Форм-факторы материнских плат. Типоразмеры (форм-факторы) материнских плат Standard atx размеры

Компьютерные технологии развиваются. Меняется форма устройств, их габариты и технические характеристики. Сегодня мы рассмотрим такое понятие, как форм-фактор, и его разновидность ATX - самую популярную и востребованную.

Форм-фактор

Чтобы перейти к теме статьи, нужно разобраться с основным понятием. Форм-фактор - это стандартизация относительно ИТ-оборудования. С помощью её можно определить размер устройства, основные технические показатели, наличие дополнительных деталей, их расположение.

Сейчас, говоря о форм-факторе, люди вспоминают о материнке. Ранее же термин был применим к корпусам телефонов, оборудованию связи и другим комплектующим ПК.

Учитывая, что форм-фактор - это стандартизированное понятие, его относят к рекомендательным параметрам. То есть благодаря индексу, которым обозначают определенный форм-фактор, возможно обозначить обязательные и дополнительные параметры. Разработчики стараются принимать стандарт как должное и руководствоваться им при создании соответствующего комплектующего.

Разновидность

Форм-фактор ATX не единственный стандарт для комплектующих. Но именно этот вариант стал востребован для массового производства ПК. Его впервые мир увидел в 1995 году, а производителем этой архитектуры стала компания Intel. Ранее уже существовали стандарты XT, AT и Baby-AT, которые с 1983 года внедрила компания IBM.

Форм-фактор типа ATX повлиял на появление модифицированных стандартов. Стали появляться сокращенные форматы, с меньшим количеством слотов и компактными размерами. К 2005 году был разработан мобильный стандарт, оптимизированный для процессоров.

Офисные компьютеры тоже стали оснащать различными комплектующими определенных стандартов. Стали появляться платы, которые применяли в сложных производствах. Такие модификации стандарта стали известны с 2004 года. Форм-фактор ATX перевоплощался в SSI CEB, DTX, BTX и пр.

ATX

Этот форм-фактор стал популярен еще в 1995 году, но наибольшее распространение получил с 2001 года. Стандарт стал доминирующим в производстве ПК. Он влияет не только на размер платы или другого комплектующего. ATX диктует стандарт БП, корпуса ПК, размещение слотов и разъемов, форму и расположение слотов, крепление и параметры БП.

Компания Intel долго размышляла над тем, каким должно быть продолжение форм-фактора AT. К 1995 году разработчики представили новенький стандарт ATX. Кроме этой компании, над изменением устаревшего стандарта думали другие производители, которые поставляли OEM-технику. После новый стандарт был подхвачен теми, кто поставлял материнки и БП.

За все время своего существования было выпущено 12 спецификаций. Форм-фактор ATX размеры имеет стандартные: в миллиметрах - 305 х 244, в дюймах - 12 х 9,6. Модификации, которые выпускались под другими именами были разработаны на основе ATX, но имели различия в размещении портов, общих габаритов и т. д.

Так, в 2003 году компания Intel захотела внедрить BTX. Этот новый стандарт более эффективно охлаждал системный блок ПК. Разработчики хотели медленно убрать с рынков ATX, который поддерживал высокий нагрев внутри системного блока. Но даже такая опасность, как перегрев всей системы, не способствовала тому, чтобы удачно сменить формат на BTX.

Большинство производителей отказались распространять его, так как снижение рассеиваемой мощности показывало положительные результаты, и в будущем все равно удалось достичь неплохих результатов при охлаждении корпуса и без смены стандарта. В итоге к 2011 году стало понятно, что заменять форм-фактор ATX не нужно.

Основные изменения

Настолько удачного изобретения в этой области ждать не стоило. Пользователь получил кардинальные изменения касательно предыдущей версии AT. Питанием процессора стала заниматься материнская плата. На неё подается дежурное питание даже в выключенном состоянии. Материнка обеспечивает функционирование управляющего блока и некоторых периферийных устройств.

Стала возможна замена вентилятора на более крупный и размещение его дне БП. Воздушный поток становился более мощным и охватывал большее количество элементов в системном блоке. Изменялось количество оборотов, а соответственно, и шум. Со временем появилась тенденция к размещению блока питания внизу корпуса.

Питание

Смена форм-фактора принесла изменение формата разъема питания. Вызвано это было тем, что в предыдущем формате два схожих разъема подключались в неподдерживаемые слоты, из-за чего происходил сбой системы. В процессе увеличения потребляемой мощности, необходимо было увеличивать количество контактов питания. Разработчики начинали с 20, позже их становилось больше, а также появились дополнительные разъемы.

Интерфейсная панель

Интерфейсная панель стала свободнее. Ранее здесь находился слот для клавиатуры, а в специальные отверстия устанавливали платы для расширения. Форм-фактор ATX добавил к слоту для клавиатуры место для коммуникатора. Свободную площадь заняло прямоугольная «щель» стандартизированного размера, куда разработчики помещали необходимые слоты.

Начальный блок питания

Помимо того, что существует материнская плата форм-фактора ATX, можно найти и стандарта. Поскольку развитие формата длилось девять лет, за это время разработчики старались не только изменять разъем, но и делать его совместимым с предыдущими формами.

Так, изначально применялся разъем с 20 контактами питания. Этот вариант популярен был до появления материнки с шиной PCI-Express. Потом появился разъем с 24 контактами. Чтобы этот вариант поддерживался и предыдущими версиями, «бонусные» 4 контакта можно было снять, а плата работала бы и с двадцатью.

Изменения процессоров

Когда стали появляться новые процессоры Pentium 4 и Athlon 64, пришлось переработать стандарт до версии 2.0. Так, материнки стали требовать для основной шины 12 В. Блок питания, форм-фактор ATX которого также обновился до второй версии, должен был получить дополнительный разъем. Так появился дополнительный разъем еще на 4 контакта.

После этого стали появляться варианты со сложными контактами. Например, 24+4+6-контактный разъем стал востребован для материнок, которые получили несколько портов PCI-E 16x. А 24+4+4-контактный фактически имел дополнительный 8-штырьковый разъем, который состоял из двух слотов по 4 контакта. Таким образом его стали применять для материнок, которые имели высокое энергопотребление.

Такое решение с объединением двух разъемов по 4 контакта было вызвано тем, чтобы не лишать пользователя подключать модель к более старым материнским платам. Так, один разъем отстегивался от другого, и мы получали 24+4-контактный провод.

Корпус

Помимо материнки и БП, определенную стандартизацию имеет и корпус. Форм-фактор ATX в этом случае является наиболее современным и подходит для системных плат того же формата. Такой корпус предполагает более легкий доступ ко всей внутренней периферии. Имеет отличную вентиляцию внутри. Позволяет устанавливать не одну полноразмерную плату.

Несмотря на одинаковые названия, в можно поместить материнскую плату формата микро-ATX. Кратко об этом стандарте мы поговорим далее.

Компактная версия

Форм-фактор micro-ATX появился немного позже основного стандарта - в 1997 году. Материнская плата этого формата имеет 244 х 244 мм. Вариант был разработан для процессоров с уже устаревшей архитектурой х86.

В процессе создания было решено сохранить электрическую и механическую совместимость с предыдущим стандартом. В итоге главным различием остаются габариты плат, количество слотов и интегрированная периферия. Micro-ATX выпускают на рынок со встроенной видеокартой, тем самым обозначая целевое назначение этого стандарта. ПК с таким форм-фактором подходят для офисной работы и не рассчитаны на геймерские проекты, так как интегрированная видеокарта посредственная.

Другие варианты

Помимо ATX и micro-ATX, существовал форм-фактор mini-ATX, который сейчас уже не встретишь нигде. Размеры его - 284 х 208 мм. Появился и FlexATX, который имел размеры 244 х 190 мм. Эта модификация гибкая и позволяет производителю самостоятельно решать многие проблемы.

Так, он может выбирать размер и расположение БП. Участвовать в изменениях, касающихся новых процессорных технологий. Но и этот вариант не смог «бороться» с ATX и остается на заднем плане.

Форм-фактор компьютерных корпусов и материнских плат — одна из значимых их характеристик. Часто сталкиваются с непониманием разницы между ATX и mATX либо при сборке новой системы, либо при апгрейде старой. Большинство знакомы только с этими аббревиатурами, хотя в контексте встречаются и другие. Оба стандарта схожи между собой, и к ряду характеристик ряда комплектующих предъявляют идентичные требования, так что рассматривать ATX и mATX стоит именно в отношении материнских плат — форм-фактор здесь будет определяющим.

Определение

ATX — форм-фактор полноразмерных материнских плат для настольных компьютеров, определяющий габариты, количество портов и разъемов, другие характеристики. Также является форм-фактором персональных настольных компьютеров, определяющим размеры корпуса, расположение креплений, размещение, размер и электрохарактеристики блока питания.

mATX — форм-фактор материнских плат уменьшенных габаритов и с урезанным количеством портов и интерфейсов. Также — форм-фактор корпусов системных блоков.

Сравнение

Разница между ATX и mATX прежде всего в размерах. Полноразмерные материнские платы устанавливаются в корпуса форм-фактора full-tower и midi-tower, платы mATX — еще и в mini-tower. Стандартные размеры плат ATX составляют 305х244 мм, хотя и могут быть чуть меньшей ширины — до 170 мм. Стандартные размеры плат mATX (часто называются micro-ATX) составляют 244х244 мм, но могут быть урезаны и до 170 мм. Очень жесткими стандарты не являются, и разница в несколько мм от того или иного производителя — дело обычное и ни на что не влияющая. А вот места под крепления стандартизированы форм-фактором жестко, и абсолютно всегда совпадают с корпусными отверстиями для установки материнских плат. Визуально определяется так: первый от заглушки вертикальный ряд отверстий универсален, второй предназначен для mATX, третий — для ATX плат. В маленькие корпуса mATX установить плату ATX не получится, наоборот в абсолютном большинстве случаев установка не вызовет сложностей.

Еще одно отличие — в количестве портов и интерфейсов. Стандартизации это не подлежит и остается на усмотрение производителя, однако преимущественно на платах mATX распаян минимальный джентльменский набор: два, а не четыре, как в ATX, слота под оперативную память, меньшее количество интерфейсов SATA и USB, на заднюю панель выведен один видеовыход (если есть), порты ввода-вывода, часто совмещенные, минимум USB, чаще всего полностью отсутствуют излишества вроде eSATA или HDMI. Все материнские платы сегодня снабжены ethernet-портом. Количество PCI-разъемов на платах mATX минимально, так что установка видеокарты плюс еще пара плат расширения — предел мечтаний. Также из-за сокращения площади на маленьких платах всегда актуальна интеграция, плюс количество распаянных деталей меньше.

На практике пользователь компьютера отличий между форм-факторами материнских плат почти не найдет. Из-за небольшого размера корпусов и “кучности” электроники mATX могут сильнее греться, а установка новых комплектующих из-за сэкономленного пространства может оказаться неудобной.

Выводы сайт

  1. ATX больше и как форм-фактор материнских плат, и как форм-фактор корпусов.
  2. mATX обладает урезанным функционалом из-за сокращения количества портов и разъемов.
  3. Платы mATX могут устанавливаться в корпуса ATX, а не наоборот.
  4. В некоторых случаях mATX вызывают неудобство при установке комплектующих.

На сегодняшний день существует четыре преобладающих типоразмера материнских плат - AT, ATX, LPX и NLX. Кроме того, есть уменьшенные варианты формата AT (Baby-AT), ATX (Mini-ATX, microATX) и NLX (microNLX). Более того, недавно выпущено расширение к спецификации microATX, добавляющее к этому списку новый форм-фактор - FlexATX. Все эти спецификации, определяющие форму и размеры материнских плат, а также расположение компонентов на них и особенности корпусов, и описаны ниже.

AT

Форм-фактор АТ делится на две, отличающиеся по размеру модификации - AT и Baby AT. Размер полноразмерной AT платы достигает до 12" в ширину, а это значит, что такая плата вряд ли поместится в большинство сегодняшних корпусов. Монтажу такой платы наверняка будет мешать отсек для дисководов и жестких дисков и блок питания. Кроме того, расположение компонентов платы на большом расстоянии друг от друга может вызывать некоторые проблемы при работе на больших тактовых частотах. Поэтому после материнских плат для процессора 386, такой размер уже не встречается.

Таким образом единственные материнские платы, выполненные в форм-факторе AT, доступные в широкой продаже, это платы соответствующие форматы Baby AT. Размер платы Baby AT 8.5" в ширину и 13" в длину. В принципе, некоторые производители могут уменьшать длину платы для экономии материала или по каким-то другим причинам. Для крепления платы в корпусе в плате сделаны три ряда отверстий.

Все AT платы имеют общие черты. Почти все имеют последовательные и параллельные порты, присоединяемые к материнской плате через соединительные планки. Они также имеют один разъем клавиатуры, впаянный на плату в задней части. Гнездо под процессор устанавливается на передней стороне платы. Слоты SIMM и DIMM находятся в различных местах, хотя почти всегда они расположены в верхней части материнской платы.

Сегодня этот формат плавно сходит со сцены. Часть фирм еще выпускает некоторые свои модели в двух вариантах - Baby AT и ATX, но это происходит все реже и реже. Тем более, что все больше новых возможностей, предоставляемых операционными системами, реализуются только на ATX материнских платах. Не говоря уже просто об удобстве работы - так, чаще всего на Baby AT платах все коннекторы собраны в одном месте, в результате чего либо кабели от коммуникационных портов тянутся практически через всю материнскую плату к задней части корпуса, либо от портов IDE и FDD - к передней. Гнезда для модулей памяти, заезжающие чуть ли не под блок питания. При ограниченности свободы действий внутри весьма небольшого пространства MiniTower, это, мягко говоря, неудобно. Вдобавок, неудачно решен вопрос с охлаждением - воздух не поступает напрямую к самой нуждающейся в охлаждении части системы - процессору.

LPX

Еще до появления ATX, первым результатом попыток снизить стоимость PC стал форм-фактор LPX. Предназначался для использования в корпусах Slimline или Low-profile. Задача была решена путем довольно новаторского предложения - введения стойки. Вместо того, чтобы вставлять карты расширения непосредственно в материнскую плату, в этом варианте они помешаются в подключаемую к плате вертикальную стойку, параллельно материнской плате. Это позволило заметно уменьшить высоту корпуса, поскольку обычно именно высота карт расширения влияет на этот параметр. Расплатой за компактность стало максимальное количество подключаемых карт - 2-3 штуки. Еще одно нововведение, начавшее широко применяться именно на платах LPX - это интегрированный на материнскую плату видеочип. Размер корпуса для LPX оставляет 9 х 13"", для Mini LPX - 8 x 10"".

После появления NLX, LPX начал вытесняться этим форм-фактором.

ATX

Неудивительно, что форм-фактор ATX во всех его модификациях становится все более популярным. В особенности это касается плат для процессоров на шине P6. Так, к примеру, из готовящихся к выпуску в этом году материнских плат LuckyStar для этих процессоров 4 будут исполнены в формате Mini-ATX, 3 - ATX, и всего лишь одна - Baby AT. А если еще учесть, что материнских плат для Socket7 сегодня делается гораздо меньше, хотя бы по причине куда меньшего числа новых чипсетов для этой платформы, то ATX одерживает убедительную победу.

И никто не может сказать, что она необоснованна. Спецификация ATX, предложенная Intel еще в 1995 году, нацелена как раз на исправление всех тех недостатков, что выявились со временем у форм-фактора AT. А решение, по сути, было очень простым - повернуть Baby AT плату на 90 градусов, и внести соответствующие поправки в конструкцию. К тому моменту у Intel уже был опыт работы в этой области - форм-фактор LPX. В ATX как раз воплотились лучшие стороны и Baby AT и LPX: от Baby AT была взята расширяемость, а от LPX - высокая интеграция компонентов. Вот что получилось в результате:

  • Интегрированные разъемы портов ввода-вывода. На всех современных платах коннекторы портов ввода-вывода присутствуют на плате, поэтому вполне естественным выглядит решение расположить на ней и их разъемы, что приводит к довольно значительному снижению количества соединительных проводов внутри корпуса. К тому же, заодно среди традиционных параллельного и последовательного портов, разъема для клавиатуры, нашлось место и для новичков - портов PS/2 и USB. Кроме всего, в результате несколько снизилась стоимость материнской платы, за счет уменьшения кабелей в комплекте.
  • Значительно увеличившееся удобство доступа к модулям памяти. В результате всех изменений гнезда для модулей памяти переехали дальше от слотов для материнских плат, от процессора и блока питания. В результате наращивание памяти стало в любом случае минутным делом, тогда как на Baby AT материнских платах порой приходится браться за отвертку.
  • Уменьшенное расстояние между платой и дисками. Разъемы контроллеров IDE и FDD переместились практически вплотную к подсоединяемым к ним устройствам. Это позволяет сократить длину используемых кабелей, тем самым повысив надежность системы.
  • Разнесение процессора и слотов для плат расширения. Гнездо процессора перемещено с передней части платы на заднюю, рядом с блоком питания. Это позволяет устанавливать в слоты расширения полноразмерные платы - процессор им не мешает. К тому же, решилась проблема с охлаждением - теперь воздух, засасываемый блоком питания, обдувает непосредственно процессор.
  • Улучшено взаимодействие с блоком питания. Теперь используется один 20-контактный разъем, вместо двух, как на AT платах. Кроме того добавлена возможность управления материнской платой блоком питания - включение в нужное время или по наступлению определенного события, возможность включения с клавиатуры, отключение операционной системой, и т.д.
  • Напряжение 3.3 В. Теперь напряжение питания 3.3 В, весьма широко используемое современными компонентами системы, (взять хотя бы карты PCI!) поступает из блока питания. В AT-платах для его получения использовался стабилизатор, установленный на материнской плате. В ATX-платах необходимость в нем отпадает.

Конкретный размер материнских плат описан в спецификации во многом исходя из удобства разработчиков - из стандартной пластины (24 х 18’’) получается либо две платы ATX (12 x 9.6’’), либо четыре - Mini-ATX (11.2 х 8.2’’). Кстати, учитывалась и совместимость со старыми корпусами - максимальная ширина ATX платы, 12’’, практически идентична длине плат AT, чтобы была возможность без особых усилий использовать ATX плату в AT корпусе. Однако, сегодня это больше относится к области чистой теории - AT корпус еще надо умудриться найти. Также, по мере возможности крепежные отверстия в плате ATX полностью соответствуют форматам AT и Baby AT.

microATX

Форм-фактор ATX разрабатывался еще в пору расцвета Socket 7 систем, и многое в нем сегодня несколько не соответствует времени. Например, типичная комбинация слотов, из расчета на которую составлялась спецификация, выглядела как 3 ISA/3 PCI/1 смежный. Несколько неактуально не сегодняшний день, не так ли? ISA, отсутствие AGP, AMR, и т.д. Опять же, в любом случае, 7 слотов не используются в 99 процентах случаев, особенно сегодня, с такими чипсетами как MVP4, SiS 620, i810, и прочими готовящимися к выпуску подобными продуктами. В общем, для дешевых PC ATX - пустая трата ресурсов. Исходя из подобных соображений в декабре 1997 года и была представлена спецификация формата microATX, модификация ATX платы, рассчитанная на 4 слота для плат расширения.

По сути, изменения, по сравнению с ATX, оказались минимальными. До 9.6 x 9.6’’ уменьшился размер платы, так что она стала полностью квадратной, уменьшился размер блока питания. Блок разъемов ввода/вывода остался неизменным, так что microATX плата может быть с минимальными доработками использована в ATX 2.01 корпусе.

NLX

Со временем, спецификация LPX, подобно Baby AT, перестала удовлетворять требованиям времени. Выходили новые процессоры, появлялись новые технологии. И она уже не была в состоянии обеспечивать приемлемые пространственные и тепловые условия для новых низкопрофильных систем. В результате, подобно тому, как на смену Baby AT пришел ATX, так же в 1997 году, как развитие идеи LPX, учитывающее появление новых технологий, появилась спецификация форм-фактора NLX. Формата, нацеленного на применение в низкопрофильных корпусах. При ее создании брались во внимание как технические факторы (например, появление AGP и модулей DIMM, интеграция аудио/видео компонентов на материнской плате), так и необходимость обеспечить большее удобство в обслуживании. Так, для сборки/разборки многих систем на базе этого форм-фактора отвертка не требуется вообще.

Как видно на схеме, основные черты материнской платы NLX, это:

  • Стойка для карт расширения, находящаяся на правом краю платы. Причем материнская плата свободно отсоединяется от стойки и выдвигается из корпуса, например, для замены процессора или памяти.
  • Процессор, расположенный в левом переднем углу платы, прямо напротив вентилятора.
  • Вообще, группировка высоких компонентов, вроде процессора и памяти, в левом конце платы, чтобы позволить размещение на стойке полноразмерных карт расширения.
  • Нахождение на заднем конце платы блоков разъемов ввода/вывода одинарной (в области плат расширения) и двойной высоты, для размещения максимального количества коннекторов.

Вообще, стойка - очень интересная вещь. Фактически, это одна материнская плата, разделенная на две части – часть, где находятся собственно системные компоненты, и подсоединенная к ней через 340 контактный разъем под углом в 90 градусов часть, где находятся всевозможные компоненты ввода/вывода - карты расширения, коннекторы портов, накопителей данных, куда подключается питание. Таким образом, во первых повышается удобство обслуживания - нет необходимости получать доступ к ненужным в данный момент компонентам. Во вторых, производители в результате имеют большую гибкость - делается одна модель основной платы, и стойка под каждого конкретного заказчика, с интеграцией на ней необходимых компонентов.

Вообще, вам это описание ничего не напоминает? Стойка, крепящаяся на материнскую плату, на которую выносятся некие компоненты ввода/вывода, вместо того, чтобы быть интегрированными на материнскую плату, и все это служит для упрощения обслуживания, придания большей гибкости производителям, и т.д.? Правильно, через некоторое время после выхода спецификации NLX появилась спецификация AMR, описывающая подобную же идеологию для ATX плат.

В отличие от довольно строгих прочих спецификаций, NLX обеспечивает производителям куда большую свободу в принятии решений. Размеры материнской платы NLX колеблются от 8 х 10’’ до 9 х 13.6’’. NLX корпус должен уметь управляться как с этими двумя форматами, так и со всеми промежуточными. Обычно платы, вписывающиеся в минимальные размеры, обозначаются как Mini NLX. Стоит также упомянуть небезынтересную подробность: у NLX корпуса порты USB располагаются на передней панели - очень удобно для идентификационных решений типа e.Token.

Осталось только добавить, что по спецификации некоторые места на плате обязаны оставаться свободными, обеспечивая возможности для расширения функций, которые появятся в будущих версиях спецификации. Например, для создания на базе форм-фактора NLX материнских плат для серверов и рабочих станций.

WTX

Однако, с другого стороны, мощные рабочие станции и серверы спецификации AT и ATX тоже не вполне устраивают. Там свои проблемы, где стоимость играет не самую главную роль. На передний план выходят обеспечение нормального охлаждения, размещение больших объемов памяти, удобная поддержка многопроцессорных конфигураций, большая мощность блока питания, размещение большего количество портов контроллеров накопителей данных и портов ввода/вывода. Так в 1998 году родилась спецификация WTX. Ориентированная на поддержку двухпроцессорных материнских плат любых конфигураций, поддержку сегодняшних и завтрашних технологий видеокарт и памяти.

Особое внимание, пожалуй, стоит уделить двум новым компонентам -Board Adapter Plate (BAP)и Flex Slot.

В этой спецификации разработчики попытались отойти от привычной модели, когда материнская плата крепится к корпусу посредством расположенных в определенных местах крепежных отверстий. Здесь она крепится к BAP, причем способ крепления оставлен на совести производителя платы, а стандартный BAP крепится к корпусу.

Помимо обычных вещей, вроде размеров платы (14 х 16.75""), характеристик блока питания (до 850 Вт), и т.д., спецификация WTX описывает архитектуру Flex Slot - в каком-то смысле, AMR для рабочих станций. Flex Slot предназначен для улучшения удобства обслуживания, придания дополнительной гибкости разработчикам, сокращению выхода материнской платы на рынок. Выглядит Flex Slot карта примерно так:

На подобных картах могут размещаться любые PCI, SCSI или IEEE 1394 контроллеры, звук, сетевой интерфейс, параллельные и последовательные порты, USB, средства для контроля за состоянием системы.

Образцы WTX плат должны появиться в районе июня, а серийные образцы - в третьем квартале 1999 года.

FlexATX

И наконец, подобно тому, как из идей, заложенных в Baby AT и LPX появился ATX, так же развитием спецификаций microATX и NPX стало появление форм-фактора FlexATX. Это даже не отдельная спецификация, а всего лишь дополнение к спецификации microATX. Глядя на успех iMac, в котором, по сути, ничего нового кроме внешнего вида и не было, производители PC решили также пойти по этому пути. И первым стал как раз Intel, в феврале на Intel Developer Forum объявивший FlexATX - материнскую плату, по площади процентов на 25-30 меньшую, чем microATX.

Теоретически, с некоторыми доработками, FlexATX плата может быть использована в корпусах, соответствующих спецификациям ATX 2.03 или microATX 1.0. Но для сегодняшних корпусов плат хватает и без этого, речь шла как раз о вычурных пластиковых конструкциях, где и нужна такая компактность. Там, на IDF, Intel и продемонстрировал несколько возможных вариантов подобных корпусов. Фантазия дизайнеров разгулялась на славу - вазы, пирамиды, деревья, спирали, каких только не было предложено. Несколько оборотов из спецификации, чтобы углубить впечатление: «эстетическое значение», «большее удовлетворение от владения системой». Неплохо для описания форм-фактора материнской платы PC?

Flex - на то он и flex. Спецификация чрезвычайна гибка, и оставляет на усмотрение производителя множество вещей, которые прежде строго описывались. Так, производитель сам будет определять размер и размещение блока питания, конструкцию карты ввода/вывода, переход на новые процессорные технологии методы достижения низкопрофильного дизайна. Практически, более-менее четко определены только габариты - 9 х 7.5"". Кстати, по поводу новых процессорных технологий - Intel на IDF демонстрировал систему на FlexATX плате с Pentium III, который вплоть до осени пока заявлен только как Slot-1, а на фото - смотрите сами, да и в спецификации подчеркивается, что FlexATX платы только для Socket процессоров...

И напоследок, еще одно интересное откровение от Intel - года через три, в следующих спецификациях, блок питания возможно вообще будет находиться снаружи корпуса PC.

Линейный и импульсный источники питания

Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, - 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.

Есть два основных типа источников питания, которые выполняют перечисленные функции, - линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.

Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.

Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом - транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.

В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ). Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина - скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS).

Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.

Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило - около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.

Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то - для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные - тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.

⇡ Общая схема блока питания стандарта ATX

БП настольного компьютера представляет собой импульсный источник питания, на вход которого подается напряжение бытовой электросети с параметрами 110/230 В, 50-60 Гц, а на выходе есть ряд линий постоянного тока, основные из которых имеют номинал 12, 5 и 3,3 В. Помимо этого, БП обеспечивает напряжение -12 В, а когда-то еще и напряжение -5 В, необходимое для шины ISA. Но последнее в какой-то момент было исключено из стандарта ATX в связи с прекращением поддержки самой ISA.

На упрощенной схеме стандартного импульсного БП, представленной выше, можно выделить четыре основных этапа. В таком же порядке мы рассматриваем компоненты блоков питания в обзорах, а именно:

  1. фильтр ЭМП - электромагнитных помех (RFI filter);
  2. первичная цепь - входной выпрямитель (rectifier), ключевые транзисторы (switcher), создающие переменный ток высокой частоты на первичной обмотке трансформатора;
  3. основной трансформатор;
  4. вторичная цепь - выпрямители тока со вторичной обмотки трансформатора (rectifiers), сглаживающие фильтры на выходе (filtering).

⇡ Фильтр ЭМП

Фильтр на входе БП служит для подавления двух типов электромагнитных помех: дифференциальных (differential-mode) - когда ток помехи течет в разные стороны в линиях питания, и синфазных (common-mode) - когда ток течет в одном направлении.

Дифференциальные помехи подавляются конденсатором CX (крупный желтый пленочный конденсатор на фото выше), включенным параллельно нагрузке. Иногда на каждый провод дополнительно вешают дроссель, выполняющий ту же функцию (нет на схеме).

Фильтр синфазных помех образован конденсаторами CY (синие каплевидные керамические конденсаторы на фото), в общей точке соединяющими линии питания с землей, и т.н. синфазным дросселем (common-mode choke, LF1 на схеме), ток в двух обмотках которого течет в одном направлении, что создает сопротивление для синфазных помех.

В дешевых моделях устанавливают минимальный набор деталей фильтра, в более дорогих описанные схемы образуют повторяющиеся (полностью или частично) звенья. В прошлом нередко встречались БП вообще без фильтра ЭМП. Сейчас это скорее курьезное исключение, хотя, покупая совсем дешевый БП, можно, все-таки нарваться на такой сюрприз. В результате будет страдать не только и не столько сам компьютер, сколько другая техника, включенная в бытовую сеть, - импульсные БП являются мощным источником помех.

В районе фильтра хорошего БП можно обнаружить несколько деталей, защищающих от повреждения само устройство либо его владельца. Почти всегда есть простейший плавкий предохранитель для защиты от короткого замыкания (F1 на схеме). Отметим, что при срабатывании предохранителя защищаемым объектом является уже не блок питания. Если произошло КЗ, то, значит, уже пробило ключевые транзисторы, и важно хотя бы предотвратить возгорание электропроводки. Если в БП вдруг сгорел предохранитель, то менять его на новый, скорее всего, уже бессмысленно.

Отдельно выполняется защита от кратковременных скачков напряжения с помощью варистора (MOV - Metal Oxide Varistor). А вот никаких средств защиты от длительного повышения напряжения в компьютерных БП нет. Эту функцию выполняют внешние стабилизаторы со своим трансформатором внутри.

Конденсатор в цепи PFC после выпрямителя может сохранять значительный заряд после отключения от питания. Чтобы беспечного человека, сунувшего палец в разъем питания, не ударило током, между проводами устанавливают разряжающий резистор большого номинала (bleeder resistor). В более изощренном варианте - вместе с управляющей схемой, которая не дает заряду утекать при работе устройства.

Кстати, наличие фильтра в блоке питания ПК (а в БП монитора и практически любой компьютерной техники он тоже есть) означает, что покупать отдельный «сетевой фильтр» вместо обычного удлинителя, в общем-то, без толку. У него внутри все то же самое. Единственное условие в любом случае - нормальная трехконтактная проводка с заземлением. В противном случае конденсаторы CY, соединенные с землей, просто не смогут выполнять свою функцию.

⇡ Входной выпрямитель

После фильтра переменный ток преобразуется в постоянный с помощью диодного моста - как правило, в виде сборки в общем корпусе. Отдельный радиатор для охлаждения моста всячески приветствуется. Мост, собранный из четырех дискретных диодов, - атрибут дешевых блоков питания. Можно также поинтересоваться, на какой ток рассчитан мост, чтобы определить, соответствует ли он мощности самого БП. Хотя по этому параметру, как правило, имеется хороший запас.

⇡ Блок активного PFC

В цепи переменного тока с линейной нагрузкой (как, например, лампа накаливания или электроплитка) протекающий ток следует такой же синусоиде, как и напряжение. Но это не так в случае с устройствами, имеющими входной выпрямитель, - такими как импульсные БП. Блок питания пропускает ток короткими импульсами, примерно совпадающими по времени с пиками синусоиды напряжения (то есть максимальным мгновенным напряжением), когда подзаряжается сглаживающий конденсатор выпрямителя.

Сигнал тока искаженной формы раскладывается на несколько гармонических колебаний в сумме с синусоидой данной амплитуды (идеальным сигналом, который имел бы место при линейной нагрузке).

Мощность, используемая для совершения полезной работы (которой, собственно, является нагрев компонентов ПК), указана в характеристиках БП и называется активной. Остальная мощность, порождаемая гармоническими колебаниями тока, называется реактивной. Она не производит полезной работы, но нагревает провода и создает нагрузку на трансформаторы и прочее силовое оборудование.

Векторная сумма реактивной и активной мощности называется полной мощностью (apparent power). А отношение активной мощности к полной называется коэффициентом мощности (power factor) - не путать с КПД!

У импульсного БП коэффициент мощности изначально довольно низкий - около 0,7. Для частного потребителя реактивная мощность не составляет проблемы (благо она не учитывается электросчетчиками), если только он не пользуется ИБП. На бесперебойник как раз таки ложится полная мощность нагрузки. В масштабе офиса или городской сети избыточная реактивная мощность, создаваемая импульсными БП уже значительно снижает качество электроснабжения и вызывает расходы, поэтому с ней активно борются.

В частности, подавляющее большинство компьютерных БП оснащаются схемами активной коррекции фактора мощности (Active PFC). Блок с активным PFC легко опознать по единственному крупному конденсатору и дросселю, установленным после выпрямителя. В сущности, Active PFC является еще одним импульсным преобразователем, который поддерживает на конденсаторе постоянный заряд напряжением около 400 В. При этом ток из питающей сети потребляется короткими импульсами, ширина которых подобрана таким образом, чтобы сигнал аппроксимировался синусоидой - что и требуется для имитации линейной нагрузки. Для синхронизации сигнала потребления тока с синусоидой напряжения в контроллере PFC имеется специальная логика.

Схема активного PFC содержит один или два ключевых транзистора и мощный диод, которые размещаются на одном радиаторе с ключевыми транзисторами основного преобразователя БП. Как правило, ШИМ-контроллер ключа основного преобразователя и ключа Active PFC являются одной микросхемой (PWM/PFC Combo).

Коэффициент мощности у импульсных блоков питания с активным PFC достигает 0,95 и выше. Кроме того, у них есть одно дополнительное преимущество - не требуется переключатель сети 110/230 В и соответствующий удвоитель напряжения внутри БП. Большинство схем PFC переваривают напряжения от 85 до 265 В. Кроме того, снижается чувствительность БП к кратковременным провалам напряжения.

Кстати, помимо активной коррекции PFC, существует и пассивная, которая подразумевает установку дросселя большой индуктивности последовательно с нагрузкой. Эффективность ее невелика, и в современном БП вы такое вряд ли найдете.

⇡ Основной преобразователь

Общий принцип работы для всех импульсных БП изолированной топологии (с трансформатором) один: ключевой транзистор (или транзисторы) создает переменный ток на первичной обмотке трансформатора, а ШИМ-контроллер управляет скважностью их переключения. Конкретные схемы, однако, различаются как по количеству ключевых транзисторов и прочих элементов, так и по качественным характеристикам: КПД, форма сигнала, помехи и пр. Но здесь слишком многое зависит от конкретной реализации, чтобы на этом стоило заострять внимание. Для интересующихся приводим набор схем и таблицу, которая позволит по составу деталей опознавать их в конкретных устройствах.

Транзисторы Диоды Конденсаторы Ножки первичной обмотки трансформатора
Single-Transistor Forward 1 1 1 4
2 2 0 2
2 0 2 2
4 0 0 2
2 0 0 3

Помимо перечисленных топологий, в дорогих БП встречаются резонансные (resonant) варианты Half Bridge, которые легко опознать по дополнительному крупному дросселю (или двум) и конденсатору, образующим колебательный контур.

Single-Transistor Forward

⇡ Вторичная цепь

Вторичная цепь - это все, что находится после вторичной обмотки трансформатора. В большинстве современных блоков питания трансформатор имеет две обмотки: с одной из них снимается напряжение 12 В, с другой - 5 В. Ток сначала выпрямляется с помощью сборки из двух диодов Шоттки - одной или нескольких на шину (на самой высоконагруженной шине - 12 В — в мощных БП бывает четыре сборки). Более эффективными с точки зрения КПД являются синхронные выпрямители, в которых вместо диодов используются полевые транзисторы. Но это прерогатива по-настоящему продвинутых и дорогих БП, претендующих на сертификат 80 PLUS Platinum.

Шина 3,3 В, как правило, выводится от той же обмотки, что и шина 5 В, только напряжение понижается с помощью насыщаемого дросселя (Mag Amp). Специальная обмотка на трансформаторе под напряжение 3,3 В - экзотический вариант. Из отрицательных напряжений в текущем стандарте ATX осталось только -12 В, которое снимается со вторичной обмотки под шину 12 В через отдельные слаботочные диоды.

ШИМ-управление ключом преобразователя изменяет напряжение на первичной обмотке трансформатора, а следовательно - на всех вторичных обмотках сразу. При этом потребление тока компьютером отнюдь не равномерно распределено между шинами БП. В современном железе наиболее нагруженной шиной является 12-В.

Для раздельной стабилизации напряжений на разных шинах требуются дополнительные меры. Классический способ подразумевает использование дросселя групповой стабилизации. Три основные шины пропущены через его обмотки, и в результате если на одной шине увеличивается ток, то на других - падает напряжение. Допустим, на шине 12 В возрос ток, и, чтобы предотвратить падение напряжения, ШИМ-контроллер уменьшил скважность импульсов ключевых транзисторов. В результате на шине 5 В напряжение могло бы выйти за допустимые рамки, но было подавлено дросселем групповой стабилизации.

Напряжение на шине 3,3 В дополнительно регулируется еще одним насыщаемым дросселем.

В более совершенном варианте обеспечивается раздельная стабилизация шин 5 и 12 В за счет насыщаемых дросселей, но сейчас эта конструкция в дорогих качественных БП уступила место преобразователям DC-DC. В последнем случае трансформатор имеет единственную вторичную обмотку с напряжением 12 В, а напряжения 5 В и 3,3 В получаются благодаря преобразователям постоянного тока. Такой способ наиболее благоприятен для стабильности напряжений.

Выходной фильтр

Финальной стадией на каждой шине является фильтр, который сглаживает пульсации напряжения, вызываемые ключевыми транзисторами. Кроме того, во вторичную цепь БП в той или иной мере пробиваются пульсации входного выпрямителя, чья частота равна удвоенной частоте питающей электросети.

В состав фильтра пульсаций входит дроссель и конденсаторы большой емкости. Для качественных блоков питания характерна емкость не менее 2 000 мкФ, но у производителей дешевых моделей есть резерв для экономии, когда устанавливают конденсаторы, к примеру, вдвое меньшего номинала, что неизбежно отражается на амплитуде пульсаций.

⇡ Дежурное питание +5VSB

Описание компонентов блока питания было бы неполным без упоминания об источнике дежурного напряжения 5 В, который делает возможным спящий режим ПК и обеспечивает работу всех устройств, которые должны быть включены постоянно. «Дежурка» питается от отдельного импульсного преобразователя с маломощным трансформатором. В некоторых БП встречается и третий трансформатор, использующийся в цепи обратной связи для изоляции ШИМ-контроллера от первичной цепи основного преобразователя. В других случаях эту функцию выполняют оптопары (светодиод и фототранзистор в одном корпусе).

⇡ Методика тестирования блоков питания

Одним из основных параметров БП является стабильность напряжений, которая находит отражение в т.н. кросс-нагрузочной характеристике. КНХ представляет собой диаграмму, в которой на одной оси отложен ток или мощность на шине 12 В, а на другой - совокупный ток или мощность на шинах 3,3 и 5 В. В точках пересечения при разных значениях обеих переменных определяется отклонение напряжения от номинала на той или иной шине. Соответственно, мы публикуем две разные КНХ - для шины 12 В и для шины 5/3,3 В.

Цвет точки означает процент отклонения:

  • зеленый: ≤ 1%;
  • салатовый: ≤ 2%;
  • желтый: ≤ 3%;
  • оранжевый: ≤ 4%;
  • красный: ≤ 5%.
  • белый: > 5% (не допускается стандартом ATX).

Для получения КНХ используется сделанный на заказ стенд для тестирования блоков питания, который создает нагрузку за счет рассеивания тепла на мощных полевых транзисторах.

Другой не менее важный тест - определение размаха пульсаций на выходе БП. Стандарт ATX допускает пульсации в пределах 120 мВ для шины 12 В и 50 мВ - для шины 5 В. Различают высокочастотные пульсации (на удвоенной частоте ключа основного преобразователя) и низкочастотные (на удвоенной частоте питающей сети).

Этот параметр мы измеряем при помощи USB-осциллографа Hantek DSO-6022BE при максимальной нагрузке на БП, заданной спецификациями. На осциллограмме ниже зеленый график соответствует шине 12 В, желтый - 5 В. Видно, что пульсации находятся в пределах нормы, и даже с запасом.

Для сравнения приводим картину пульсаций на выходе БП старого компьютера. Этот блок изначально не был выдающимся, но явно не стал лучше от времени. Судя по размаху низкочастотных пульсаций (обратите внимание, что деление развертки напряжения увеличено до 50 мВ, чтобы колебания поместились на экран), сглаживающий конденсатор на входе уже пришел в негодность. Высокочастотные пульсации на шине 5 В находятся на грани допустимых 50 мВ.

В следующем тесте определяется КПД блока при нагрузке от 10 до 100% от номинальной мощности (путем сравнения мощности на выходе с мощностью на входе, измеренной при помощи бытового ваттметра). Для сравнения на графике приводятся критерии различных категорий 80 PLUS. Впрочем, большого интереса в наши дни это не вызывает. На графике приведены результаты топового БП Corsair в сравнении с весьма дешевым Antec, а разница не то чтобы очень велика.

Более насущный для пользователя вопрос - шум от встроенного вентилятора. Непосредственно измерить его вблизи от ревущего стенда для тестирования БП невозможно, поэтому мы измеряем скорость вращения крыльчатки лазерным тахометром - также при мощности от 10 до 100%. На нижеприведенном графике видно, что при низкой нагрузке на этот БП 135-миллиметровый вентилятор сохраняет низкие обороты и вряд ли слышен вообще. При максимальной нагрузке шум уже можно различить, но уровень все еще вполне приемлемый.

И совместимость блока питания с ИБП (источником бесперебойного питания).
Стандарт форм-фактора АТХ определяет размер, конструкцию и другие характеристики блока питания, а также допустимые отклонения напряжений при нагрузке. Этот стандарт мы и будет рассматривать.
На данный момент существуют такие версий стандарта АТХ:

  1. ATX 1.3
  2. ATX 2.0
  3. ATX 2.2
  4. ATX 2.3

Основные различия версий стандартов АТХ заключаются во введении более новых разъемов и новых линий питания. В первой серии в основном использовалась линия +5 В, а во второй +12 В.

Подробно о версиях ATX блока питания

Одним из главных разработчик форм-фактора ATX является компания . Вся документация расположена на официальном сайте www.formfactors.org, в них описаны требования к производителям материнских плат, блоков питания и корпусов. Требования и рекомендации к блокам питания регламентирует документ под названием ATX12V Power Supply Design Guide (PSDG).

Стандарт ATX12V был выпущен при переходе на новую архитектуру NetBurst. Главное нововведение в ATX12V, при сравнению с ATX 1.3, стала смена питания от +12В, а не от +5В и добавление нового разъема питания 4-pin +12В (разъема не должно быть, если максимальный возможный ток по +12В меньше 10А).


Версии ATX 1.1 , была представлена в августе 2000 года. О версиях 1.0, 1.2 упоминаний на официальном сайте нет, однако информацию о них можно прочитать на других ресурсах.


Разъемы блока питания стандарта ATX 1.1

Версия ATX 1.3 вышла в апреле 2003 года. Если сравнивать с предыдущей версией 1.1, то были введены новые требования по токам, убрано напряжение в -5В, добавлены требования к обработке сигнала PS_ON#, а также добавлено упоминание кабеля питания для .


Разъемы блока питания стандарта ATX 1.3


Версия ATX 2.0
, по сравнению с версией ATX 1.3, была значительно изменена. В первую очередь по токам — было увеличено энергопотребления по +12В и уменьшено по +3.3 и +5В. Была введена стандартизация блоков питания 350W и 400W (если выше 300W, то рекомендовано 16 AWG провода). Был заменен кабель питания ATX на 24-pin вместо 20-pin, а также добавлены +3.3, +5, +12В, COM («земля»), питание для устройств и кабель питания для .
Разъем 24-pin ATX полностью совместим с 20-pin ATX как механически, так и электрически.

В версиях ATX 2.01 и ATX 2.2 была введна стандартизация блока питания мощностью 450W; упрощены требования к токам по линиям +3.3В, +5В, +12В; повышены требования к КПД по +5В stand by.


Разъемы блока питания стандарта ATX 2.x

Самыми основными потребителя электроэнергии являются процессоры и видеокарты, питания которых проходит по линии в +12 В. Если установить, казалось бы, обычную конфигурацию процессора и видеокарты (к примеру: AMD Athlon 3000+ и GeForce 7600 GT), и обеспечить их питанием от блока мощностью 400 W, то «получим перекос» напряжений. Линия питания +12 В просядет, а линия +5 В перевесится. И как следствие – самостоятельная перезагрузка компьютера (или при запуске или при нагрузке), синие экраны смерти, выключение компьютера и т.д. Проблема в том, что старых блоков питания главной линией является +5 В, а для процессора и видеокарты нужна линия на +12 В, которая оказалась полностью перегруженной.