из-за перегрузки будут вносить большие искажения. Уменьшения этих искажений добиваются с помощью отрицательной обратной связи, цепь которой состоит из переменного резистора R15, постоянного резистора R16 и включенных в левый катод лампы ламп накаливания ЛЗ, Л4. Цепь отрицательной обратной связи стабилизирует также выходное напряжение, которое сравнительно сильно меняется при изменении частоты. При увеличении выходного напряжения возбудителя увеличивается глубина отрицательной обратной связи, снижающей коэффициент усиления первого каскада генератора. Таким образом, выходное напряжение генератора окажется стабилизированным по диапазону. Наименьшие искажения на выходе возбудителя будут тогда, когда напряжение, снимаемое с параллельной ветви делителя, близко к напряжению отрицательной обратной связи, величина которой при регулировке прибора устанавливается с помощью переменного резистора R15.

С выхода возбудителя через переходной конденсатор С7 напряжение звуковой частоты подается иа вход катодного повторителя, собранного иа лампе Л2. Нагрузкой лампы служит потенциометр R23. Делителем, состоящим из резисторов R22, R21, устанавливается необходимый режим работы этого каскада. Резистор R20 ограничительный. Применение катодного повторителя, имеющего большое входное сопротивление, позволяет уменьшить реакцию нагрузки иа частоту генератора и величину искажений, вносимых выходным каскадом.

Выходное устройство состоит из плавного (R23) и ступенчатого {R26, R27; R28, R29) делителей и обычного диодного вольтметра, в котором используется гальванометр со шкалой 50 мка. Резисторы R24, R25 установочные. Применение резистора R30 позволяет получить лучшую линейность шкалы.

Выпрямитель собран по обычиой двухполупериодной схеме удвоения напряжения. Питание прибора может осуществляться от сети переменного тока с напряжением 110, 127 и 220 е.

Переключатель В1 двухплатиый иа четыре положения. Вторая плата использована для крепления отдельных резисторов частотно-зависимого делителя.

Лампы ЛЗ, Л4 использованы от кинопроектора «Луч» (110 в, 8 вт). Можно применить одну лампу иа 220 в мощностью 10-25 вт. Трансформатор питания от приемника «Рекорд-53М». Можио использовать трансформаторы и от приемников «Москвич-В», «Волна», АРЗ-52 и др.

Для удобства налаживания прибора ветви частотно-зависимого делителя составляются из двух последовательно соединенных резисторов (Rl, R2, R8, R9 и т. д.). Налаживание генератора начинают с проверки работы выпрямителя. Под нагрузкой напряжение на выходе выпрямителя должно быть равно 280-320 а. Ток, потребляемый прибором от выпрямителя, должен лежать в пределах 30-35 ма. После этого к выходу генератора (///- Гн1) -подключают осциллограф н добиваются иа самом низкочастотном поддиапазоне устойчивых колебаний и отсутствия искажений. На форму кривой генерируемых колебаний в значительной степени влияет величина отрицательной обратной связи. При слабой отрицательной обратной связи (R15 велико) получаются более устойчивые колебания, но с заметными искажениями формы. При сильной связи колебания срываются. Поэтому подбором величины отрицательной обратной связи (R15) находят компромиссное решение: глубину обратной связи выбирают такой, при которой обеспечивается достаточно устойчивая генерация на всем диапазоне частот и хорошая форма кривой.

Для градуировки шкалы генератора можно воспользоваться измерителем частоты или генератором звуковых частот. В последнем случае градуировка каждой из четырех’ шкал осуществляется с помощью фигур Лиссажу, наблюдаемых иа экране трубки осциллографа. Градуировка индикатора выхода производится с помощью лампового образцового вольтметра, который подключается между точками а-б схемы. Изменение напряжения, подаваемого иа вход делителя (или индикатора), осуществляется потенциометром R23, иа котором выделяется переменная составляющая напряжения порядка 13 в. Установив напряжение иа образцовом вольтметре 10 в переменным резистором R24, добиваются, чтобы стрелка индикатора отклонилась на всю шкалу. Устанавливая по образцовому вольтметру потенциометром R23 напряжение, соответствующее 9, 8, 7, 6, 5, 4, 3, 2 и 1 в, каждый раз делают соответствующие пометки иа шкале индикатора цА.

Следует указать, что наличие постоянной емкости С2 в верхней ветви делителя значительно улучшает условия возникновения колебаний на высоких частотах и способствует выравниванию амплитуды колебаний возбудителя при любом положении блока конденсаторов переменной емкости. При отсутствии лампы 6П14П ее можно заменить лампами типа 6П15П, 6П18П или 6Ж5П.

Ламповые генераторы в качестве источников питания электротермических установок используются на частотах от 60 кГц до 80 МГц. Для того, чтобы они не мешали радиосвязи, выделены частоты: 66 кГц (–10...+12%); 440 кГц (±2,5%); 880 кГц (±2,5%); 1,76 МГц (±2,5%); 5,28 МГц (±2,5%); 13,56 МГц (±1%); 27,12 МГц (±1%); 40,68 МГц (±1%); 81,36 МГц (±1%).

Данный курсовой проект охватывает вопросы расчета схемы ламповых генераторов для индукционного нагрева, конструктивного расчета элементов схемы, частотного анализа и разработки конструкции генераторного блока.

Генераторная лампа

Основным элементом лампового генератора является генераторная лампа. Анод генераторной лампы изготавливается из меди и интенсивно охлаждается, так как под действием анодного напряжения (оно составляет в среднем 5…10 кВ) электроны приобретают большую энергию и отдают ее аноду.

Катод лампы изготовляется из вольфрамовой проволоки, которая при работе нагревается примерно до температуры 2300 °С. При нагреве от 20 до 2300 °С сопротивление вольфрама возрастает примерно в 10 раз. Поэтому включать холодный катод на полное напряжение не рекомендуется. Пойдет большой ток накала, и электродинамические усилия между нитями приведут к разрушению катода. Напряжение накала обычно включается в две ступени. Сначала подается половинное напряжение, а когда нить накала прогреется, включается полное напряжение. Для генераторных ламп оно составляет обычно 10–15 В, токи накала – десятки и сотни ампер.

Анодная цепь

Анодная цепь генератора содержит три основных элемента: электронную лампу, колебательный контур и источник анодного напряжения. Их можно соединить последовательно или параллельно.

На рис. 1 представлены два варианта схемы последовательного питания по аноду. В первом из них под высоким напряжением относительно земли находится колебательный контур, во втором – анодный выпрямитель. Необходимость изоляции от земли усложняет изготовление генератора по схеме последовательного питания, поэтому обычно применяется схема параллельного питания по аноду (рис. 2). Эта схема лишена указанных выше недостатков, но более сложна. Пути переменной и постоянной составляющих анодного тока разделяются с помощью анодного разделительного конденсатора C a.р и блокировочного дросселя L а.б. Таким образом, постоянная составляющая анодного тока проходит через выпрямитель, лампу и анодный блокировочный дроссель L а.б.

Рис. 1. Схемы последовательного питания по аноду

Переменная составляющая идет через лампу, колебательный контур и анодный разделительный конденсатор С а.р.Назначение этого конденсатора – не пропускать постоянную составляющую анодного тока и иметь достаточно малое сопротивление для переменной. Значение С а.р выбирается из условия:

,

где R э – эквивалентное сопротивление колебательного контура.

Н
азначениеL а.б – не пропускать переменную составляющую анодного тока в выпрямитель. Его выбирают из соотношения:

Рис.2. Схема параллельного питания по аноду

Для дальнейшего уменьшения величины переменной составляющей выпрямитель шунтируется конденсатором C б (см. рис. 2).

В томе II, § 106, мы познакомились с устройством электронной лампы и видели, что изменение напряжения на ее сетке меняет силу тока в ее анодной цепи. Когда сетка заряжена отрицательно, то электроны не могут пролетать к аноду, ток не идет, лампа, как говорят, «заперта». Зарядив сетку положительно, мы «отпираем» лампу, т. е. через нее может идти ток. Изменения анодного тока следуют за изменениями напряжения на сетке практически мгновенно - через десятимиллиардные доли секунды (время пролета электронов от сетки к аноду), т. е. электронная лампа является «выключателем» с ничтожной инерцией. Поэтому, соединив лампу с колебательным контуром и батареей так, чтобы в нужные моменты лампа отпиралась и пропускала ток к конденсатору, мы можем получить электрическую автоколебательную систему, позволяющую возбуждать (генерировать) незатухающие электрические колебания.

Очевидно, для того чтобы колебания в контуре управляли анодным током лампы, надо подать на ее сетку напряжение, зависящее от колебаний тока или напряжения в контуре, т. е., как говорят, связать контур с сеточной цепью лампы. Такая электрическая связь может быть осуществлена различными способами - при помощи электростатической индукции (емкостная связь), при помощи электромагнитной индукции (индуктивная связь) и т. д. Главное здесь заключается не в том, каким именно способом контур связан с лампой, а в том, что благодаря этой связи мы имеем не только действие лампы на колебания в контуре, но и обратное воздействие этих колебаний на лампу. Разнообразные способы соединения лампы с колебательным контуром, обеспечивающие такое обратное воздействие, являются примерами так называемой обратной связи, а сами электрические автоколебательные системы такого рода называются ламповыми генераторами. Современные ламповые генераторы позволяют получать колебания с частотами до нескольких миллиардов герц и применяются чрезвычайно широко. Они служат основой каждой радиостанции и входят в состав многих типов радиоприемников.

На рис. 58 показана одна из весьма многочисленных и разнообразных схем лампового генератора - схема с индуктивной обратной связью.

Колебательный контур, состоящий из катушки индуктивности и конденсатора емкости , включен последовательно с батареей в анодную цепь лампы, т. е. между анодом и накаленной нитью (катодом) . Нить накаливается током от батареи накала . В сеточную цепь лампы - между сеткой и катодом - включена вторая катушка индуктивности , связанная индуктивно с катушкой контура. Таким образом, катушки и образуют как бы первичную и вторичную обмотки трансформатора, но без сердечника. Впрочем, в генераторах низких (звуковых) частот можно применять трансформатор с железным сердечником.

Катушка управляет напряжением на сетке и осуществляет обратную связь между колебаниями в контуре и на сетке лампы.

Представим себе, что в контуре, состоящем из катушки индуктивности и конденсатора емкости , происходят колебания. По катушке протекает переменный ток, который наводит в катушке переменную э. д. с. Сетка заряжается то положительно, то отрицательно по отношению к катоду , причем период этих колебаний сеточного напряжения, очевидно, тот же, что и период колебаний в контуре , т. е.

Лампа то «отпирается», то «запирается»; таким образом, колебания в контуре вызывают пульсации анодного тока лампы. Анодный ток, идущий от анода через контур к катоду, разветвляясь, проходит через катушку индуктивности и конденсатор (разумеется, постоянная, т. е. не меняющаяся со временем, составляющая анодного тока проходит при этом только через катушку, так как постоянный ток через конденсатор идти не может, см. том II, § 159). Если фаза колебаний анодного тока подобрана правильно, т. е. «толчки» анодного тока действуют на контур в нужные моменты, то колебания в контуре будут поддерживаться (ср. § 30). Другими словами, за каждый период колебаний от батареи будет заимствоваться порция энергии, как раз покрывающая потери энергии в контуре за то же время, и колебания будут незатухающими. Если поменять местами концы катушки , то фаза колебаний сеточного напряжения изменится на 180°, и колебания не возбудятся (аналогично тому, как это получалось в системе, изображенной на рис. 56).

Рис. 58. Ламповый генератор

Наблюдать колебания можно с помощью электронного осциллографа или - если колебания имеют звуковую частоту - с помощью громкоговорителя, включенного прямо в анодную цепь лампы. Можно также включить в конденсаторную ветвь контура лампочку накаливания (от карманного фонаря или автомобильную, в зависимости от мощности генератора). Так как лампочка включена последовательно с конденсатором, постоянная составляющая анодного тока через нее не проходит. Следовательно, лампочка будет загораться только при наличии в контуре электрических колебаний.

С помощью лампового генератора, подобного описанному, нетрудно наблюдать и явление электрического резонанса, связав индуктивно с контуром генератора второй такой же колебательный контур, но с переменным конденсатором и с включенной в контур лампочкой накаливания. Плавно меняя емкость в этом контуре, его можно настроить в резонанс на частоту генератора. При соответствующем подборе лампочки и связи между контурами нетрудно добиться таких условий, что при резонансе лампочка вспыхивает, а при расстройке гаснет.

§ 137. ЛАМПОВЫЙ ГЕНЕРАТОР

Выше было рассмотрено применение трехэлектродной лампы в электронном усилителе. Однако триоды широко применяют и в ламповых генераторах, которые служат для создания переменных токов различной частоты.

Простейшая схема лампового генератора приведена на рис. 186. Основными его элементами являются триод и колебательный кон­тур. Для питания нити накала лампы используется батарея накала Бн. В цепь анода включена анодная батарея Ба и колебательный контур, состоящий из катушки индуктивности Lк и конденсатора Ск. Катушка Lc включена в цепь сетки и связана индуктивно с катушкой Lк колебательного контура. Если зарядить конденсатор, а затем замкнуть его на катушку индуктивности, то конденсатор будет периодически разряжаться и заряжаться, а в цепи колебательного контура возникнут затухающие электрические колебания тока и напряжения. Затухание колебаний вызвано потерями энергии в контуре. Для получения незатухающих колебаний переменного тока необходимо периодически с определенной частотой добавлять энергию в колебательный контур с помощью быстродействующего устройства. Таким устройством является

Если накалить катод лампы и замкнуть анодную цепь, то в цепи анода появится электрический ток, который зарядит кон­денсатор Ск колебательного контура. Конденсатор, разряжаясь на катушку индуктивности LK, вызовет в контуре зату­хающие колебания. Переменный ток, про­ходящий при этом через катушку LK, ин­дуктирует в катушке Lc переменное на­пряжение, воздействующее на сетку лам­пы и управляющее силой тока в цепи анода.

Когда на сетку лампы подается отри­цательное напряжение, анодный ток в ней уменьшается. При положительном напряжении на сетке лампы в анодной цепи увеличивается ток. Если в этот момент на верхней пластине конденсатора Ск колебательного контура будет отрицательный заряд, то анодный ток (поток электронов) зарядит конденсатор и тем самым скомпенсирует потери энергии в контуре.

Процесс уменьшения и увеличения тока в анодной цепи лампы I повторится во время каждого периода электрических колебаний в контуре.

Если при положительном напряжении на сетке лампы верхняя I пластина конденсатора Ск заряжена положительным зарядом, то анодный ток (поток электронов) не увеличивает заряда конденсатора, а, наоборот, уменьшает его. При таком положении колебания в контуре не будут поддерживаться, а будут затухать. Чтобы этого не случилось, необходимо правильно включать концы катушек

Lк и Lc и обеспечить этим своевременный заряд конденсатора. Если I колебания в генераторе не возникают, то необходимо поменять местами концы одной из катушек.

Ламповый генератор является преобразователем энергии постоянного тока анодной батареи в энергию переменного тока, частота которого зависит от индуктивности катушки и емкости конденсатора, образующих колебательный контур. Нетрудно понять, что это преобразование в схеме генератора выполняет триод. э. д. с, индуктируемая в катушке Lc током колебательного контура, периодически воздействует на сетку лампы и управляет анодным током, который, в свою очередь, с определенной частотой подзаряжает конденсатор, возмещая таким образом потери энергии в контуру Такой процесс повторяется многократно в течение всего времени работы генератора.

Рассмотренный процесс возбуждения незатухающих колебания в контуре называют самовозбуждением генератора, так как коле­бания в генераторе сами себя поддерживают.

Приборы и принадлежности: трехэлектродная лампа, источник постоянного напряжения на 300 В, источник переменного напряжения на 4В, два воздушных конденсатора постоянной и переменной емкости, две катушки индуктивности, два конденсатора постоянной емкости, сопротивление, микроамперметр, индикатор высокочастотного электромагнитного поля на неоновой лампе, неизвестные емкость и индуктивность.

Краткая теория

Электрический колебательный контур представляет собой цепь (рис.1), состоящую из последовательно соединенных емкости С, индуктивности L и сопротивления R проводников.

В контуре происходят периодические изменения силы тока и связанных с ней величин. Перезарядку пластин конденсатора можно понять, вспомнив, в чем состоит явление самоиндукции.

Явление самоиндукции состоит в следующем: при всяком изменении тока в контуре в нем возникает э.д.с. самоиндукции  c , которая прямо пропорциональна скорости изменения тока в контуре (di/dt) и обратно этой скорости направлена:

Если ток нарастает, э.д.с. препятствует этому увеличению тока и создает индукционный ток противоположного направления. Если ток уменьшается, э.д.с. препятствует уменьшению тока и создает индукционный ток того же направления.

Рассмотрим работу контура. Зарядим конденсатор от внешнего источника электроэнергии до некоторой разности потенциалов U, сообщив его обкладкам заряды ±q , и затем с помощью ключа К замкнуть контур, то конденсатор начнет разряжаться и в цепи потечет некоторый ток. При малом значении R он будет очень быстро нарастать. Направление для тока i, показанное на рис.1, примем за положительное (верхняя пластина заряжена положительно, нижняя - отрицательно) и рассмотрим процессы, протекающие в контуре.

Допустим сначала, что омическое сопротивление проводника, из которых состоит контур, исчезающе мало, т.е. R»0, и пусть в начальный момент времени заряд конденсатора максимален (q=q o ). При этом разность потенциалов между его обкладками также максимальна (U=U o), а ток в цепи равен нулю (рис.2,а). Когда конденсатор начнет разряжаться, то в контуре потечет ток.

В результате энергия электрического поля будет уменьшаться, но зато возникнет все возрастающая энергия магнитного поля, обусловленного током, текущим через индуктивность. Так как в цепи действует э.д.с. самоиндукции, ток будет увеличиваться постепенно, и через время t=1/4 T (четверть периода) он достигнет максимального значения (i=i o ), конденсатор разрядится полностью, и электрическое поле исчезнет, т.е. q =0 и U=0. Теперь вся энергия контура сосредоточена в магнитном поле катушки (рис.2,б). В последующий момент времени магнитное поле катушки начнет ослабевать, в связи с чем в ней индуцируется ток, идущий (согласно правилу Ленца) в том же направлении, в котором шел ток разрядки конденсатора. Благодаря этому конденсатор перезаряжается. Через время t=1/2 T магнитное поле исчезнет, а электрическое поле достигнет максимума. При этом q=q o , U=U o и i=0. Таким образом, энергия магнитного поля катушки индуктивности превратится в энергию электрического поля конденсатора (рис.2,в). Через время t=3/4 T конденсатор полностью разрядится, ток опять достигнет максимальной величины (i=i o ), а энергия контура сосредоточится в магнитном поле катушки (рис.2,г). В последующий момент времени магнитное поле катушки начнет ослабевать и индукционный ток, препятствующий этому ослаблению, перезарядит конденсатор. В результате к моменту времени t=T система (контур) возвращается в исходное состояние (рис.2,а) и начинается повторение рассмотренного процесса.

В ходе процесса периодически изменяются (колеблются) заряд и напряжение на конденсаторе, сила и направление тока, текущего через индуктивность. Эти колебания сопровождаются взаимными превращениями энергий электрического и магнитного полей.

Таким образом, если сопротивление контура равно нулю, то указанный процесс будет продолжаться неограниченно долго и мы получим незатухающие электрические колебания, период которых будет зависеть от величин L и С.

Колебания, происходящие в таком идеальном контуре (R=0), называются свободными , или собственными , колебаниями контура с периодом

. (10)

В реальном колебательном контуре омическое сопротивление R нельзя свести к нулю. Поэтому в нем электрические колебания всегда будут затухающими, так как часть энергии будет затрачиваться на нагревание проводников (Джоулево тепло).

Для осуществления незатухающих электрических колебаний необходимо обеспечить автоматическую подачу энергии с частотой, равной частоте собственных колебаний контура, т.е. необходимо создать автоколебательную систему. Такой системой незатухающих колебаний является ламповый генератор.

Ламповый генератор

Простейшая схема лампового генератора незатухающих электромагнитных колебаний приведена на рис.3

Он состоит из колебательного контура LC, включенного в анодную цепь трехэлектродной лампы последовательно с источником Б А постоянного анодного напряжения. Анодная батарея Б А является как бы "резервуаром", из которого подается энергия в колебательный контур. С катушкой L контура индуктивно связана катушка L 1 , концы которой подключены к сетке и катоду лампы. Она связывает работу лампы с колебательным процессом в контуре и называется катушкой обратной связи.

Трехэлектродная лампа вместе с катушкой обратной связи служит для того, чтобы энергия подавалась в контур в такт колебаниям. Незатухающие колебания получаются благодаря периодической подзарядке конденсатора анодным током лампы, проходящим через контур. Для того чтобы осуществлять периодическую подзарядку конденсатора контура в необходимые моменты времени, анодный ток должен иметь пульсирующий характер. Это обеспечивается путем соответствующего изменения потенциала на сетке лампы, который меняется при изменении направления тока разрядки в контуре LC за счет явления взаимной индукции между катушками L и L 1 .

При отрицательном заряде на сетке лампа оказывается "запертой", анодный ток через лампу не пойдет. Колебательный контур будет работать в обычном режиме. При положительном заряде на сетке лампа ’’откроется’’ и произведет подразядку конденсатора. Затем начнется повторение процесса.

Таким образом, лампа периодически подает в контур энергию от анодной батареи. Благодаря этому в контуре совершаются незатухающие электрические колебания.