Понятие предельного значения функции нескольких переменных. Производные сложных функций нескольких переменных

Определение. Переменная z (с областью изменения Z ) называется функцией двух независимых переменных х,у в множестве М , если каждой паре (х,у ) из множества М z из Z.

Определение. Множество М , в котором заданы переменные х,у, называется областью определения функции , множество Z –областью значений функции , а сами х,у – ее аргументами .

Обозначения: z = f(x,y), z = z(x,y).

Примеры.

Определение . Переменная z (с областью изменения Z ) называется функцией нескольких независимых переменных в множестве М , если каждому набору чисел из множества М по некоторому правилу или закону ставится в соответствие одно определенное значение z из Z. Понятия аргументов, области определения и области значения вводятся так же, как для функции двух переменных.

Обозначения: z = f , z = z .

Замечание. Так как пару чисел (х,у ) можно считать координатами некоторой точки на плоскости, то будем впоследствии использовать термин «точка» для пары аргументов функции двух переменных, а также для упорядоченного набора чисел , являющихся аргументами функции нескольких переменных.

Геометрическое изображение функции двух переменных

Рассмотрим функцию

z = f(x,y) , (15.1)

определенную в некоторой области М на плоскости Оху . Тогда множество точек трехмерного пространства с координатами (x,y,z) , где , является графиком функции двух переменных. Поскольку уравнение (15.1) определяет некоторую поверхность в трехмерном пространстве, она и будет геометрическим изображением рассматриваемой функции.

Область определения функции z = f(x,y) в простейших случаях представляет собой либо часть плоскости, ограниченную замкнутой кривой, причем точки этой кривой (границы области) могут принадлежать или не пренадлежать области определения, либо всю плоскость, либо,наконец, совокупностьнескольких частей плоскости xOy.


z = f(x,y)


Примерами могут служить уравнения плоскости z = ax + by + c

и поверхностей второго порядка: z = x ² + y ² (параболоид вращения),

(конус) и т.д.

Замечание. Для функции трех и более переменных будем пользоваться термином «поверхность в n -мерном пространстве», хотя изобразить подобную поверхность невозможно.

Линии и поверхности уровня

Для функции двух переменных, заданной уравнением (15.1), можно рассмотреть множество точек (х,у) плоскости Оху , для которых z принимает одно и то же постоянное значение, то есть z = const. Эти точки образуют на плоскости линию, называемую линией уровня .



Пример.

Найдем линии уровня для поверхности z = 4 – x ² - y ². Их уравнения имеют вид x ² + y ² = 4 – c (c =const) – уравнения концентрических окружностей с центром в начале координат и с радиусами . Например, при с =0 получаем окружность x ² + y ² = 4 .

Для функции трех переменных u = u (x, y, z) уравнение u (x, y, z) = c определяет поверхность в трехмерном пространстве, которую называют поверхностью уровня .

Пример.

Для функции u = 3x + 5y – 7z –12 поверхностями уровня будет семейство параллельных плоскостей, задаваемых уравнениями 3x + 5y – 7z –12 + с = 0.

Предел и непрерывность функции нескольких переменных

Введем понятие δ-окрестности точки М 0 (х 0 , у 0) на плоскости Оху как круга радиуса δ с центром в данной точке. Аналогично можно определить δ-окрестность в трехмерном пространстве как шар радиуса δ с центром в точке М 0 (х 0 , у 0 , z 0) . Для n -мерного пространства будем называть δ-окрестностью точки М 0 множество точек М с координатами , удовлетворяющими условию

где - координаты точки М 0 . Иногда это множество называют «шаром» в n -мерном пространстве.

Определение. Число А называется пределом функции нескольких переменных f в точке М 0 , если такое, что | f(M) – A | < ε для любой точки М из δ-окрестности М 0 .

Обозначения: .

Необходимо учитывать, что при этом точка М может приближаться к М 0 , условно говоря, по любой траектории внутри δ-окрестности точки М 0 . Поэтому следует отличать предел функции нескольких переменных в общем смысле от так называемых повторных пределов , получаемых последовательными предельными переходами по каждому аргументу в отдельности.

Примеры.

Замечание. Можно доказать, что из существования предела в данной точке в обычном смысле и существования в этой точке пределов по отдельным аргументам следует существование и равенство повторных пределов. Обратное утверждение неверно.

Определение Функция f называется непрерывной в точке М 0 , если (15.2)

Если ввести обозначения , то условие (15.2) можно переписать в форме (15.3)

Определение . Внутренняя точка М 0 области определения функции z = f (M) называется точкой разрыва функции, если в этой точке не выполняются условия (15.2), (15.3).

Замечание. Множество точек разрыва может образовывать на плоскости или в пространстве линии или поверхности разрыва .

Примеры.

Свойства пределов и непрерывных функций

Так как определения предела и непрерывности для функции нескольких переменных практически совпадает с соответствующими определениями для функции одной переменной, то для функций нескольких переменных сохраняются все свойства пределов и непрерывных функций, доказанные в первой части курса, а именно:

1) Если существуют то существуют и (если ).

2) Если а и для любого i существуют пределы и существует , где М 0 , то существует и предел сложной функции при , где - координаты точки Р 0 .

3) Если функции f(M) и g(M) непрерывны в точке М 0 , то в этой точке непрерывны и функции f(M) + g(M), kf(M), f(M) g(M), f(M)/g(M) (если g(M 0) ≠ 0).

4) Если функции непрерывны в точке Р 0 , а функция непрерывна в точке М 0 , где , то сложная функция непрерывна в точке Р 0 .

5) Функция непрерывная в замкнутой ограниченной области D , принимает в этой области свое наибольшее и наименьшее значения.

6) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения А и В , то она принимает в области D и любое промежуточное значение, лежащее между А и В .

7) Если функция непрерывная в замкнутой ограниченной области D , принимает в этой области значения разных знаков, то найдется по крайней мере одна точка из области D , в которой f = 0.

Частные производные

Рассмотрим изменение функции при задании приращения только одному из ее аргументов – х i , и назовем его .

Определение . Частной производной функции по аргументу х i называется .

Обозначения: .

Таким образом, частная производная функции нескольких переменных определяется фактически как производная функции одной переменной – х i . Поэтому для нее справедливы все свойства производных, доказанные для функции одной переменной.

Замечание. При практическом вычислении частных производных пользуемся обычными правилами дифференцирования функции одной переменной, полагая аргумент, по которому ведется дифференцирование, переменным, а остальные аргументы – постоянными.

Примеры .

1. z = 2x ² + 3xy –12y ² + 5x – 4y +2,

2. z = x y ,

Геометрическая интерпретация частных производных функции двух переменных

Рассмотрим уравнение поверхности z = f (x,y) и проведем плоскость х = const. Выберем на линии пересечения плоскости с поверхностью точку М (х,у) . Если задать аргументу у приращение Δу и рассмотреть точку Т на кривой с координатами (х, у+ Δу, z+ Δ y z ), то тангенс угла, образованного секущей МТ с положительным направлением оси Оу , будет равен . Переходя к пределу при , получим, что частная производная равна тангенсу угла, образованного касательной к полученной кривой в точке М с положительным направлением оси Оу. Соответственно частная производная равна тангенсу угла с осью Ох касательной к кривой, полученной в результате сечения поверхности z = f (x,y) плоскостью y = const.

Дифференцируемость функции нескольких переменных

При исследовании вопросов, связанных с дифференцируемостью, ограничимся случаем функции трех переменных, поскольку все доказательства для большего количества переменных проводятся так же.

Определение . Полным приращением функции u = f(x, y, z) называется

Теорема 1. Если частные производные существуют в точке (х 0 , у 0 , z 0 ) и в некоторой ее окрестности и непрерывны в точке (x 0 , y 0 , z 0 ) , то- ограниченные (т.к. их модули не превышают 1).

Тогда приращение функции, удовлетворяющей условиям теоремы 1, можно представить в виде: , (15.6)

Определение . Если приращение функции u = f (x, y, z) в точке (x 0 , y 0 , z 0) можно представить в виде (15.6), (15.7), то функция называется дифференцируемой в этой точке, а выражение - главной линейной частью приращения или полным дифференциалом рассматриваемой функции.

Обозначения: du, df (x 0 , y 0 , z 0).

Так же, как в случае функции одной переменной, дифференциалами независимых переменных считаются их произвольные приращения, поэтому

Замечание 1. Итак, утверждение «функция дифференцируема» не равнозначно утверждению «функция имеет частные производные» - для дифференцируемости требуется еще и непрерывность этих производных в рассматриваемой точке.

.

Рассмотрим функцию и выберем х 0 = 1, у 0 = 2. Тогда Δх = 1,02 – 1 = 0,02; Δу = 1,97 – 2 = -0,03. Найдем ,

Следовательно, учитывая, что f (1, 2) = 3, получим.

При изучении многих закономерностей в естествознании и экономике приходится встречаться с функциями от двух (и более) независимых переменных.

Определение (для функции двух переменных). Пусть X , Y и Z - множества. Если каждой паре (x , y ) элементов из множеств соответственно X и Y в силу некоторого закона f ставится в соответствие один и только один элемент z из множества Z , то говорят, что задана функция двух переменных z = f (x , y ) .

В общем случае область определения функции двух переменных геометрически может быть представлена некоторым множеством точек (x ; y ) плоскости xOy .

Основные определения, относящиеся к функциям нескольких переменных, являются обобщением соответствующих определений для функции одной переменной .

Множество D называется областью определения функции z , а множество E множеством её значений . Переменные x и y по отношению к функции z называются её аргументами. Переменная z называется зависимой переменной.

Частным значениям аргументов

соответствует частное значение функции

Область определения функции нескольких переменных

Если функция нескольких переменных (например, двух переменных) задана формулой z = f (x , y ) , то областью её определения является множество всех таких точек плоскости x0y , для которых выражение f (x , y ) имеет смысл и принимает действительные значения . Общие правила для области определения функции нескольких переменных выводятся из общих правил для области определения функции одной переменной . Отличие в том, что для функции двух переменных областью определения является некоторое множество точек плоскости, а не прямой, как для функции одной переменной. Для функции трёх переменных областью определения является соответствующее множество точек трёхмерного пространства, а для функции n переменных - соответствующее множество точек абстрактного n -мерного пространства.

Область определения функции двух переменных с корнем n -й степени

В случае, когда функция двух переменных задана формулой и n - натуральное число :

если n - чётное число, то областью определения функции является множество точек плоскости, соответствующих всем значениями подкоренного выражения, которые больше или равны нулю, то есть

если n - нечётное число, то областью определения функции является множество любых значений , то есть вся плоскость x0y .

Область определения степенной функции двух переменных с целым показателем степени

:

если a - положительное, то областью определения функции является вся плоскость x0y ;

если a - отрицательное, то областью определения функции является множество значений , отличных от нуля: .

Область определения степенной функции двух переменных с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество тех точек плоскости, в которых принимает значения большие или равное нулю: ;

если - отрицательное, то областью определения функции является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения логарифмической функции двух переменных

Логарифмическая функция двух переменных определена при условии, если её аргумент положителен, то есть, областью её определения является множество тех точек плоскости, в которых принимает значения, большие нуля: .

Область определения тригонометрических функций двух переменных

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y

Область определения функции - вся плоскость x0y , кроме пар чисел, для которых принимает значения .

Область определения обратных тригонометрических функций двух переменных

Область определения функции .

Область определения функции - множество таких точек плоскости, для которых .

Область определения функции - вся плоскость x0y .

Область определения функции - вся плоскость x0y .

Область определения дроби как функции двух переменных

Если функция задана формулой , то областью определения функции являются все точки плоскости, в которых .

Область определения линейной функции двух переменных

Если функция задана формулой вида z = ax + by + c , то область определения функции - вся плоскость x0y .

Пример 1.

Решение. По правилам для области определения составляем двойное неравенство

Умножаем всё неравенство на и получаем

Полученное выражение и задаёт область определения данной функции двух переменных.

Пример 2. Найти область определения функции двух переменных .

) мы уже неоднократно сталкивались с частными производными сложных функций наподобие и более трудными примерами. Так о чём же ещё можно рассказать?! …А всё как в жизни – нет такой сложности, которую было бы нельзя усложнить =) Но математика – на то и математика, чтобы укладывать многообразие нашего мира в строгие рамки. И иногда это удаётся сделать одним-единственным предложением:

В общем случае сложная функция имеет вид , где, по меньшей мере, одна из букв представляет собой функцию , которая может зависеть от произвольного количества переменных.

Минимальный и самый простой вариант – это давно знакомая сложная функция одной переменной, производную которой мы научились находить в прошлом семестре. Навыками дифференцирования функций вы тоже обладаете (взгляните на те же функции ) .

Таким образом, сейчас нас будет интересовать как раз случай . По причине великого разнообразия сложных функций общие формулы их производных имеют весьма громоздкий и плохо усваиваемый вид. В этой связи я ограничусь конкретными примерами, из которых вы сможете понять общий принцип нахождения этих производных:

Пример 1

Дана сложная функция , где . Требуется:
1) найти её производную и записать полный дифференциал 1-го порядка;
2) вычислить значение производной при .

Решение : во-первых, разберёмся с самой функцией. Нам предложена функция, зависящая от и , которые в свою очередь являются функциями одной переменной:

Во-вторых, обратим пристальное внимание на само задание – от нас требуется найти производнУЮ , то есть, речь идёт вовсе не о частных производных , которые мы привыкли находить! Так как функция фактически зависит только от одной переменной, то под словом «производная» подразумевается полная производная . Как её найти?

Первое, что приходит на ум, это прямая подстановка и дальнейшее дифференцирование. Подставим в функцию :
, после чего с искомой производной никаких проблем:

И, соответственно, полный дифференциал:

Это решение математически корректно, но маленький нюанс состоит в том, что когда задача формулируется так, как она сформулирована – такого варварства от вас никто не ожидает =) А если серьёзно, то придраться тут действительно можно. Представьте, что функция описывает полёт шмеля, а вложенные функции меняются в зависимости от температуры. Выполняя прямую подстановку , мы получаем лишь частную информацию , которая характеризует полёт, скажем, только в жаркую погоду. Более того, если человеку не сведущему в шмелях предъявить готовый результат и даже сказать, что это за функция, то он так ничего и не узнает о фундаментальном законе полёта!

Вот так вот совершенно неожиданно брат наш жужжащий помог осознать смысл и важность универсальной формулы:

Привыкайте к «двухэтажным» обозначениям производных – в рассматриваемом задании в ходу именно они. При этом следует быть очень аккуратным в записи: производные с прямыми значками «дэ» – это полные производные , а производные с округлыми значками – это частные производные . С последних и начнём:

Ну а с «хвостами» вообще всё элементарно:

Подставим найденные производные в нашу формулу:

Когда функция изначально предложена в замысловатом виде, то будет логичным (и тому дано объяснение выше!) оставить в таком же виде и результаты:

При этом в «навороченных» ответах лучше воздержаться даже от минимальных упрощений (тут, например, напрашивается убрать 3 минуса) – и вам работы меньше, и мохнатый друг доволен рецензировать задание проще.

Однако не лишней будет черновая проверка. Подставим в найденную производную и проведём упрощения:


(на последнем шаге использованы тригонометрические формулы , )

В результате получен тот же результат, что и при «варварском» методе решения.

Вычислим производную в точке . Сначала удобно выяснить «транзитные» значения (значения функций ) :

Теперь оформляем итоговые расчёты, которые в данном случае можно выполнить по-разному. Использую интересный приём, в котором 3 и 4 «этажа» упрощаются не по обычным правилам , а преобразуются как частное двух чисел:

И, конечно же, грех не проверить по более компактной записи :

Ответ :

Бывает, что задача предлагается в «полуобщем» виде:

«Найти производную функции , где »

То есть «главная» функция не дана, но её «вкладыши» вполне конкретны. Ответ следует дать в таком же стиле:

Более того, условие могут немного подшифровать:

«Найти производную функции »

В этом случае нужно самостоятельно обозначить вложенные функции какими-нибудь подходящими буквами, например, через и воспользоваться той же формулой:

К слову, о буквенных обозначениях. Я уже неоднократно призывал не «цепляться за буквы», как за спасательный круг, и сейчас это особенно актуально! Анализируя различные источники по теме, у меня вообще сложилось впечатление, что авторы «пошли вразнос» и стали безжалостно бросать студентов в бурные пучины математики =) Так что уж простите:))

Пример 2

Найти производную функции , если

Другие обозначения не должны приводить в замешательство! Каждый раз, когда вы встречаете подобное задание, нужно ответить на два простых вопроса:

1) От чего зависит «главная» функция? В данном случае функция «зет» зависит от двух функций («у» и «вэ»).

2) От каких переменных зависят вложенные функции? В данном случае оба «вкладыша» зависят только от «икса».

Таким образом, у вас не должно возникнуть трудностей, чтобы адаптировать формулу к этой задаче!

Краткое решение и ответ в конце урока.

Дополнительные примеры по первому виду можно найти в задачнике Рябушко (ИДЗ 10.1) , ну а мы берём курс на функцию трёх переменных :

Пример 3

Дана функция , где .
Вычислить производную в точке

Формула производной сложной функции , как многие догадываются, имеет родственный вид:

Решайте, раз догадались =)

На всякий случай приведу и общую формулу для функции :
, хотя на практике вы вряд ли встретите что-то длиннее Примера 3.

Кроме того, иногда приходится дифференцировать «урезанный» вариант – как правило, функцию вида либо . Оставляю вам этот вопрос для самостоятельного исследования – придумайте какую-нибудь простенькие примеры, подумайте, поэкспериментируйте и выведите укороченные формулы производных.

Если что-то осталось недопонятым, пожалуйста, неторопливо перечитайте и осмыслите первую часть урока, поскольку сейчас задача усложнится:

Пример 4

Найти частные производные сложной функции , где

Решение : данная функция имеет вид , и после прямой подстановки и мы получаем привычную функцию двух переменных:

Но такой страх не то чтобы не принято, а уже и не хочется дифференцировать =) Поэтому воспользуемся готовыми формулами. Чтобы вы быстрее уловили закономерность, я выполню некоторые пометки:

Внимательно просмотрите картинку сверху вниз и слева направо….

Сначала найдём частные производные «главной» функции:

Теперь находим «иксовые» производные «вкладышей»:

и записываем итоговую «иксовую» производную:

Аналогично с «игреком»:

и

Можно придерживаться и другого стиля – сразу найти все «хвосты» и потом записать обе производные.

Ответ :

О подстановке что-то как-то совсем не думается =) =), а вот причесать результаты немножко можно. Хотя, опять же, зачем? – только усложните проверку преподавателю.

Если потребуется, то полный дифференциал тут записывается по обычной формуле, и, кстати, как раз на данном шаге становится уместной лёгкая косметика:


Такой вот... ....гроб на колёсиках.

Ввиду популярности рассматриваемой разновидности сложной функции пара заданий для самостоятельного решения. Более простой пример в «полуобщем» виде – на понимание самой формулы;-):

Пример 5

Найти частные производные функции , где

И посложнее – с подключением техники дифференцирования:

Пример 6

Найти полный дифференциал функции , где

Нет, я вовсе не пытаюсь «отправить вас на дно» – все примеры взяты из реальных работ, и «в открытом море» вам могут попасться какие угодно буквы. В любом случае потребуется проанализировать функцию (ответив на 2 вопроса – см. выше) , представить её в общем виде и аккуратно модифицировать формулы частных производных. Возможно, сейчас немного попутаетесь, но зато поймёте сам принцип их конструирования! Ибо настоящие задачи только начинаются:)))

Пример 7

Найти частные производные и составить полный дифференциал сложной функции
, где

Решение : «главная» функция имеет вид и по-прежнему зависит от двух переменных – «икса» и «игрека». Но по сравнению с Примером 4, добавилась ещё одна вложенная функция, и поэтому формулы частных производных тоже удлиняются. Как и в том примере, для лучшего вИдения закономерности, я выделю «главные» частные производные различными цветами:

И снова – внимательно изучите запись сверху вниз и слева направо.

Так как задача сформулирована в «полуобщем» виде, то все наши труды, по существу, ограничиваются нахождением частных производных вложенных функций:

Справится первоклассник:

И даже полный дифференциал получился вполне себе симпатичный:

Я специально не стал предлагать вам какую-то конкретную функцию – чтобы лишние нагромождения не помешали хорошо разобраться в принципиальной схеме задачи.

Ответ :

Довольно часто можно встретить «разнокалиберные» вложения, например:

Здесь «главная» функция хоть и имеет вид , но всё равно зависит и от «икс», и от «игрек». Поэтому работают те же самые формулы – просто некоторые частные производные будут равны нулю. Причём, это справедливо и для функций вроде , у которых каждый «вкладыш» зависит от какой-то одной переменной.

Похожая ситуация имеет место и в двух заключительных примерах урока:

Пример 8

Найти полный дифференциал сложной функции в точке

Решение : условие сформулировано «бюджетным» образом, и мы должны сами обозначить вложенные функции. По-моему, неплохой вариант:

Во «вкладышах» присутствуют (ВНИМАНИЕ! ) ТРИ буквы – старые-добрые «икс-игрек-зет», а значит, «главная» функция фактически зависит от трёх переменных. Её можно формально переписать в виде , и частные производные в этом случае определяются следующими формулами:

Сканируем, вникаем, улавливаем….

В нашей задаче:

Рассматривая функции одной переменной, мы указывали, что при изучении многих явлений приходится встречаться с функциями двух и более независимых переменных. Приведем несколько примеров.

Пример 1. Площадь S прямоугольника со сторонами, длины которых равны х и у, выражается формулой Каждой паре значений х и у соответствует определенное значение площади S; S есть функция двух переменных.

Пример 2. Объем V прямоугольного параллелепипеда с ребрами, длины которых равны х, выражается формулой . Здесь V есть функция трех переменных х.

Пример 3. Дальность R полета снаряда, выпущенного с начальной скоростью . Из орудия, ствол которого наклонен к горизонту под углом , выражается формулой если пренебречь сопротивлением воздуха). Здесь - ускорение силы тяжести. Для каждой пары значений эта формула дает определенное значение R, т. е. R является функцией двух переменных

Пример 4. и Здесь и есть функция четырех переменных

Определение 1. Если каждой паре значений двух не зависимых друг от друга переменных величин х и у из некоторой области их изменения D, соответствует определенное значение величины , то мы говорим, что есть функция двух независимых переменных х и у, определенная в области

Символически функция двух переменных обозначается так:

Функция двух переменных может быть задана, например, с помощью таблицы или аналитически - с помощью формулы, как это сделано в рассмотренных выше четырех примерах. На основании формулы можно составить таблицу значений функции для некоторых пар значений независимых переменных. Так, для

первого примера можно составить следующую таблицу:

В этой таблице на пересечении строки и столбца, соответствующих определенным значениям х и у, проставлено соответствующее значение функции

Если функциональная зависимость получается в результате измерений величины z при экспериментальном изучении какого-либо явления, то сразу получается таблица, определяющая z как функцию двух переменных. В этом случае функция задается только таблицей.

Как и в случае одной независимой переменной, функция двух переменных существует, вообще говоря, не при любых значениях х и у.

Определение 2. Совокупность пар значений при которых определяется функция называется областью определения или областью существования этой функции.

Область определения функции наглядно иллюстрируется геометрически. Если каждую пару значений х и у мы будем изображать точкой в плоскости то область определения функции изобразится в виде некоторой совокупности точек на плоскости. Эту совокупность точек будем также называть областью определения функции. В частности, областью определения может быть и вся плоскость. В дальнейшем мы будем главным образом иметь дело с такими областями, которые представляют собой части плоскости, ограниченные линиями. Линию, ограничивающую данную область, будем называть границей области. Точки области, не лежащие на границе, будем называть внутренними точками области. Область, состоящая из одних внутренних точек, называется открытой или незамкнутой. Если же к области относятся и точки границы, то область называется замкнутой. Область называется ограниченной, если существует такая постоянная С, что расстояние любой точки М области от начала координат О меньше С, т. е. .

Пример 5. Определить естественную область определения функции

Аналитическое выражение имеет смысл при любых значениях х и у. Следовательно, естественной областью определения функции является вся плоскость

Пример 6. .

Для того чтобы имело действительное значение, нужно, чтобы под корнем стояло неотрицательное число, т. е. х и у должны удовлетворять неравенству или

Все точки координаты которых удовлетворяют указанному неравенству, лежат в круге радиуса 1 с центром в начале координат и на границе этого круга.

Пример 7. .

Так как логарифмы определены только для положительных чисел, то должно удовлетворяться неравенство или .

Это значит, что областью определения функции является половина плоскости, расположенная над прямой не включая самой прямой (рис. 166).

Пример 8. Площадь треугольника 5 представляет собой функцию основания и высоты

Областью определения этой функции является область как основание треугольника и его высота не могут быть ни отрицательными, ни нулем). Заметим, что область определения рассматриваемой функции не совпадает с естественной областью определения того аналитического выражения, с помощью которого задается функция, так как естественной областью определения выражения является, очевидно, вся плоскость Оху.

До сих пор мы занимались изучением функции одной переменной, т.е. изучением переменной, значения которой зависят от значений одной независимой переменной.

На практике часто приходится иметь дело с величинами, численные значения которых зависят от значений нескольких изменяющихся независимо друг от друга величин. Изучение таких величин приводит к понятию функции нескольких переменных. Приведем несколько примеров.

Пример 1. Площадь прямоугольника есть функция двух независимо друг от друга изменяющихся переменных – сторон прямоугольника и : .

Пример 2. Работа электрического тока на участке цепи зависит от разности потенциалов на концах участка, силы тока и времени : .

Пример 3. Температура , измеряемая в различных точках некоторого тела, есть функция от координат точки, в которой она измеряется, и от момента времени : .

Определение 1. Назовем n -мерной точкой упорядоченный набор из чисел . Числа называются координатами -мерной точки . Множество всевозможных -мерных точек назовем n-мерным пространством и будем обозначать его . Точку назовем началом координат в -мерном пространстве, а число – размерностью пространства.

Частные случаи :

1. – числовая прямая;

2. – плоскость;

3. – трехмерное пространство.

Определение 2. Пусть имеется переменных величин, и каждому набору их значений из некоторого множества соответствует одно вполне определенное значение переменной величины . Тогда говорят, что задана функция нескольких переменных

Переменные называются независимыми переменными или аргументами , – зависимой переменной , символ – закон соответствия .

Также как и функцию одной переменной функцию нескольких переменных можно задать явно – и неявно – .

Любую явную функцию нескольких переменных можно представить как функцию точки в -мерном пространстве: , где точка определяется набором ее координат.

Если каждой точке из области определения соответствует одно значение , то функция называется однозначной , в противном случае – многозначной .

Множество называется областью определения функции , оно является подмножеством -мерного пространства. Подобно промежутку область может быть замкнутой или открытой в зависимости от того, содержит она свою границу или нет.

Естественной областью определения функции (1) называется множество точек , координаты которых однозначно обеспечивают вещественные и конечные значения функции . В дальнейшем, если дополнительные ограничения на изменение независимых переменных постановкой задачи не накладываются, под областью определения функции будем подразумевать ее естественную область определения.


Рассмотрим более подробно два частных случая, которые являются наиболее простыми и допускают геометрическую интерпретацию.

1. Функция двух переменных (n = 2)

Функцию двух переменных будем обозначать . Частное значение функции при , или в точке записывают в виде , , или .

Область определения функции есть подмножество точек координатной плоскости . В частности, областью определения функции может быть вся плоскость или часть плоскости, ограниченная линиями. Линию, ограничивающую данную область, будем называть границей области. Точки плоскости, не лежащие на границе, будем называть внутренними .

Пример 4. Функция определена на всей плоскости .

Пример 5. Функции определена на всей плоскости, за исключением прямой .

Пример 6. Областью определения функции является множество точек плоскости , координаты которых удовлетворяют соотношению , т.е. круг радиуса 1 и с центром в начале координат. Область определения этой функции является замкнутой.

Следующий пример рассмотрим более подробно.

Пример 7. Найти область определения функции .

Решение.

Логарифм определен только при положительном значении аргумента, поэтому на аргументы имеется одно условие: .

Чтобы изобразить геометрически область , найдем сначала ее границу: . Полученное уравнение определяет параболу, вершина которой расположена в точке , а ось направлена в положительную сторону оси .

Рис. 1.1
Парабола делит всю плоскость на две части – внутреннюю и внешнюю по отношению к параболе. Для точек одной из этих частей выполняется неравенство , а для другой (на самой параболе ). Чтобы установить, какая из этих двух частей является областью определения данной функции, т.е. удовлетворяет условию , достаточно проверить это условие для какой-нибудь одной точки, не лежащей на параболе. Например, начало координат лежит внутри параболы и удовлетворяет нужному условию.

Следовательно, искомая область состоит из внутренних точек параболы. Сама парабола в область не входит, значит, область отрытая.

Определение 3.Окрестностью точки называется любой открытый круг, содержащий точку .

В частности, -окрестностью называется открытый круг с центром в точке и радиусом .

Очевидно, круг на плоскости есть двумерный аналог интервала на прямой.

При изучении функций нескольких переменных во многом используется уже разработанный математический аппарат для функции одной переменной. А именно: любой функции можно поставить в соответствие пару функций одной переменной: при фиксированном значении функцию и при фиксированном значении функцию .

Следует иметь в виду, что хотя функции и имеют одно и то же "происхождение", вид их может существенно различаться.

Пример 9. Рассмотрим функцию . При функция является степенной, а при функция является показательной.

Геометрическое изображение функции двух переменных.

Как известно, функция одной переменной может быть изображена некоторой кривой на плоскости, если рассматривать значения ее аргумента как абсциссы, а значения функции как ординаты точек кривой.

Подобным же образом функция двух переменных может быть изображена графически.

Рассмотрим функцию , определенную в области на плоскости и систему прямоугольных декартовых координат . Каждой точке множества поставим в соответствие точку пространства , аппликата которой равна значению функции в точке : . Совокупность всех таких точек представляет собой некоторую поверхность, которую естественно принять за графическое изображение функции .

Определение 4.Графикомфункции двух переменных называется множество точек трехмерного пространства , аппликата которых связана с абсциссой и ординатой функциональным соотношением .

Рис. 1.2.
Таким образом, графиком функции двух переменных является поверхность , проектирующаяся на плоскость в область определения функции . Каждый перпендикуляр к плоскости пересекает поверхность не более чем в одной точке.

2. Функция трех переменных (n = 3)

Функцию трех переменных будем обозначать , при этом будем считать, что , и – независимые переменные (или аргументы), а – зависимая переменная (или функция).

Областью определения такой функции называется множество всех рассматриваемых троек чисел. Если функция задана аналитически, под ее естественной областью определения подразумевают совокупность всех троек чисел , для которых функция принимает действительные значения.

Определение 6.Окрестностью точки называется любая открытая сфера, содержащая точку .

В частности, -окрестностью называется открытая сфера с центром в точке и радиусом .

Изображая тройки чисел точками пространства , можно рассматривать функцию трех переменных как функцию точки пространства, а область определения функции трех переменных – как некоторое множество точек пространства.