Тиристорный регулятор постоянного тока. Регулятор напряжения на транзисторе

Содержание:

В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах . Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.

Регулятор мощности на тиристоре широко применяется в системах светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.

Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.

Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.

При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится - светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.

В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки - он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.

Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.

Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.

Тиристорный регулятор мощности своими руками

Температура жала паяльника зависит от многих факторов.

  • Входного напряжения сети, которое не всегда стабильно;
  • Рассеивания тепла в массивных проводах или контактах, на которых производится пайка;
  • Температуры окружающего воздуха.

Для качественной работы требуется поддерживать тепловую мощность паяльника на определенном уровне. В продаже есть большой выбор электроприборов с регулятором температуры, однако стоимость таких устройств достаточно высокая.

Еще более продвинутыми являются паяльные станции. В таких комплексах расположен мощный блок питания, при помощи которого можно контролировать температуру и мощность в широких пределах.

Цена соответствует функциональности.
А что делать, если паяльник уже имеется, и покупать новый с регулятором не хочется? Ответ простой – если вы умеете пользоваться паяльником, сможете изготовить и дополнение к нему.

Регулятор для паяльника своими руками

Эта тема давно освоена радиолюбителями, которые как никто другой заинтересованы в качественном инструменте для паяния. Предлагаем вам несколько популярных решений с электросхемами и порядком сборки.

Двухступенчатый регулятор мощности

Такая схема работает на устройствах с питанием от сети переменного напряжения 220 вольт. В разрыв цепи одного из питающих проводников, параллельно друг другу подключается диод и выключатель. Когда контакты выключателя замкнуты – паяльник запитан в стандартном режиме.

При размыкании – ток проходит через диод. Ели вы знакомы с принципом протекания переменного тока – работа устройства будет понятно. Диод, пропуская ток лишь в одном направлении – отсекает каждый второй полупериод, понижая напряжение вдвое. Соответственно, в два раза снижается мощность паяльника.

В основном, такой режим питания используется при длительных паузах во время работы. Паяльник находится в дежурном режиме, и наконечник не сильно охлаждается. Для приведения температуры к 100% значению, включаем тумблер – и через несколько секунд можно продолжать пайку. При снижении нагрева меньше окисляется медное жало, продлевая срок службы прибора.

ВАЖНО! Проверка выполняется под нагрузкой, то есть с подключенным паяльником.

При вращении резистора R2 напряжение на входе в паяльник должно плавно изменяться. Схема помещается в корпусе накладной розетки, что делает конструкцию очень удобной.

ВАЖНО! Необходимо надежно изолировать компоненты термоусадочной трубкой, для предотвращения замыкания в корпусе – розетке.

Дно розетки закрывается подходящей крышкой. Идеальный вариант – не просто накладная, а герметичная уличная розетка. В данном случае выбран первый вариант.
Получается своеобразный удлинитель с регулятором мощности. Пользоваться им очень удобно, на паяльнике нет никаких лишних приспособлений, и ручка регулятора всегда под рукой.

Генератор является самым важным устройством в системе регулирования. В систему регулирования напряжения входят следующие элементы: выпрямитель, генератор и аккумулятор.

Для создания регулятора напряжения на 12 вольт своими руками достаточно иметь схему регулятора напряжения и простые радиодетали. В этой схеме нет стабилизаторов.

Для этого устройства потребуются следующие радиодетали:

  1. два резистора;
  2. два конденсатора на 1 тыс. мкФ;
  3. один транзистор;
  4. четыре диода.

На транзистор лучше поставить систему охлаждения, чтобы он не перегревался от нагрузок. Транзистор можно поставить более мощный, тогда можно будет заряжать этим устройством небольшие аккумуляторы.

Регулятор напряжения генератора

Генератор преобразует электричество. Без генератора не работала бы вся бортовая система машины. К обмотке магнита подключён специальный датчик. Простые пружины являются задающим устройством. Для устройства сравнения используется маленький рычаг. Группа контактов играет роль исполнительного устройства. Постоянное сопротивление представляет собой орган регулировки, который часто используется в машинах.

Во время работы генератора на его выходе возникает ток. Возникший ток переходит в обмотку магнитного реле. В результате появляется магнитное поле и под его воздействием плечо рычага раздвигается. На него начинает действовать пружина, и играет роль сравнивающего устройства. Когда ток превышает положенные значения, на магнитном реле контакты раздвигаются. В это время отключается постоянное сопротивление в цепи. Меньший ток поступает на обмотку.

Как сделать регулятор для трансформатора своими руками?

Регулятор напряжения для трансформатора коммутирует переменный ток при помощи тиристора. Тиристор является полупроводниковым прибором и используется для преобразования энергии большой мощности. Его управление весьма специфическое, так как он открывается импульсом тока, но закроется, когда ток будет ниже точки удержания.

Принцип работы регулятора напряжения для трансформатора

Для представленной схемы потребуются следующие элементы:

  • C1 на 0,34мкФ на 17В;
  • два резистора на 10 000 Ом 2 вт;
  • третий резистор на 100 Ом;
  • четвёртый резистор на 32 000 Ом;
  • пятый резистор 3 4 00 Ом;
  • шестой резистор - 4 2 00 Ом;
  • седьмой резистор - 4 6 00 Ом;
  • Четыре диода - Д246А;
  • стабилитрон - Д814Д;
  • тиристор - КУ202Н ;
  • транзистор - КТ361B;
  • транзистор - КТ315B.

Для схемы можно использовать отечественные радиодетали. Если четыре диода и тиристор поставить на охладители, тогда регулятор сможет давать нагрузку 9 ампер, когда в сети 220 вольт. В результате можно будет управлять током при нагрузке в 2,1 киловатт.

Силовых компонентов в схеме только два тиристора и диодный мост . Рассчитаны эти компоненты на ток в 9 ампер при 400 вольтах. Переменное электричество преобразуется в пульсирующее полярное электричество за счёт диодного моста. Тиристор отвечает за фазовое регулирование полупериодов. Пятнадцать вольт поступает на систему управления и ограничивается при помощи двух резисторов R 1, R 2 и одного стабилитрона VD 5.

Чтобы увеличить рассеиваемую мощность, используются последовательные резисторы. Сначала в месте соединения резистора R 6 и R 7 отсутствует ток, но затем оно увеличивается и на эмиттере VT 1 оно тоже увеличивается и после этого откроется транзистор. Два транзистора образуют слабый по мощности тиристор. Если ток поступает на базу перехода VT 1 больше допустимого значения, транзистор начинает открываться и отпирает VT 2. При этом VT 2 открывает тиристор.

Как сделать регулятор напряжения для ламп

Для того, чтобы лампа накаливания плавно начинала гореть ярче, и создаётся регулятор напряжения. В представленной схеме применяется недорогой микроконтроллер. В этой схеме можно использовать дискретные элементы. В представленной схеме применяются 2 кнопки для регулировки яркости лампы. В схеме используется одна лампа.

Рассмотрим, по какому принципу работает представленная схема. Как только ток начинает поступать на контакт Х1, напряжение за счёт элементов R 1, C 1, VD 2 и VD 3 выравнивается и уменьшается до 5,2 В. Конденсаторы C 2, C 3 представленные на схеме фильтруют его. Микропрограмма на микроконтроллере начинает опрашивать копки S. B. На выходных цепях микросхемы D 1 и резистора R 3 образуется прерывания, если напряжение от сети начинает проходить через ноль из-за этого срабатывает таймер TMRO на микроконтроллере, и начинается загрузка записанных данных.

Как только таймер перестаёт считать, возникает прерывание , из-за этого в порт GP 5 выдаётся импульс продолжительностью в 14 мкс. В результате на транзисторе при помощи импульса открывается ключ, а он открывает симистор . Его угол открывания начнёт постепенно меняться. Возможно, увидеть в результате постепенное увеличение напряжения. Кнопки S. B. влияют на открытие симистора в разные стороны.

Полученные данные записываются на память контролера в результате яркость будет увеличивать до записанного значения. Для подавления скачков напряжения выше заданной нормы используется R 2. В представленной схеме используется симистор VS 1 небольшой мощности. У него максимальный ток составляет 2 А.

Трёхуровневый регулятор напряжения

Ток проходит через диод, а напряжение снижается на 0,4 вольта, но во многом всё зависит от самого технических параметров диода. Когда оно падает, регулятор заставляет генератор выдавать ток большего значения. Диодная схема применяется для создания трёхуровневого регулятора напряжения. Единственная разница заключается в том, что для трёхуровневого регулятора напряжения понадобиться добавить переключатель и дополнительный диод.

Диод подойдёт любой рассчитанный на ток не меньше 6А . В результате получается вот такая схема. Если повернуть переключатель в одном положении появляется 14,1 вольт, второе положение переключателя даёт 15,3 вольта, третье положение даёт 14,7 вольт.

Регулятор напряжения на 12 вольт




Всем привет! В прошлой статье я расказывал, как сделать . Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов:

1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм - будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный KH102).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.

Схема регулятора переменного напряжения:

Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата - её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei - .



Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.


Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:


И в конце концов последний этап - это ставим на симистор радиатор.


А вот фото готового устройства уже в корпусе.