Охранные системы с функцией распознавания лиц: принцип работы, установка и сферы применения. Ученые изобрели новый способ обмана систем распознавания лиц

Технологии распознавания лиц применяются в самых разнообразных сферах :

  • обеспечение безопасности в местах большого скопления людей;
  • системы охраны, избежание незаконного проникновения на территорию объекта, поиск злоумышленников;
  • фейс-контроль в сегменте общепита и развлечений, поиск подозрительных и потенциально опасных посетителей;
  • верификация банковских карт;
  • онлайн-платежи;
  • контекстная реклама, цифровой маркетинг , Intelligent Signage и Digital Signage ;
  • фототехника;
  • криминалистика;
  • телеконференции;
  • мобильные приложения;
  • поиск фото в больших базах фотоснимков;
  • отметка людей на фото в социальных сетях и многие другие.

IBM выпустила базу из 1 млн фотографий лиц для обучения биометрических систем

2018

Распознавание лиц не работает в каждом втором смартфоне

В начале января 2019 года некоммерческая организация из Голландии провела тестирование 110 моделей смартфонов и обнаружила, что функция распознавания лиц, используемая для блокировки устройств, не работает должным образом более чем на каждом втором аппарате.

Исследование, проведенное Consumentenbond и его международными партнерами, показало, что для разблокировки 42 из протестированных смартфонов достаточно иметь фотографию владельца телефона. Подойдет любая фотография, например, полученная из социальных сетей, с камер видеонаблюдения или любым другим способом.

Программная технология распознавания лиц, доступная владельцам многих смартфонов под управлением Android, достигла такого уровня развития, что уже не позволяет обмануть себя фотографией владельца

Результаты этого исследования вызывают беспокойство у пользователей и служб безопасности. Использование напечатанной фотографии лица владельца - это первая проверка функции распознавания лиц, которую используют обычные пользователи и тестеры. Но главное, это первая уловка, которой попробуют воспользоваться злоумышленники для взлома смартфона , защищенного идентификацией лица, прежде чем перейти к более сложным атакам, которые включают создание масок или 3D-печатных голов владельца телефона.

Любая система распознавания лиц, которая не проходит «фототест», обычно считается бесполезной. Согласно Consumentenbond, модели Asus , BlackBerry , Huawei , Lenovo , , Nokia , Samsung , Sony и Xiaomi не прошли подобные тесты. В случае с Sony провалили тест абсолютно все модели. Еще шесть моделей - Honor и шесть моделей LG - прошли тестирование только в «строгом» режиме. Хотя по результатам этого теста пользователи могут заключить, что включать распознавание лиц не стоит, 68 устройств, включая флагманские модели Apple iPhone XR и , выдержали эту простую атаку, как и многие другие высокопроизводительные модели на Android от Samsung, Huawei, OnePlus и Honor.

Полный список моделей, которые прошли фототест, можно найти на сайте Consumentenbond.

Самые популярные системы распознавания лиц в Китае

Одной из наиболее распространенных программ для распознавания лиц является Face++ , которая используется для управления доступом повсюду – от железнодорожных вокзалов Пекина до офисного здания Alibaba .

Сама Alibaba разработала собственные системы, которые будут применяться в шанхайском метро для идентификации пассажиров с помощью их лица и голоса.

Полицейские, следящие за безопасностью на одном из китайских железнодорожных вокзалов, носят специальные солнечные очки с функцией распознавания лиц. Устройство способно идентифицировать человека за 100 миллисекунд и уже не раз помогало правоохранительным органам в поимке преступников.

В китайском Шеньчжене впервые в мире заработала камера фиксации нарушений пешеходами. Она установлена на одном из напряженных переходов города и следит за людьми, перебегающими дорогу на запрещающий сигнал светофора. Для определения личности нарушителя камера использует технологию распознавания лиц.

На вступительных экзаменах в колледжи по всей стране используется распознавание лиц и отпечатков пальцев, чтобы гарантировать, что экзаменуемые являются настоящими студентами.

После ряда похищений детей некоторые детские сады открывают двери только тем людям, чьи лица зарегистрированы в системе. В одном из детских садов установили более 200 камер для обеспечения безопасности.

Даже в некоторых туалетах установили автоматы с распознаванием лиц. Аппарат выдает 60 см туалетной бумаги одному человеку не чаще чем раз в девять минут.

У Alibaba есть магазины с безналичной оплатой Hema, в которых пользователи сканируют лицо и вводят номер телефона для проведения платежей через систему Alipay .

Компания Alibaba совместно с производителем гостиничных информационных систем Shiji установила систему распознавания лиц для регистрации в 50 отелях. Китайские туристы, прибегающие к услугам онлайн-турагентства Fliggy (принадлежащего Alibaba), могут сначала забронировать в нем отель, а затем, используя «маску» своего лица быстро заселиться в отель и оформить депозит.

В Пекине решили бороться с незаконной арендой госжилья с помощью умных замков, распознающих хозяев по лицу

В конце декабря 2018 года стало известно, что в государственном жилье Пекина ускоренными темпами внедряются «умные» замки с технологией распознавания лиц. С их помощью местные власти усиливают меры против незаконной пересдачи в аренду государственного жилья, предоставляемого малообеспеченным семьям по льготным расценкам.

"Умный" замок с распознаванием лиц

Предполагается, что к концу июня 2019 года замки со встроенной системой сканирования лиц будут использоваться во всех программах предоставления льготного госжилья в Пекине с участием 120 тыс. квартиросъемщиков, сообщает The South China Morning Post со ссылкой на пекинское издание The Beijing News.

Сопоставляя информацию, полученную при сканировании лиц посетителей, с изображениями из сохраненной базы данных, система распознает хозяев и не открывает двери незнакомцам, рассказал в интервью Beijing News директор информцентра при Пекинском государственном жилищном центре Шан Чжэньюй (Shan Zhenyu).

Кроме того, система может использоваться для присмотра за одинокими пожилыми людьми. Если престарелый человек в течение определенного периода времени не выходит и не заходит в дом, управляющему по недвижимости будет отправлено уведомление о необходимости зайти с проверкой.

В таких крупных мегаполисах, как Пекин, аренда жилья очень дорогая. В среднем съемная квартира в столице Поднебесной обходится примерно в 5 тыс. юаней в месяц (около $730), тогда как арендная плата за госжилье может составлять менее 2 тыс. юаней в месяц ($290).

Власти Пекина надеются, что умные замки, узнающие хозяев по лицу, повысят безопасность, предотвратят незаконную передачу в субаренду и гарантируют, что льготой пользуются только действительно нуждающиеся люди.

По состоянию на конец 2018 года смарт-замки с распознаванием лиц задействованы в 47 программах предоставления льготного госжилья в Пекине. С их помощью получено порядка 100 тысяч скан-изображений лиц арендаторов и членов их семей.

Китайский Airbnb устанавливает в домах «умные» замки с распознаванием лиц

Провал в Лондоне. Система распознавания лиц в метро никого не узнает

В конце декабря 2018 года стало ясно, что развернутая в лондонском метро система распознавания лиц никого не узнает. Лондонских полицейских критикуют за использование немаркированных фургонов для проверки спорных и неточных технологий автоматического распознавания лиц у рождественских покупателей. Подробнее .

Туалеты с распознаванием лиц в Китае сокращают потребление туалетной бумаги

В конце 2018 года стало известно о растущем в Китае числе общественных туалетов с системой распознавания лиц, которая позволяет экономить туалетную бумагу.

В декабре такой туалет заработал в Baotu Spring Park в городе Цзинань (провинция Шаньдун), расположенный в 400 км к югу от Пекина. В этой уборной находится автомат, выдающий туалетную бумагу после сканирования лица. За один подход аппарат выдает примерно 70 см бумаги, а для получения дополнительной порции санитарно-гигиеническго изделия этому же человеку нужно подождать 9 минут и снова поднести голову к камере для идентификации.

Для разблокировки смартфона хакеры и полиция печатают голову владельца на 3D-принтере

В 14 американских аэропортах заработала система распознавания лиц

20 августа 2018 года в 14 американских аэропортах заработала система распознавания лиц. О ее эффективности рассказала Служба таможенного и пограничного контроля (U.S. Customs and Border Patrol, CBP).

Как сообщается на сайте ведомства, 22 августа 26-летний пассажир, прилетевший в Вашингтонский аэропорт имени Даллеса из Сан-Паулу (Бразилия), предъявил на пункте контроля паспорт гражданина Франции. Однако биометрическая система выявила, что лицо мужчины не совпадает с фотографией в документе.

В аэропорту Вашингтона система распознавания лиц поймала мужчину - он пытался въехать в США с чужим паспортом

Когда прибывшего в США отправили на дополнительный досмотр, он «явно нервничал» и, как выяснилось, не зря. В его туфле нашли удостоверение личности на имя гражданина республики Конго, которым на самом деле являлся задержанный. Теперь за попытку въехать в США под фальшивыми документами ему грозит тюремное заключение.

Системы распознавания лиц полиции Британии оказались бесполезными

В мае 2018 года стало известно о больших проблемах в системах распознавания лиц, которые используют британские полицейские. В результате может быть подано большое количество исков - этот вопрос стал «приоритетным» для Управления комиссара по информации (Information Commissioner"s Office), приводит BBC слова представителя регулятора Элизабет Денхем (Elizabeth Denham).

Британская правозащитная организация Big Brother Watch опубликовала результаты исследования, показавшие «ошеломляющее» количество невиновных людей, из которых технология распознавания лиц сделала потенциальных преступников.

Так, с мая 2017 года по март 2018-го система выдала для полиции Южного Уэльса 2685 совпадений людей с базой данных подозреваемых, однако 2451 из них оказались ложными.

Лондонские правоохранительные органы применяли технологию идентификации лиц на карнавале Ноттинг-Хилл в 2017 году. Показания системы оказались ошибочными в 98% случаев, когда срабатывал сигнал о том, что якобы замечен подозреваемый из полицейской базы данных. Решение устроено так, что при выявлении возможного нарушителя закона на пульт дежурного в ближайшее отделение полиции поступает сигнал.

Полиция начала винить выдающие некачественную картинку камеры и то, что систему использовали в первый раз, но и в последующих 15 мероприятиях (футбольные матчи, фестивали, парады), во время которых задействовали технологию, результат не улучшился. Только на трех система не ошиблась ни разу.

В полиции также рассказали, что за девять месяцев работы системы распознавания лиц она верно отметила более 2 тыс. человек, что привело к 450 арестам. При этом никто не попал в заключение ошибочно. Это объясняется тем, что помимо работы алгоритмов в работе задействованы люди, которые проверяют срабатывания и принимают окончательные решения.

Ученые изобрели новый способ обмана систем распознавания лиц

С каждым днем системы распознавания лиц становятся сложнее и все чаще используются в повсеместной жизни, к примеру, в минувшем году компания Apple выпустила смартфон iPhone X, оснащенный биометрической системой Face ID . Однако подобные системы можно обмануть, в частности, с помощью инфракрасных светодиодов. Инфракрасные лучи не видимы простому глазу, однако большинство камер могут улавливать инфракрасные сигналы .

Китайские исследователи создали бейсбольную кепку, оснащенную миниатюрными инфракрасными светодиодами, которые размещены таким образом, что инфракрасные лучи, падающие на лицо владельца головного убора, помогают не только скрыть его личность, но и «выдать себя за другого человека для прохождения основанной на распознавании лица аутентификации». Данная задача более сложная и требует использования глубокой нейронной сети для распознавания статичного изображения лица и правильного проецирования инфракрасных лучей на лицо самозванца.

Для проверки своей теории исследователи использовали фотографии четырех случайных людей, им удалось обмануть системы распознавания лиц в 70% случаев при условии наличия небольшого внешнего сходства между жертвой и самозванцем.

«На основании наших находок и атак, мы можем сделать вывод, что существующие на сегодняшний день технологии распознавания лиц сложно назвать безопасными и надежными в аспекте критических сценариев, таких как аутентификация и наблюдение», - заключили исследователи. Они также добавили, что инфракрасные светодиоды можно прятать не только в бейсбольных кепках, но также в зонтах, волосах или париках.

Российские близнецы требуют с Apple 20 млн за то, что iPhone X не видит между ними разницы

Братья-близнецы из Владимира - 26-летние Александр и Илья Тунчики - направили в российский офис компании Apple претензию в связи с тем, что система распознавания лиц Face ID на их смартфонах iPhone X одинаково идентифицирует обоих молодых людей, тем самым, по их мнению, нарушая защиту персональных данных .

Обиженные пользователи требуют от компании усовершенствовать технологию, а также компенсировать моральный ущерб в размере 20 млн руб., сообщил в январе 2018 год ТАСС представляющий интересы братьев юрист Роман Ардыкуца.

«Близнецы приобрели… iPhone X именно ради того, чтобы воспользоваться функцией разблокировки экрана при помощи лиц. К их разочарованию, каждый аппарат узнает обоих братьев, о чем они не были предупреждены при покупке, эта информация отсутствует в инструкции. Именно поэтому заявители просят компанию доработать технологию», - пояснил он.

2017

Распознавание лиц в ритейле

В ноябре 2017 года телеканал CNBC выпустил сюжет, рассказывающий о внедрении систем распознавания лиц в магазинах. Ритейлеры используют такие технологии для сбора данных о клиентах и подбора предложений на основе соответствующих данных.

В ритейле распознавание лиц применяется в основном для того, чтобы мотивировать покупателей. Например, если человека узнают на входе в магазин и видят его историю покупок, то сотрудники магазина лучше знают, что ему предложить. Так, если он покупал в магазине электроники телевизор, сотрудник его узнает, обратится по имени и предложит приобрести новый пульт.

По данным гонконгской ИТ-компании Jardine One Solution (JOS), многие розничные сети применяют возможности распознавания лиц для того, чтобы собирать данные о посетителях своих магазинов.


Сама JOS помогает розничным компаниям с распознаванием лиц клиентов с целью составления профиля покупателей и отслеживания их действий в торговой точке. Речь идет о таких данных, как количество посетителей, их возраст, пол, этническая принадлежность. Такие сведения помогают магазинам лучше знать о потоке клиентов и подбирать персонализированные предложения для них, отметил Лант.

К примеру, используя анализ данных, поступающих из систем распознавания лиц, можно подбирать музыку, играющую в торговом зале.

В JOS говорят, все полученные данные клиентов анонимны, однако вопрос конфиденциальности остается актуальным. Технологии не препятствуют внедрению таких систем, но есть опасения, связанные с личными данными и культурой, признает Марк Лант.

Он добавил, что ритейлеры тратят огромные средства на предотвращение утечек данных и защиту информации. Скандал, связанный с хищением данных миллионов клиентов Uber , показывает, что компании не могут чувствовать себя в безопасности, а пользователи должны проявлять осторожность, раскрывая персональную информацию, считает управляющий директор JOS.

Основатель и генеральный директор компании HeadCount (предлагает магазинам услуги по мониторингу и улучшению посещаемости) Марк Риски (Mark Ryski) говорит, что биометрические данные, в том числе те, которые генерируют системы распознавания лиц, относятся к категории деликатным и имеют большой потенциал - особенно в целях обеспечения безопасности и улучшения качества обслуживания клиентов.

Пример использования системы распознавания лиц в магазинах

По мнению старшего вице-президента по стратегии обслуживания клиентов компании InMoment Бреннана Уилки (Brennan Wilkie), у использования оборудования для распознавания лиц в торговых помещениях действительно есть большой потенциал. Например, такие устройства способны сопоставить выражение лица клиента в магазине с данными о нем, его лояльности бренду и других покупках. Для того, чтобы смягчить проблему конфиденциальности пользователей, магазинам нужно продемонстрировать клиентам, какие преимущества они получают, как это было в свое время с кассами самообслуживания или с банковскими картами с чипами, уверен он.

Согласно прогнозу аналитической компании MarketsandMarkets , объем мирового рынка систем распознавания лиц достигнет $6,8 млрд к 2021 году.

Авторизацию в iPhone X по лицу взломали маской за $150. Видео

Как обойти сканер лица на Samsung Galaxy Note 8

Веб-дизайнер Мэл Тахон опубликовал в своем твиттере видео о том, как легко обойти сканер лица на Galaxy Note 8. В своем эксперименте Тахон держит два Note 8 напротив друг друга, на одном из которых - его фото, а на другом - включенная система сканирования лица.

Обман биометрической защиты Samsung Galaxy S8

Исследователям удалось выдать белого мужчину за Миллу Йовович почти в 90 процентах случаев. Женщину азиатской внешности в специальных очках компьютер в стольких же процентах случаев принимал за мужчину с Ближнего Востока.

Кроме того, они попробовали свой метод на коммерческой программе Face++, которая используется в Alibaba для авторизации платежей. В этом случае они не сажали человека в очках перед камерой, а сначала делали его фотографию в очках и потом загружали ее в программу. В итоге им удалось выдать одного человека за другого в 100 процентах случаев.

Общественные организации США против распознавания лиц

Коалиция из 52 общественных и правозащитных организаций направила в Министерство юстиции письмо с просьбой расследовать чрезмерное использование технологий распознавания лиц в работе органов правопорядка. Также коалицию беспокоит неодинаковая точность машинного распознавания лиц разной расовой принадлежности, которая может стать основой для проявления расизма со стороны сотрудников органов .

Особенно этими технологиями злоупотребляет местная полиция, полиция штатов и ФБР , гласит письмо. Коалиция просит Министерство юстиции в первую очередь заняться проверкой тех полицейских департаментов, которые уже находятся под следствием в связи с предвзятым отношением к гражданам с небелым цветом кожи.

Основанием для просьбы послужили результаты исследования Центра приватности и технологий Школы права университета Джорджтауна. Исследование показало, что лица половины взрослого населения США при разных обстоятельствах были отсканированы правительственным идентификационным ПО.

Исследователи отмечают, что в США на сегодняшний день не существует серьезных правил, регулирующих использование этого ПО. По словам Альваро Бедойи (Alvaro Bedoya), директора Центра и соавтора исследования, сфотографировавшись на водительские права, человек уже попадает в базу лиц полиции или ФБР. Это особенно существенно с учетом того, что распознавание лиц бывает неточным, и в этом случае может наносить вред невинным гражданам.

Примеры проектов в HSBC, MasterCard и Facebook

Услуга будет доступна для корпоративных клиентов НSBC. Через банковское мобильное приложение они смогут открывать счета по одному щелчку селфи. Банк же подтверждает личность клиента с помощью программы распознавания лиц. Фотография сличается со снимками, ранее загруженными в систему, например, с паспорта или водительских прав. Предполагается, что новый сервис избавит от необходимости запоминать цифровые коды и сократит время идентификации.

Чтобы воспользоваться данной опцией, пользователям необходимо будет скачать специальное приложение на свой компьютер, планшет или смартфон. Затем посмотреть в камеру или использовать сканер устройства для распознавания отпечатков пальцев (если он имеется на устройстве). Однако (по крайней мере, на данный момент), пользователям все еще потребуется дополнительно предоставлять данные своей банковской карты. Лишь в том случае, если потребуется дополнительная идентификация, то пользователи смогут воспользоваться вышеописанной опцией.

Благодаря такому новому подходу, MasterCard собирается защитить пользователей от поддельных онлайн-транзакций, которые осуществляются с помощью краденых паролей пользователей, а также предоставить пользователям более удобную систему авторизации. Компания сообщила, что 92% людей, которые тестировали эту новую систему, предпочли ее традиционным паролям.

Некоторые эксперты сомневаются в защите информации от того, чтобы кибер-преступники не смогли легко получить отпечатки пальцев пользователя или фотографию его лица в том случае, если транзакция осуществляется при небезопасном использовании публичной сети Wi-Fi .

Эксперты по кибер-безопасности утверждают, что система должна включать несколько уровней безопасности для предотвращения потенциальной кражи фотографий лица пользователей. Ведь онлайн-платежи представляют собой привлекательную мишень для кибер-преступников.

В конце 2015 года группа экспертов из Технического Университета Берлина продемонстрировала возможность извлечения PIN -кода любого смартфона при использовании сэлфи пользователя. Для этого они считывали данный код, который отображался в глазах пользователя, когда он вводил его на своем телефоне OPPO N1. Хакеру достаточно просто перехватить контроль над фронтальной камерой смартфона для выполнения этой элементарной атаки. Смог бы кибер-преступник перехватить контроль за устройством пользователя, сделать его сэлфи и после этого выполнить онлайн-платежи с помощью набранного пароля, который хакер увидел в глазах своей жертвы?

MasterCard настаивает на том, что ее механизмы обеспечения безопасности будут в состоянии обнаруживать подобное поведение. Например, пользователям необходимо будет мигать для приложения, чтобы продемонстрировать «живой» образ человека, а не его фотографию или предварительно снятое видео. Система сопоставляет изображение лица пользователя, конвертируя его в код и передавая его по безопасному протоколу через Интернет в MasterCard. Компания обещает, что эта информация будет безопасно храниться на ее серверах, при этом сама компания не сможет реконструировать лицо пользователя.

Летом 2016 года стало известно, что исследователи обошли систему биометрической аутентификации, используя фото из Facebook . Атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам .

Команда исследователей из Университета штата Северная Каролина продемонстрировали метод обхода систем безопасности, построенных на технологии распознавания лиц, при помощи доступных фотографий пользователей соцсетей. Как поясняется в докладе специалистов, атака стала возможной благодаря потенциальным уязвимостям, присущим социальным ресурсам.

«Не удивительно, что личные фото, размещенные в социальных сетях, могут представлять угрозу конфиденциальности. Большинство крупных соцсетей рекомендуют пользователям установить настройки конфиденциальности при публикации фото на сайте, однако многие из этих снимков часто доступны широкой публике или могут быть просмотрены только друзьями. Кроме того, пользователи не могут самостоятельно контролировать доступность своих фото, размещенных другими подписчиками», - отмечают ученые.

В рамках эксперимента исследователи отобрали фотографии 20 добровольцев (пользователей Facebook, Google+ , LinkedIn и других социальных ресурсов). Затем они использовали данные снимки для создания трехмерных моделей лиц, «оживили» их с помощью ряда анимационных эффектов, наложили на модель текстуру кожи и откорректировали взгляд (при необходимости). Получившиеся модели исследователи протестировали на пяти системах безопасности, четыре из них удалось обмануть в 55-85% случаев.

Согласно отчету компании Technavo (зима 216 года) одной из ключевых тенденций, оказывающих положительное влияние на рынок технологий биометрической идентификации по лицу (facial recognition ), является внедрение мультимодальных биометрических систем в таких секторах, как здравоохранение , банковский, финансовый сектор, сектор ценных бумаг и страхования, сектор перевозок, автомобильный транспорт, а также в госсекторе.

Основатель проекта Биньямин Леви (Benjamin Levy) рассказал, что благодаря высокому уровню защищенности IsItYou сможет распознать 99999 из 100 тысяч случаев обмана. Леви попытался убедить банки о необходимости внедрения его системы уже в следующем году. Она будет использоваться для проведения финансовых транзакций.

Google уже использует функцию распознавания лица в Android . Таким образом можно разблокировать устройство под управлением этой мобильной ОС . Тем не менее, разработчики неоднократно утверждали, что распознавание лица недостаточно защищено по сравнению с классическими способами. В связи с этим эксперты засомневались в утверждениях Биньямина Леви.

Мариос Саввидис (Marios Savvedes) из университета Карнеги-Меллон занимается исследованием функции распознавания лица. Он считает, что самостоятельно проведенное испытание на защищенность IsItYou не может быть надежным.

Такого же мнения придерживается мировой эксперт в области биометрии доктор Массимо Тистарелли (Massimo Tistarelli). Он сказал, что в Европе проводится полномасштабный научный проект Tabula Rasa, главная цель которого - разработка защиты от мошенничества для биометрических способов идентификации. По его словам, перед выходом на рынок следует провести ряд независимых исследований, подтверждающих эффективность продукта.

Первым шагом на нашем конвейере является обнаружение лиц . Совершенно очевидно, что необходимо выделить все лица на фотографии, прежде чем пытаться распознавать их!

Если вы использовали в последние 10 лет какую-либо фотографию, то вы, вероятно, видели, как действует обнаружение лиц:

Обнаружение лиц - великое дело для фотокамер. Если камера может автоматически обнаруживать лица, то можно быть уверенным, что все лица окажутся в фокусе, прежде чем будет сделан снимок. Но мы будем использовать это для другой цели - нахождение областей изображения, которые надо передать на следующий этап нашего конвейера.

Обнаружение лица стало господствующей тенденцией в начале 2000-х годов, когда Пол Виола и Майкл Джонс изобрели способ обнаруживать лица , который был достаточно быстрым, чтобы работать на дешёвых камерах. Однако сейчас существуют намного более надёжные решения. Мы собираемся использовать метод, открытый в 2005 году , - гистограмма направленных градиентов (коротко, HOG ).

Для обнаружения лиц на изображении мы сделаем наше изображение чёрно-белым, т.к. данные о цвете не нужны для обнаружения лиц:

Затем мы рассмотрим каждый отдельный пиксель на нашем изображении последовательно. Для каждого отдельного пикселя следует рассмотреть его непосредственное окружение:

Нашей целью является выделить, насколько тёмным является текущий пиксель по сравнению с пикселями, прямо примыкающими к нему. Затем проведём стрелку, показывающую направление, в котором изображение становится темнее:


При рассмотрении этого одного пикселя и его ближайших соседей видно, что изображение темнеет вверх вправо.

Если повторить этот процесс для каждого отдельного пикселя на изображении, то, в конечном итоге, каждый пиксель будет заменён стрелкой. Эти стрелки называют градиентом , и они показывают поток от света к темноте по всему изображению:

Может показаться, что результатом является нечто случайное, но есть очень хорошая причина для замены пикселей градиентами. Когда мы анализируем пиксели непосредственно, то у тёмных и светлых изображений одного и того же человека будут сильно различающиеся значения интенсивности пикселей. Но если рассматривать только направление изменения яркости, то как тёмное, так и светлое изображения будут иметь совершенно одинаковое представление. Это значительно облегчает решение проблемы!

Но сохранение градиента для каждого отдельного пикселя даёт нам способ, несущий слишком много подробностей. Мы, в конечном счёте, не видим леса из-за деревьев . Было бы лучше, если бы мы могли просто видеть основной поток светлого/тёмного на более высоком уровне, рассматривая таким образом базовую структуру изображения.

Для этого разбиваем изображение на небольшие квадраты 16х16 пикселей в каждом. В каждом квадрате следует подсчитать, сколько градиентных стрелок показывает в каждом главном направлении (т.е. сколько стрелок направлено вверх, вверх-вправо, вправо и т.д.). Затем рассматриваемый квадрат на изображении заменяют стрелкой с направлением, преобладающим в этом квадрате.

В конечном результате мы превращаем исходное изображение в очень простое представление, которое показывает базовую структуру лица в простой форме:


Исходное изображение преобразовано в HOG-представление, демонстрирующее основные характеристики изображения независимо от его яркости.

Чтобы обнаружить лица на этом HOG-изображении, всё, что требуется от нас, это найти такой участок изображения, который наиболее похож на известную HOG-структуру, полученную из группы лиц, использованной для обучения:

Используя этот метод, можно легко находить лица на любом изображении:

Если есть желание выполнить этот этап самостоятельно, используя Python и dlib, то имеется программа , показывающая, как создавать и просматривать HOG-представления изображений.

Шаг 2. Расположение и отображение лиц

Итак, мы выделили лица на нашем изображении. Но теперь появляется проблема: одно и то же лицо, рассматриваемое с разных направлений, выглядит для компьютера совершенно по-разному:


Люди могут легко увидеть, что оба изображения относятся к актёру Уиллу Ферреллу, но компьютеры будут рассматривать их как лица двух разных людей.

Чтобы учесть это, попробуем преобразовывать каждое изображение так, чтобы глаза и губы всегда находились на одном и том же месте изображения. Сравнение лиц на дальнейших шагах будет значительно упрощено.

Для этого используем алгоритм, называемый «оценка антропометрических точек» . Есть много способов сделать это, но мы собираемся использовать подход, предложенный в 2014 году Вахидом Кэземи и Джозефином Салливаном .

Основная идея в том, что выделяется 68 специфических точек (меток ), имеющихся на каждом лице, - выступающая часть подбородка, внешний край каждого глаза, внутренний край каждой брови и т.п. Затем происходит настройка алгоритма обучения машины на поиск этих 68 специфических точек на каждом лице:


68 антропометрических точек мы располагаем на каждом лице

Ниже показан результат расположения 68 антропометрических точек на нашем тестовом изображении:


СОВЕТ ПРОФЕССИОНАЛА НОВИЧКУ: этот же метод можно использовать для ввода вашей собственной версии 3D-фильтров лица реального времени в Snapchat!

Теперь, когда мы знаем, где находятся глаза и рот, мы будем просто вращать, масштабировать и сдвигать изображение так, чтобы глаза и рот оказались отцентрованы как можно лучше. Мы не будем вводить какие-либо необычные 3D-деформации, поскольку они могут исказить изображение. Мы будет делать только базовые преобразования изображения, такие как вращение и масштабирование, которые сохраняют параллельность линий (т.н. аффинные преобразования):

Теперь независимо от того, как повёрнуто лицо, мы можем отцентровать глаза и рот так, чтобы они были примерно в одном положении на изображении. Это сделает точность нашего следующего шага намного выше.

Если у вас есть желание попытаться выполнить этот шаг самостоятельно, используя Python и dlib, то имеется программа для нахождения антропометрических точек и программа для преобразования изображения на основе этих точек .

Шаг 3. Кодирование лиц

Теперь мы подошли к сути проблемы - само различение лиц. Здесь-то и начинается самое интересное!

Простейшим подходом к распознаванию лиц является прямое сравнение неизвестного лица, обнаруженного на шаге 2, со всеми уже отмаркированными лицами. Если мы найдём уже отмаркированное лицо, очень похожее на наше неизвестное, то это будет означать, что мы имеем дело с одним и тем же человеком. Похоже, очень хорошая идея, не так ли?

На самом деле при таком подходе возникает огромная проблема. Такой сайт как Фейсбук с миллиардами пользователей и триллионами фотографий не может достаточно циклично просматривать каждое ранее отмаркированное лицо, сравнивая его с каждой новой загруженной картинкой. Это потребовало бы слишком много времени. Необходимо распознавать лица за миллисекунды, а не за часы.

Нам требуется научиться извлекать некоторые базовые характеристики из каждого лица. Затем мы могли бы получить такие характеристики с неизвестного лица и сравнить с характеристиками известными лиц. Например, можно обмерить каждое ухо, определить расстояние между глазами, длину носа и т.д. Если вы когда-либо смотрели телесериал о работе сотрудников криминалистической лаборатории Лас-Вегаса («C.S.I.: место преступления»), то вы знаете, о чём идёт речь:


Как в кино! Так похоже на правду!

Самый надёжный метод обмерить лицо

Хорошо, но какие характеристики надо получить с каждого лица, чтобы построить базу данных известных лиц? Размеры уха? Длина носа? Цвет глаз? Что-нибудь ещё?

Оказывается, что характеристики, представляющиеся очевидными для нас, людей, (например, цвет глаз) не имеют смысла для компьютера, анализирующего отдельные пиксели на изображении. Исследователи обнаружили, что наиболее адекватным подходом является дать возможность компьютеру самому определить характеристики, которые надо собрать. Глубинное обучение позволяет лучше, чем это могут сделать люди, определить части лица, важные для его распознавания.

Решение состоит в том, чтобы обучить глубокую свёрточную нейронную сеть (именно это мы делали в выпуске 3). Но вместо обучения сети распознаванию графических объектов, как мы это делали последний раз, мы теперь собираемся научить её создавать 128 характеристик для каждого лица.

Процесс обучения действует при рассмотрении 3-х изображений лица одновременно:

1. Загрузите обучающее изображение лица известного человека

2. Загрузите другое изображение лица того же человека

3. Загрузите изображение лица какого-то другого человека

Затем алгоритм рассматривает характеристики, которые он в данный момент создаёт для каждого из указанных трёх изображений. Он слегка корректирует нейронную сеть так, чтобы характеристики, созданные ею для изображений 1 и 2, оказались немного ближе друг к другу, а для изображений 2 и 3 - немного дальше.

Единый «строенный» шаг обучения:

После повтора этого шага миллионы раз для миллионов изображений тысяч разных людей нейронная сеть оказывается в состоянии надёжно создавать 128 характеристик для каждого человека. Любые десять различных изображений одного и того же человека дадут примерно одинаковые характеристики.

Специалисты по обучению машин называют эти 128 характеристик каждого лица набором характеристик (признаков) . Идея сведения сложных исходных данных, таких как, например, изображение, к списку генерируемых компьютером чисел оказалась чрезвычайно перспективной в обучении машин (в частности, для переводов). Такой подход для лиц, который мы используем, был предложен в 2015 году исследователями из Гугл , но существует много аналогичных подходов.

Кодировка нашего изображения лица

Процесс обучения свёрточной нейронной сети с целью вывода наборов характеристик лица требует большого объёма данных и большой производительности компьютера. Даже на дорогой видеокарте NVidia Telsa требуется примерно 24 часа непрерывного обучения для получения хорошей точности.

Но если сеть обучена, то можно создавать характеристики для любого лица, даже для того, которое ни разу не видели раньше! Таким образом, этот шаг требуется сделать лишь один раз. К счастью для нас, добрые люди на OpenFace уже сделали это и предоставили доступ к нескольким прошедшим обучение сетям , которые мы можем сразу же использовать. Спасибо Брендону Амосу и команде!

В результате всё, что требуется от нас самих, это провести наши изображения лиц через их предварительно обученную сеть и получить 128 характеристик для каждого лица. Ниже представлены характеристики для нашего тестового изображения:

Но какие конкретно части лица эти 128 чисел описывают? Оказывается, что мы не имеем ни малейшего представления об этом. Однако на самом деле это не имеет значения для нас. Нас должно заботить лишь то, чтобы сеть выдавала примерно одни и те же числа, анализируя два различных изображения одного и того же человека.

Если есть желание попробовать выполнить этот шаг самостоятельно, то OpenFace предоставляет Lua-скрипт , создающий наборы характеристик всех изображений в папке и записывающий их в csv-файл. Можно запустить его так, как показано .

Шаг 4. Нахождение имени человека после кодировки лица

Последний шаг является фактически самым лёгким во всём этом процессе. От нас требуется лишь найти человека в нашей базе данных известных лиц, имеющего характеристики, наиболее близкие к характеристикам нашего тестового изображения.

Это можно сделать, используя любой базовый алгоритм классификации обучения машин. Какие-либо особые приёмы глубинного обучения не требуются. Мы будем использовать простой линейный SVM-классификатор , но могут быть применены и многие другие алгоритмы классификации.

От нас потребуется только обучить классификатор, который сможет взять характеристики нового тестового изображения и сообщить, какое известное лицо имеет наилучшее соответствие. Работа такого классификатора занимает миллисекунды. Результатом работы классификатора является имя человека!

Опробуем нашу систему. Прежде всего я обучил классификатор, используя наборы характеристики от примерно 20 изображений Уилла Феррелла, Чеда Смита и Джимми Фэлона:


О, эти восхитительные картинки для обучения!

Затем я прогнал классификатор на каждом кадре знаменитого видеоролика на Youtube, где на шоу Джимми Фэлона Уилл Феррелл и Чед Смит прикидываются друг другом :

Сработало! И смотрите, как великолепно это сработало для лиц с самых разных направлений - даже в профиль!

Самостоятельное выполнение всего процесса

Рассмотрим требуемые шаги:

1. Обработайте картинку, используя HOG-алгоритм, чтобы создать упрощённую версию изображения. На этом упрощённом изображении найдите тот участок, который более всего похож на созданное HOG-представление лица.

2. Определите положение лица, установив главные антропометрические точки на нём. После позиционирования этих антропометрических точек используйте их для преобразования изображения с целью центровки глаз и рта.

3. Пропустите отцентрованное изображение лица через нейронную сеть, обученную определению характеристик лица. Сохраните полученные 128 характеристик.

4. Просмотрев все лица, характеристики которых были сняты раньше, определите человека, характеристики лица которого наиболее близки к полученным. Дело сделано!

Теперь, когда вы знаете, как всё это работает, просмотрите инструкции с самого начала до конца, как провести весь процесс распознавания лица на вашем собственном компьютере, используя OpenFace :

Прежде чем начать

Убедитесь, что Python, OpenFace и dlib у вас установлены. Их можно установить вручную или использовать предварительно сконфигурированное контейнерное изображение, в котором это всё уже установлено:

Docker pull bamos/openface docker run -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash cd /root/openface

Совет профессионала новичку: если вы используете Docker на OSX, то можно сделать папку OSX/Users/ видимой внутри контейнерного изображения, как показано ниже:

Docker run -v /Users:/host/Users -p 9000:9000 -p 8000:8000 -t -i bamos/openface /bin/bash cd /root/openface

Затем можно выйти на все ваши OSX-файлы внутри контейнерного изображения на /host/Users/…

Ls /host/Users/

Шаг 1

Создайте папку с названием./training-images/ в папке openface.

Mkdir training-images

Шаг 2

Создайте подпапку для каждого человека, которого надо распознать. Например:

Mkdir ./training-images/will-ferrell/ mkdir ./training-images/chad-smith/ mkdir ./training-images/jimmy-fallon/

Шаг 3

Скопируйте все изображения каждого человека в соответствующие подпапки. Убедитесь, что на каждом изображении имеется только одно лицо. Не требуется обрезать изображение вокруг лица. OpenFace сделает это автоматически.

Шаг 4

Выполните скрипты openface из корневого директория openface:

Сначала должны быть выполнены обнаружение положения и выравнивание:

./util/align-dlib.py ./training-images/ align outerEyesAndNose ./aligned-images/ --size 96

В результате будет создана новая подпапка./aligned-images/ с обрезанной и выровненной версией каждого из ваших тестовых изображений.

Затем создайте представления из выровненных изображений:

./batch-represent/main.lua -outDir ./generated-embeddings/ -data ./aligned-images/

Подпапка./generated-embeddings/ будет содержать csv-файл с наборами характеристик для каждого изображения.

Проведите обучение вашей модели обнаружения лица:

./demos/classifier.py train ./generated-embeddings/

Будет создан новый файл с именем./generated-embeddings/classifier.pk . Этот файл содержит SVM-модель, которая будет использоваться для распознавания новых лиц.

С этого момента у вас появляется работающий распознаватель лиц!

Шаг 5. Распознаём лица!

Возьмите новую картинку с неизвестным лицом. Пропустите её через скрипт классификатора, типа нижеследующего:

./demos/classifier.py infer ./generated-embeddings/classifier.pkl your_test_image.jpg

Вы должны получить примерно такое предупреждение:

=== /test-images/will-ferrel-1.jpg === Predict will-ferrell with 0.73 confidence.

Здесь, если пожелаете, можете настроить python-скрипт./demos/classifier.py .

Важные замечания:

Если результаты неудовлетворительные, то попытайтесь добавить ещё несколько изображений для каждого человека на шаге 3 (особенно изображения с разных направлений).

Данный скрипт будет всегда выдавать предупреждение, даже если он не знает это лицо. При реальном использовании необходимо проверить степень уверенности и убрать предупреждения с низким значением степени уверенности, поскольку они, скорее всего, неправильные.

Добавить метки

Еще недавно охранные системы с опцией распознавания лиц казались чем-то фантастическим, а увидеть их можно было только в кино. Но за последние несколько лет многое изменилось. Появились новые разработки, которые изменили представление об охранных системах.

Качество и комфорт существования общества зависит от правильного подхода к организации персональной безопасности и защиты имущества. Не удивительно, что требования к защите постоянно растут. Одним из нововведений стало появление функции распознавания лиц. В чем ее особенности? Где она применяется? На каком принципе работает? Эти и другие вопросы подробно рассмотрим в статье.

Сферы применения

Пользу распознавания лиц сложно переоценить. Охранные системы с такой функцией применяются в различных сферах - при организации системы пропуска в крупных организациях, для поиска злоумышленников, защиты частных объектов и так далее.

Если говорить в целом, с помощью такой охранной системы удается решить следующие задачи:

  • Организовать надежную и эффективную систему пропуска на проходной в компании или на других закрытых объектах. Для большей эффективности видеонаблюдение объединяется с турникетами. В результате удается быстро распознавать своих сотрудников и посторонних лиц.
  • Создать систему защиты от краж в точках продаж и частных объектах. Не секрет, что различные магазины, торговые центры, супермаркеты и прочие заведения сталкиваются с проблемными клиентами, склонными к кражам. В большинстве случаев воровство осуществляется одними и теми же людьми. При наличии соответствующей базы функция распознавания лиц позволяет вовремя выявить человека и информировать охранника. В результате удается принять дополнительные меры по защите имущества.
  • Организовать охранную систему, обеспечивающую защиту от проникновения посторонних в сооружения закрытого типа и частные домовладения. Даже при внимательном наблюдении охраннику не всегда удается отличать злоумышленника от другого объекта. Это особенно актуально, если камера установлена на участке с низким уровнем освещения. Монтаж специальных систем с функцией распознавания лиц помогает быстро определить человека даже в темноте. То, что неподвластно работнику охраны, с легкостью решается компьютерным модулем.
  • Обеспечение фейс-контроля в ночных заведениях. Наличие рассматриваемых систем в клубах гарантирует 100-процентную защиту от «проблемных» посетителей.

Как это работает?

Наибольший интерес вызывает принцип работы системы, способной не только передавать изображение на монитор, но и распознавать лица людей. Задача специального модуля заключается в считывании информации, а также ее последующем сравнении с данными, которые имеются в базе. Такие комплексы способны идентифицировать лицо человека на удалении от камеры до 10 м.

Одна из особенностей системы - высокая «чувствительность», позволяющая распознавать личность даже при изменении внешности. Модуль невозможно сбить с помощью очков, изменения прически, бороды или других дополнительных элементов маскировки на лице. Это связано с тем, что анализируются не черты лица, как считают многие, а строение черепа, его биометрические параметры. Такие характеристики индивидуальны, как и отпечатки пальцев, что исключает вероятность ошибки.

Информация сканируется и обрабатывается в режиме реального времени. Достаточно посетителю повернуться лицом по направлению к сканеру, как система определяет личность и дает команды другим органам. Если модуль распознавания лиц связан с турникетами или другими устройствами блокировки, их срабатывание производится автоматически. Кроме того, в памяти сохраняется фотография подозрительного лица для дальнейшей обработки и анализа охраной.

Наибольшее распространение системы с функцией идентификации получили в крупных компаниях, где имеет место большая конкуренция. Не секрет, что от уровня безопасности зависит успех предприятия. Особенно это касается организаций, которые работают в оборонной сфере, занимаются разработкой новых проектов или биологическими исследованиями.

Задача системы заключается в сравнении работников и сверке лиц с имеющейся базой. Если человека нет в перечне, подается сигнал охранникам, после чего последние принимают меры по предотвращению проникновения постороннего лица на объект. При этом место выявления точно фиксируется на электронной карте, а сотрудники отдела безопасности в течение нескольких минут выявляют нарушителя.

Особенности установки

В процессе монтажа системы с опций распознавания лиц стоит учесть, что видеокамеры могут работать в одном из 2-х режимов - 2D или 3D. В первом случае анализ выполняется на базе плоского изображения, а двухмерные камеры обладают высокой чувствительностью к освещению. Из этого следует, что при установке 2D-камер стоит отдельное внимание уделять освещению охраняемого объекта и охвату защищаемых зон.

Что касается камер с 3D, они работают с трехмерным объектом на базе передаваемого устройством изображения. В этом случае можно не обращать внимания на уровень освещенности, ведь система хорошо справляется с возложенными на нее функциями даже в темноте. Единственная опасность в том, что текстура лица будет в незначительной степени искажена.

Какие виды таких систем существуют?

При выборе систем, имеющих функцию распознавания лиц, важно ориентироваться на несколько факторов - цели, задачи и место монтажа. Кроме того, стоит брать во внимание виды таких устройств:

  • Системы обнаружения. Видеокамера имеет разрешение от 1 Мп, а фокусное расстояние составляет от 1 мм. Работа устройства направлена на фиксацию факта проникновения посторонних субъектов на защищаемые объекты. Особенность сканера заключается в способности отличить человека от животного, но идентифицировать личность не получится.
  • Система распознавания. Этот комплекс отличается большей сложностью, а в него входит 2-мегапиксельная камера с фокусным расстоянием от шести миллиметров. Задача заключается в распознавании лиц и их определению по принципу «свой-чужой». В случае просмотра видео четкости у картинки не будет. Система выявляет посторонние лица, но в случае кражи найти вора по сохраненному изображению будет сложно
  • Устройства идентификации. При организации такой системы применяются камеры с разрешением от 2 МП и более, имеющие фокусное расстояние больше восьми миллиметров. Такие комплексы способны выполнять функции, рассмотренные выше. Плюс заключается в том, что полученного изображения достаточно для опознавания вора по фотографии. Имеющийся кадр можно использовать в процессе расследования и даже передавать в суд.

В приведенном описании рассмотрены минимальные требования для охранных систем в отношении фокусного расстояния и разрешения «картинке». Это значит, что при покупке оборудования стоит ориентироваться на изделия с лучшими характеристиками, обеспечивающими более качественную съемку. Например, для систем распознавания больше подойдут камеры на 2 МП, имеющие фокусное расстояние, равное 8 мм. Что касается комплексов для идентификации, здесь рекомендации еще более серьезные. Желательно использовать видеокамеры с разрешением в 5 МП и 12-миллиметровым фокусным расстоянием.

Подведем краткие итоги:

  • Видеокамера с разрешением 1МП позволяет отличить человека от животного. При этом идентифицировать субъекта не получится.
  • Для фиксации лиц и сравнения с имеющейся базой устройство для фиксации должно иметь разрешение от 2-х МП и более.
  • Для идентификации человека желательно применять 5-мегапиксельную камеру.

Юбилейный iPhone X получил одну из самых неординарных фишек среди конкурентов. Флагман умеет распознавать лицо владельца, а вместо Touch ID и кнопки «Домой» инженеры интегрировали камеру TrueDepth и функцию Face ID.

Быстро, моментально и без необходимости вводить пароли. Так можно разблокировать iPhone X уже сегодня.

Apple известна тем, что всегда смотрит в технологическое будущее намного раньше, чем очередная функция становится стандартом. В случае с iPhone X и сканером лица компания уверена, что за распознаванием лиц будущее.

Разберемся, заблуждается ли Apple или наши лица – это верный пропуск в цифровое будущее.

😎 Рубрика «Технологии» выходит каждую неделю при поддержке re:Store .

Так как работает распознавание лиц?

Для работы технологии распознавания лиц нужно несколько составляющих. Во-первых, сам сервер, на котором будет храниться и база данных, и подготовленный алгоритм сравнения.

Во-вторых, продуманная и натренированная нейросеть, которой скормили миллионы снимков с пометками. Обучают такие сети просто. Загружают снимок и представляют его системе: «Это Виктор Иванов», затем следующий.

Нейронная сеть самостоятельно распределяет векторы признаков и находит геометрические закономерности лица таким образом, чтобы затем самостоятельно узнать Виктора из тысяч других фотографий.

В той же технологии FaceN, о которой мы поговорим ниже, используется около 80 различных числовых признаков-характеристик.

Почему про распознавание лиц внезапно заговорили?

В середине 2016 года интернет буквально взорвало приложение и одноименный . Используя нейронные сети, разработчики сумели воплотить в жизнь самую смелую мечту пользователей социальных сетей.

Увидев человека на улице, вы могли сфотографировать его на смартфон, отправить фото в FindFace, и через несколько секунд найти его страничку во «ВКонтакте». Алгоритм совершенствовался, допиливался и все лучше и лучше распознавал лица.

А начиналось все с распознавания пород собак по фотографии. Автор технологии распознавания FaceN и приложения Magic Dog, Артем Кухаренко. Парень быстро смекнул, что за этой технологией будущее и приступил к разработке.

После успеха приложения FindFace, основатель компании-разработчика N-Tech.Lab Кухаренко в очередной раз убедился в том, что распознавание лиц интересно практически в любой отрасли:

  • пограничные службы
  • казино
  • аэропорты
  • любые места скопления людей
  • маркеты
  • парки развлечений
  • спецслужбы
  • В мае 2016 года N-Tech.Lab приступило к тестированию сервиса совместно с правительством Москвы. По всей территории столицы разместили десятки тысяч камер, которые в режиме реального времени опознавали прохожих.

    Трустори. Вы просто проходите по двору, в котором установлена подобная камера. К ней подключена база преступников и пропавших людей. В случае, если алгоритм определяет, что вы схожи с подозреваемым, сотрудник полиции тут же получает предупреждение.

    Разумеется, человека тут же можно найти в социальной сети и пробить по любым базам. А теперь представьте, что такие камеры установлены по периметру всего города. Скрыться злоумышленнику не удастся. Камеры есть везде: во дворах, на подъездах, на трассах.

    А как дела с распознаванием лиц в России

    Вы удивитесь, но с середины 2016 года градоначальники Москвы активно внедряют систему распознавания лиц по всей территории города.

    На сегодняшний день только на подъездах московских многоэтажек установлено более 100 тысяч камер , умеющих распознавать лица. Более 25 тысяч установлены во дворах. Разумеется, точные цифры засекречены, но можете сомневаться – активный контроль распространяется быстрее, чем вы можете себе представить.

    В столице системы распознавания лиц устанавливаются повсеместно: от площадей и мест большого скопления людей, до общественного транспорта. Со дня установки систем удалось задержать более десяти преступников, но это только по официальным данным.

    Все камеры постоянно обмениваются информацией с Единым вычислительным центром Департамента информационных технологий. Подозрительные оповещения тут же проверяются правоохранительными органами.

    И это только начало. В конце прошлого года аналогичную систему контроля стали тестировать и на улицах Санкт-Петербурга. Удобство предложенной FindN технологии в том, что вовсе необязательно устанавливать какие-то специальные камеры.

    Изображение со стандартных камер видеонаблюдения поступает на обработку «умному» алгоритму и настоящая магия происходит уже там. По актуальным данным точность распознавания FindFace сегодня варьируется в пределах 73% – 75%. Разработчики уверены, что смогут добиться результата в 100% уже в ближайшее время.

    Как вообще появилось распознавание лиц?

    Изначально любой тип биометрической идентификации использовался исключительно внутри правоохранительных органов и служб, где безопасность в приоритете. Буквально за несколько лет измерение анатомических и физиологических характеристик для идентификации личности стало стандартом практически во всех потребительских гаджетах.

    Типов биометрической аутентификации масса:

  • по ДНК
  • по радужной оболочке глаза
  • по ладони
  • по голосу
  • по отпечатку пальца
  • по лицу
  • И именно последняя технология особенно интересна, поскольку имеет сразу несколько преимуществ перед другими.

    Прообразом технологии распознавания лиц в XIX веке служили сперва «портреты по описанию», а позже – фотографии. Так полиция могла идентифицировать преступников. В 1965 году специально для правительства США была разработана полуавтоматическая система распознавания лиц. В 1971 к технологии вернутся, обозначив основные маркеры, необходимые для распознавания лиц, но ненадолго.

    С тех пор в качестве главного биометрического идентификатора спецслужбы все же предподчитают проверенную технологию снятия отпечатков пальцев.

    А все потому, что технологии не позволяли как-либо взаимодействовать с чертами лица человека. Ультраточных лазеров, инфракрасных датчиков и мощных процессоров, как и самих систем распознавания, на тот момент не было.

    С появлением мощных компьютеров, практически все ведомства возвращаются к идентификации посредством сканирования лица. Бум на технологию в ведомствах и спецучреждениях приходится на середину 2000-х годов, а в прошлом году технология стала впервые использоваться и в потребительских устройствах.

    Где сегодня используют технологию распознавания лиц

    В смартфонах

    Популяризация технологии распознавания лиц началась с флагмана Apple. iPhone X задал тренд на последующие годы и OEM-производители активно приступили к интеграции аналогов Face ID в свои устройства.

    В банках

    Биометрическое распознавание лиц уже не первый год используется в США. Теперь же технология добралась и до России. Только за 2017 год благодаря внедрению данной системы удалось предотвратить более 10 тысяч мошеннических сделок и сохранить сумму в размере 1,5 млрд рублей.

    Распознавание лиц используется для идентификации клиента и принятия решения по возможности выдачи кредита.

    В магазинах

    Сегмент ритейла используют технологию по-своему. Так, если вы покупали какую-либо бытовую технику в магазине, а спустя какое-то время вернулись в него за очередными покупками, система распознавания лиц тут же идентифицирует вас еще на входе. Продавец тут же получит информацию из базы и узнает не только ваше имя, но и историю покупок. Дальнейшее поведение продавца предугадать несложно.

    В жизни городов

    Это именно то, ради чего разрабатывается и развивается технология. От стадионов до кинотеатров – везде, где огромное количество людей, идентификация особо важна. Сегодня технология распознавания лиц позволяет предотвратить массовые беспорядки и террористические акты.

    Какие компании интересуются распознаванием лиц

    Google, Facebook, Apple и прочие IT-гиганты сейчас занимаются активной скупкой проектов от разработчиков, занимающихся распознаванием лиц. Все они видят в технологии огромный потенциал.

    Это лишь часть официально анонсированных сделок. На деле их намного больше. Помимо интеграции Face ID и аналогов технологии в смартфоны, у ведущих IT-компаний намного большие виды на использование распознавания лиц.

    Как будет выглядеть будущее с распознаванием лиц

    С тем, какие преимущества открывает технология сканирования лица в смартфонах и электронных устройствах, мы уже разобрались, то давайте заглянем в недалекое будущее и представим один день из жизни человека, который попал в город, где повсеместно установлены камера распознавания лиц.

    Доброе утро! Улыбочку, на вас смотрит система «умный» дом. Мда, хозяин, выпито вчера было немало – по лицу вижу, с трудом опознала. Так, рядом супруга, в прихожей доедает вечерний корм Барсик. Посторонних нет. Замечательно.

    Один взгляд на кофеварку на расстоянии «чуть ближе обычного» и ваш американо средней крепости со слегка теплым молоком готовится. Оп, кто-то у дверей! Ах, это же любимая теща. Проходите, для вас дверь открыта – ваше лицо не забудет ни одна система распознавания в мире.

    Вы собрались и подходите к лифту. Нет-нет, это система распознавания уже в курсе, что вы предпочитаете садится в крайний лифт, поэтому он уже вызван.

    Завидев вас издалека, 500-сильный электрокар автоматически подстроил вылет руля и подкорректировал положение кресла. Дверь открыта – присаживайтесь.

    Пока производители систем автопилота безуспешно пытаются убедить законодательство в необходимости внедрения беспилотных автомобилей, старайтесь не нарушать ПДД. Камеры наблюдения повсюду, а оплата штрафа неизбежна. Ведь за рулем точно вы, и, как только вы вдавите педаль акселератора в пол, с вашей банковской карты спишется штраф за превышение скорости.

    Наконец, мы у здания офиса той самой компании, которая занимается внедрением технологии распознавания лиц в инфраструктуру городов России. Да, это ваша работа. Контроль жесткий, но вам не стоит переживать – пока вы парковали машину, камеры уже узнали вас.

    Работать стало сложнее: по всему периметру офиса камеры распознавания, которые «видят» кто и чем занимается, а заодно умеют читать эмоции. Короче, валять дурака на рабочем месте не выйдет.

    С завидной регулярностью на Хабре появляются статьи, рассказывающие о тех или иных методах распознавания лиц. Мы решили не просто поддержать эту замечательную тему, но выложить наш внутренний документ, который освещает пусть и не все, но многие подходы к распознаванию лиц, их сильные и слабые места. Он был составлен Андреем Гусаком, нашим инженером, для молодых сотрудников отдела машинного зрения, в образовательных, так сказать, целях. Сегодня предлагаем его все желающим. В конце статьи – впечатляющих размеров список литературы для самых любознательных.

    Итак, начнем.
    Несмотря на большое разнообразие представленных алгоритмов, можно выделить общую структуру процесса распознавания лиц:

    Общий процесс обработки изображения лица при распознавании

    На первом этапе производится детектирование и локализация лица на изображении. На этапе распознавания производится выравнивание изображения лица (геометрическое и яркостное), вычисление признаков и непосредственно распознавание – сравнение вычисленных признаков с заложенными в базу данных эталонами. Основным отличием всех представленных алгоритмов будет вычисление признаков и сравнение их совокупностей между собой.

    1. Метод гибкого сравнения на графах (Elastic graph matching) .

    Суть метода сводится к эластичному сопоставлению графов, описывающих изображения лиц. Лица представлены в виде графов со взвешенными вершинами и ребрами. На этапе распознавания один из графов – эталонный – остается неизменным, в то время как другой деформируется с целью наилучшей подгонки к первому. В подобных системах распознавания графы могут представлять собой как прямоугольную решетку, так и структуру, образованную характерными (антропометрическими) точками лица.

    А)

    Б)

    Пример структуры графа для распознавания лиц: а) регулярная решетка б) граф на основе антропометрических точек лица.

    В вершинах графа вычисляются значения признаков, чаще всего используют комплексные значения фильтров Габора или их упорядоченных наборов – Габоровских вейвлет (строи Габора), которые вычисляются в некоторой локальной области вершины графа локально путем свертки значений яркости пикселей с фильтрами Габора.


    Набор (банк, jet) фильтров Габора


    Пример свертки изображения лица с двумя фильтрами Габора

    Ребра графа взвешиваются расстояниями между смежными вершинами. Различие (расстояние, дискриминационная характеристика) между двумя графами вычисляется при помощи некоторой ценовой функции деформации, учитывающей как различие между значениями признаков, вычисленными в вершинах, так и степень деформации ребер графа.
    Деформация графа происходит путем смещения каждой из его вершин на некоторое расстояние в определённых направлениях относительно ее исходного местоположения и выбора такой ее позиции, при которой разница между значениями признаков (откликов фильтров Габора) в вершине деформируемого графа и соответствующей ей вершине эталонного графа будет минимальной. Данная операция выполняется поочередно для всех вершин графа до тех пор, пока не будет достигнуто наименьшее суммарное различие между признаками деформируемого и эталонного графов. Значение ценовой функции деформации при таком положении деформируемого графа и будет являться мерой различия между входным изображением лица и эталонным графом. Данная «релаксационная» процедура деформации должна выполняться для всех эталонных лиц, заложенных в базу данных системы. Результат распознавания системы – эталон с наилучшим значением ценовой функции деформации.


    Пример деформации графа в виде регулярной решетки

    В отдельных публикациях указывается 95-97%-ая эффективность распознавания даже при наличии различных эмоциональных выражениях и изменении ракурса лица до 15 градусов. Однако разработчики систем эластичного сравнения на графах ссылаются на высокую вычислительную стоимость данного подхода. Например, для сравнения входного изображения лица с 87 эталонными тратилось приблизительно 25 секунд при работе на параллельной ЭВМ с 23 транспьютерами (Примечание: публикация датирована 1993 годом). В других публикациях по данной тематике время либо не указывается, либо говорится, что оно велико.

    Недостатки: высокая вычислительная сложность процедуры распознавания. Низкая технологичность при запоминании новых эталонов. Линейная зависимость времени работы от размера базы данных лиц.

    2. Нейронные сети

    В настоящее время существует около десятка разновидности нейронных сетей (НС). Одним из самых широко используемых вариантов являться сеть, построенная на многослойном перцептроне, которая позволяет классифицировать поданное на вход изображение/сигнал в соответствии с предварительной настройкой/обучением сети.
    Обучаются нейронные сети на наборе обучающих примеров. Суть обучения сводится к настройке весов межнейронных связей в процессе решения оптимизационной задачи методом градиентного спуска. В процессе обучения НС происходит автоматическое извлечение ключевых признаков, определение их важности и построение взаимосвязей между ними. Предполагается, что обученная НС сможет применить опыт, полученный в процессе обучения, на неизвестные образы за счет обобщающих способностей.
    Наилучшие результаты в области распознавания лиц (по результатам анализа публикаций) показала Convolutional Neural Network или сверточная нейронная сеть (далее – СНС) , которая является логическим развитием идей таких архитектур НС как когнитрона и неокогнитрона. Успех обусловлен возможностью учета двумерной топологии изображения, в отличие от многослойного перцептрона.
    Отличительными особенностями СНС являются локальные рецепторные поля (обеспечивают локальную двумерную связность нейронов), общие веса (обеспечивают детектирование некоторых черт в любом месте изображения) и иерархическая организация с пространственными сэмплингом (spatial subsampling). Благодаря этим нововведениям СНС обеспечивает частичную устойчивость к изменениям масштаба, смещениям, поворотам, смене ракурса и прочим искажениям.


    Схематичное изображение архитектуры сверточной нейронной сети

    Тестирование СНС на базе данных ORL, содержащей изображения лиц с небольшими изменениями освещения, масштаба, пространственных поворотов, положения и различными эмоциями, показало 96% точность распознавания.
    Свое развитие СНС получили в разработке DeepFace , которую приобрел
    Facebook для распознавания лиц пользователей своей соцсети. Все особенности архитектуры носят закрытый характер.


    Принцип работы DeepFace

    Недостатки нейронных сетей: добавление нового эталонного лица в базу данных требует полного переобучения сети на всем имеющемся наборе (достаточно длительная процедура, в зависимости от размера выборки от 1 часа до нескольких дней). Проблемы математического характера, связанные с обучением: попадание в локальный оптимум, выбор оптимального шага оптимизации, переобучение и т. д. Трудно формализуемый этап выбора архитектуры сети (количество нейронов, слоев, характер связей). Обобщая все вышесказанное, можно заключить, что НС – «черный ящик» с трудно интерпретируемыми результатами работы.

    3. Скрытые Марковские модели (СММ, HMM)

    Одним из статистических методов распознавания лиц являются скрытые Марковские модели (СММ) с дискретным временем . СММ используют статистические свойства сигналов и учитывают непосредственно их пространственные характеристики. Элементами модели являются: множество скрытых состояний, множество наблюдаемых состояний, матрица переходных вероятностей, начальная вероятность состояний. Каждому соответствует своя Марковская модель. При распознавании объекта проверяются сгенерированные для заданной базы объектов Марковские модели и ищется максимальная из наблюдаемых вероятность того, что последовательность наблюдений для данного объекта сгенерирована соответствующей моделью.
    На сегодняшний день не удалось найти примера коммерческого применения СММ для распознавания лиц.

    Недостатки:
    - необходимо подбирать параметры модели для каждой базы данных;
    - СММ не обладает различающей способностью, то есть алгоритм обучения только максимизирует отклик каждого изображения на свою модель, но не минимизирует отклик на другие модели.

    4. Метод главных компонент или principal component analysis (PCA)

    Одним из наиболее известных и проработанных является метод главных компонент (principal component analysis, PCA), основанный на преобразовании Карунена-Лоева.
    Первоначально метод главных компонент начал применяться в статистике для снижения пространства признаков без существенной потери информации. В задаче распознавания лиц его применяют главным образом для представления изображения лица вектором малой размерности (главных компонент), который сравнивается затем с эталонными векторами, заложенными в базу данных.
    Главной целью метода главных компонент является значительное уменьшение размерности пространства признаков таким образом, чтобы оно как можно лучше описывало «типичные» образы, принадлежащие множеству лиц. Используя этот метод можно выявить различные изменчивости в обучающей выборке изображений лиц и описать эту изменчивость в базисе нескольких ортогональных векторов, которые называются собственными (eigenface).

    Полученный один раз на обучающей выборке изображений лиц набор собственных векторов используется для кодирования всех остальных изображений лиц, которые представляются взвешенной комбинацией этих собственных векторов. Используя ограниченное количество собственных векторов можно получить сжатую аппроксимацию входному изображению лица, которую затем можно хранить в базе данных в виде вектора коэффициентов, служащего одновременно ключом поиска в базе данных лиц.

    Суть метода главных компонент сводится к следующему. Вначале весь обучающий набор лиц преобразуется в одну общую матрицу данных, где каждая строка представляет собой один экземпляр изображения лица, разложенного в строку. Все лица обучающего набора должны быть приведены к одному размеру и с нормированными гистограммами.


    Преобразования обучающего набора лиц в одну общую матрицу X

    Затем производится нормировка данных и приведение строк к 0-му среднему и 1-й дисперсии, вычисляется матрица ковариации. Для полученной матрицы ковариации решается задача определения собственных значений и соответствующих им собственных векторов (собственные лица). Далее производится сортировка собственных векторов в порядке убывания собственных значений и оставляют только первые k векторов по правилу:




    Алгоритм РСА


    Пример первых десяти собственных векторов (собственных лиц), полученных на обучаемом наборе лиц

    = 0.956*-1.842*+0.046

    Пример построения (синтеза) человеческого лица с помощью комбинации собственных лиц и главных компонент


    Принцип выбора базиса из первых лучших собственных векторов


    Пример отображения лица в трехмерное метрическое пространство, полученном по трем собственным лицам и дальнейшее распознавание

    Метод главных компонент хорошо зарекомендовал себя в практических приложениях. Однако, в тех случаях, когда на изображении лица присутствуют значительные изменения в освещенности или выражении лица, эффективность метода значительно падает. Все дело в том, что PCA выбирает подпространство с такой целью, чтобы максимально аппроксимировать входной набор данных, а не выполнить дискриминацию между классами лиц.

    В было предложено решение этой проблемы с использование линейного дискриминанта Фишера (в литературе встречается название “Eigen-Fisher”, “Fisherface”, LDA). LDA выбирает линейное подпространство, которое максимизирует отношение:

    Где

    Матрица межклассового разброса, и

    Матрица внутриклассового разброса; m – число классов в базе данных.

    LDA ищет проекцию данных, при которой классы являются максимально линейно сепарабельны (см. рисунок ниже). Для сравнения PCA ищет такую проекцию данных, при которой будет максимизирован разброс по всей базе данных лиц (без учета классов). По результатам экспериментов в условиях сильного бакового и нижнего затенения изображений лиц Fisherface показал 95% эффективность по сравнению с 53% Eigenface.


    Принципиальное отличие формирования проекций PCA и LDA

    Отличие PCA от LDA

    5. Active Appearance Models (AAM) и Active Shape Models (ASM) ()
    Active Appearance Models (AAM)
    Активные модели внешнего вида (Active Appearance Models, AAM) - это статистические модели изображений, которые путем разного рода деформаций могут быть подогнаны под реальное изображение. Данный тип моделей в двумерном варианте был предложен Тимом Кутсом и Крисом Тейлором в 1998 году . Первоначально активные модели внешнего вида применялись для оценки параметров изображений лиц.
    Активная модель внешнего вида содержит два типа параметров: параметры, связанные с формой (параметры формы), и параметры, связанные со статистической моделью пикселей изображения или текстурой (параметры внешнего вида). Перед использованием модель должна быть обучена на множестве заранее размеченных изображений. Разметка изображений производится вручную. Каждая метка имеет свой номер и определяет характерную точку, которую должна будет находить модель во время адаптации к новому изображению.


    Пример разметки изображения лица из 68 точек, образующих форму AAM.

    Процедура обучения AAM начинается с нормализации форм на размеченных изображениях с целью компенсации различий в масштабе, наклоне и смещении. Для этого используется так называемый обобщенный Прокрустов анализ.


    Координаты точек формы лица до и после нормализации

    Из всего множества нормированных точек затем выделяются главные компоненты с использованием метода PCA.


    Модель формы AAM состоит из триангуляционной решетки s0 и линейной комбинации смещений si относительно s0

    Далее из пикселей внутри треугольников, образуемых точками формы, формируется матрица, такая что, каждый ее столбец содержит значения пикселей соответствующей текстуры. Стоит отметить, что используемые для обучения текстуры могут быть как одноканальными (градации серого), так и многоканальными (например, пространство цветов RGB или другое). В случае многоканальных текстур векторы пикселов формируются отдельно по каждому из каналов, а потом выполняется их конкатенация. После нахождения главных компонент матрицы текстур модель AAM считается обученной.

    Модель внешнего вида AAM состоит из базового вида A0, определенного пикселями внутри базовой решетки s0 и линейной комбинации смещений Ai относительно A0

    Пример конкретизации AAM. Вектор параметров формы
    p=(p_1,p_2,〖…,p〗_m)^T=(-54,10,-9.1,…)^T используется для синтеза модели формы s, а вектор параметров λ=(λ_1,λ_2,〖…,λ〗_m)^T=(3559,351,-256,…)^Tдля синтеза внешнего вида модели. Итоговая модель лица 〖M(W(x;p))〗^ получается как комбинация двух моделей – формы и внешнего вида.

    Подгонка модели под конкретное изображение лица выполняется в процессе решения оптимизационной задачи, суть которой сводится к минимизации функционала

    Методом градиентного спуска. Найденные при этом параметры модели и будут отражать положение модели на конкретном изображении.




    Пример подгонки модели на конкретное изображение за 20 итераций процедуры градиентного спуска.

    С помощью AAM можно моделировать изображения объектов, подверженных как жесткой, так и нежесткой деформации. ААМ состоит из набора параметров, часть которых представляют форму лица, остальные задают его текстуру. Под деформации обычно понимают геометрическое преобразование в виде композиции переноса, поворота и масштабирования. При решении задачи локализации лица на изображении выполняется поиск параметров (расположение, форма, текстура) ААМ, которые представляют синтезируемое изображение, наиболее близкое к наблюдаемому. По степени близости AAM подгоняемому изображению принимается решение – есть лицо или нет.

    Active Shape Models (ASM)

    Суть метода ASM заключается в учете статистических связей между расположением антропометрических точек. На имеющейся выборке изображений лиц, снятых в анфас. На изображении эксперт размечает расположение антропометрических точек. На каждом изображении точки пронумерованы в одинаковом порядке.




    Пример представления формы лица с использованием 68 точек

    Для того чтобы привести координаты на всех изображениях к единой системе обычно выполняется т.н. обобщенный прокрустов анализ, в результате которого все точки приводятся к одному масштабу и центрируются. Далее для всего набора образов вычисляется средняя форма и матрица ковариации. На основе матрицы ковариации вычисляются собственные вектора, которые затем сортируются в порядке убывания соответствующих им собственных значений. Модель ASM определяется матрицей Φ и вектором средней формы s ̅.
    Тогда любая форма может быть описана с помощью модели и параметров:

    Локализации ASM модели на новом, не входящем в обучающую выборку изображении осуществляется в процессе решения оптимизационной задачи.


    а) б) в) г)
    Иллюстрация процесса локализации модели ASM на конкретном изображении: а) начальное положение б) после 5 итераций в) после 10 итераций г) модель сошлась

    Однако все же главной целью AAM и ASM является не распознавание лиц, а точная локализация лица и антропометрических точек на изображении для дальнейшей обработки.

    Практически во всех алгоритмах обязательным этапом, предваряющим классификацию, является выравнивание, под которым понимается выравнивание изображения лица во фронтальное положение относительно камеры или приведение совокупности лиц (например, в обучающей выборке для обучения классификатора) к единой системе координат. Для реализации этого этапа необходима локализация на изображении характерных для всех лиц антропометрических точек – чаще всего это центры зрачков или уголки глаз. Разные исследователи выделяют разные группы таких точек. В целях сокращения вычислительных затрат для систем реального времени разработчики выделяют не более 10 таких точек .

    Модели AAM и ASM как раз и предназначены для того чтобы точно локализовать эти антропометрические точки на изображении лица.

    6. Основные проблемы, связанные с разработкой систем распознавания лиц

    Проблема освещенности

    Проблема положения головы (лицо – это, все же, 3D объект).

    С целью оценки эффективности предложенных алгоритмов распознавания лиц агентство DARPA и исследовательская лаборатория армии США разработали программу FERET (face recognition technology).

    В масштабных тестах программы FERET принимали участие алгоритмы, основанные на гибком сравнении на графах и всевозможные модификации метода главных компонент (PCA). Эффективность всех алгоритмов была примерно одинаковой. В этой связи трудно или даже невозможно провести четкие различия между ними (особенно если согласовать даты тестирования). Для фронтальных изображений, сделанных в один и тот же день, приемлемая точность распознавания, как правило, составляет 95%. Для изображений, сделанных разными аппаратами и при разном освещении, точность, как правило, падает до 80%. Для изображений, сделанных с разницей в год, точность распознавания составило примерно 50%. При этом стоит заметить, что даже 50 процентов - это более чем приемлемая точность работы системы подобного рода.

    Ежегодно FERET публикует отчет о сравнительном испытании современных систем распознавания лиц на базе лиц более одного миллиона. К большому сожалению в последних отчетах не раскрываются принципы построения систем распознавания, а публикуются только результаты работы коммерческих систем. На сегодняшний день лидирующей является система NeoFace разработанная компанией NEC.

    Список литературы (гуглится по первой ссылке)
    1. Image-based Face Recognition - Issues and Methods
    2. Face Detection A Survey.pdf
    3. Face Recognition A Literature Survey
    4. A survey of face recognition techniques
    5. A survey of face detection, extraction and recognition
    6. Обзор методов идентификации людей на основе изображений лиц
    7. Методы распознавания человека по изображению лица
    8. Сравнительный анализ алгоритмов распознавания лиц
    9. Face Recognition Techniques
    10. Об одном подходе к локализации антропометрических точек.
    11. Распознавание лиц на групповых фотографиях с использованием алгоритмов сегментации
    12. Отчет о НИР 2-й этап по распознаванию лиц
    13. Face Recognition by Elastic Bunch Graph Matching
    14. Алгоритмы идентификации человека по фотопортрету на основе геометриче-ских преобразований. Диссертация.
    15. Distortion Invariant Object Recognition in the Dynamic Link Architecture
    16. Facial Recognition Using Active Shape Models, Local Patches and Support Vector Machines
    17. Face Recognition Using Active Appearance Models
    18. Active Appearance Models for Face Recognition
    19. Face Alignment Using Active Shape Model And Support Vector Machine
    20. Active Shape Models - Their Training and Application
    21. Fisher Vector Faces in the Wild
    22. Eigenfaces vs. Fisherfaces Recognition Using Class Specific Linear Projection
    23. Eigenfaces and fisherfaces
    24. Dimensionality Reduction
    25. ICCV 2011 Tutorial on Parts Based Deformable Registration
    26. Constrained Local Model for Face Alignment, a Tutorial
    27. Who are you – Learning person specific classifiers from video
    28. Распознавание человека по изображению лица нейросетевыми методами
    29. Face Recognition A Convolutional Neural Network Approach
    30. Face Recognition using Convolutional Neural Network and Simple Logistic Classifier
    31. Face Image Analysis With Convolutional Neural Networks
    32. Методы распознавания лиц на основе скрытых марковских процессов. Авторе-ферат
    33. Применение скрытых марковских моделей для распознавания лиц
    34. Face Detection and Recognition Using Hidden Markovs Models
    35. Face Recognition with GNU Octave-MATLAB
    36. Face Recognition with Python
    37. Anthropometric 3D Face Recognition
    38. 3D Face Recognition
    39. Face Recognition Based on Fitting a 3D Morphable Model
    40. Face Recognition
    41. Robust Face Recognition via Sparse Representation
    42. The FERET Evaluation Methodology For Face-Recognition Algorithms
    43. Поиск лиц в электронных коллекциях исторических фотографий
    44. Design, Implementation and Evaluation of Hardware Vision Systems dedicated to Real-Time Face Recognition
    45. An Introduction to the Good, the Bad, & the Ugly Face Recognition Challenge Prob-lem
    46. Исследование и разработка методов обнаружения человеческого лица на циф-ровых изображениях. Диплом
    47. DeepFace Closing the Gap to Human-Level Performance in Face Verification
    48. Taking the bite out of automated naming of characters in TV video
    49. Towards a Practical Face Recognition System Robust Alignment and Illumination by Sparse Representation
    50. Алгоритмы обнаружения лица человека для решения прикладных задач анализа и обработки изображений
    51. Обнаружение и локализация лица на изображении
    52. Модифицированный мотод Виолы-Джонса
    53. Разработка и анализ алгоритмов детектирования и классификации объектов на основе методов машинного обучения
    54. Overview of the Face Recognition Grand Challenge
    55. Face Recognition Vendor Test (FRVT)
    56. Об эффективности применения алгоритма SURF в задаче идентификации лиц