Съёмные носители. Жесткий диск и съемные носители информации

К съемным носителям данных можно отнести любое устройство, предназначенное для переноса информации от одного вычислительного устройства к другому.

Наиболее распространены следующие съемные носители:

  • дискеты (уже редко применяются);
  • оптические диски;
  • устройства флеш-памяти;
  • флеш-карты;
  • съемные винчестеры.

Оптические диски

Это плоские круглые диски, на которые двоичные данные записывается в виде микроскопических выемок, называемых питами. Основа обычно изготавливается из поликарбоната. В верхней части основы располагается кодирующий материал, занимающий основной объем диска и формирующий специальный слой. Запись и считывание информации с диска осуществляются с помощью лазера. При этом луч лазера направляется на специальный слой и отражается от него, модулированный питами. Декодирование отраженного луча осуществляется устройством чтения.

Существует 3 типа оптических дисков:

  • только для чтения;
  • только для однократной записи;
  • для многократной записи.

В записываемых съемных носителях информации между основой и отражающим слоем размещается органический краситель. В дисках с возможностью многократной записи промежуточный слой состоит из материала с изменяемым фазовым состоянием.

Преимуществом оптических дисков является возможность хранить информацию в течение длительного времени. Но они сильно подвержены повреждениям при их постоянном использовании.

Флеш-память

Представляет собой электронный энергонезависимый носитель, информация с которого может стираться и перепрограммироваться. Съемные носители информации хранят информацию во множестве ячеек памяти на основе транзисторов с плавающим затвором. В устройствах на одноуровневых ячейках каждая хранит 1 бит информации. В устройствах на многоуровневых ячейках в одной может храниться больше 1 бита данных.

Каждая ячейка флеш-памяти является обычным МОП-транзистором. С одним маленьким нюансом - данный транзистор имеет 2 затвора, а не один. Ячейку памяти можно рассматривать как обычный электрический переключатель, в котором ток протекает между двумя контактами, роль которых выполняют исток и сток. Регулировку протекания тока осуществляют плавающий затвор и управляющий затвор.

Характеристики флеш-памяти

Для любого пользователя одним из основных параметров флешки будет ее емкость. Чем выше ее значение, тем больше информации может она вместить. Важное значение имеют такие параметры, как скорость считывания и скорость записи информации на съемные носители. Считывание данных осуществляется гораздо быстрее их записи.

Недостатки флеш-памяти:

  • Ограниченный ресурс. При заряде флешки изменяется ее структура. В результате чего количество циклов записи/чтения информации резко ограничивается. Как правило, оно изменяется в пределах от нескольких тысяч до сотен тысяч раз.
  • Ограниченный период хранения информации. Производители дают гарантию на современные информационные носители этого типа в среднем на 5 лет. Реальный срок хранения заряда транзистора составляет 10-20 лет.

Флеш-карты

К флеш-картам относятся электронные устройства, предназначенные для хранения цифровой информации. Эти устройства в основном используются в цифровых фотокамерах, мобильных телефонах, ноутбуках, планшетах, портативных медиапроигрывателях, консолях для видеоигр, синтезаторах, электронных клавиатурах и цифровых пианино.

К основным параметрам носителя относят емкость и скорость записи/считывания данных. Для подключения этих устройств к компьютеру применяются картридеры, которые, в свою очередь, также могут быть съемными или внутренними. Съемные картридеры подключаются к ПК через USB-интерфейс.

Флеш-карту фотокамеры можно подключить к ПК, не извлекая ее из фотоаппарата. Для этого потребуется специальный кабель для соединения через порт USB.

Внешние жесткие диски

Тип накопителя на жестком магнитном диске, заключенном в пластиковый или металлический корпус, благодаря чему он может использоваться аналогично флеш-памяти.

Съемные носители информации могут подключаться к компьютеру следующими способами:

  • через порт USB;
  • с помощью шины Fire Wire;
  • через интерфейс eSATA;
  • по беспроводному каналу.

Преимущества внешних жестких дисков:

  • портативность как у флешки;
  • большая емкость, по сравнению со стандартным жестким диском. Внешний жесткий диск 1тб - в наши дни устройством с такой емкостью никого не удивишь.

Сравнение внешних жестких дисков с внутренними

Внутренние винчестеры подсоединяются непосредственно к материнской плате, в то время как внешние - к USB порту компьютера, который обеспечивает соединение с материнской платой.

Операционные системы и программное обеспечение устанавливаются главным образом на внутренние диски, в то время как внешние используются для хранения фотографий, видеороликов и различных файлов. Но конструкция внешних дисков такая же, как у внутренних. Вообще внешний жесткий диск может без внесения изменений в конструкцию быть установлен в ноутбук или персональный компьютер.

Электропитание на внутренние носители поступает непосредственно с блока питания, расположенного внутри системного блока компьютера. Съемные носители информации запитываются либо через кабель данных, либо имеют свой провод для подключения к источнику питания.

Внешние жесткие диски намного чаще перемещаются с одного места на другое по сравнению с внутренними. В результате опасность механического повреждения этих дисков повышается.

Урок #66. Что такое съемный носитель

Съемные носители информации предназначены для хранения ваших данных вне вашего компьютера. Ими очень удобно пользоваться для переноса ваших файлов с одного компьютера на другой. Я уверен, что вам хорошо известны такие съемные носители.

Наиболее популярными съемными носителями информации в настоящее время являются флешки, флеш-карточки, съемные жесткие диски и оптические диски (CD и DVD). Думаю, что пользоваться компьютером и ничего не знать о них невозможно.

Давайте более подробно остановимся на каждом из перечисленных устройств и научимся с ними работать.
Но перед тем как мы начнем, хочу рассказать о некоторых параметрах съемных носителей, которые влияют в первую очередь на их стоимость:

  1. Объем – это основной параметр любого носителя информации и не только съемного. Для измерения объема используют те же единицы, что и для измерения объема данных (информации). Мы знаем, что вся информация на компьютере хранится в виде файлов. Чтобы как-то измерять объем информации, была введена специальная единица измерения, которая получила название – байт .Есть и более мелкие единицы – биты , и 1 байт = 8 бит . Что такое биты и почему 1 байт равен 8 битам , мы разбирать не будем. Это абсолютно необязательная информация для обычного пользователя. Но все же приведу пример, который даст представление о том, что такое байт . Объем информации в 1 байт - это одна буква в текстовом документе.В 1 байте , как вы понимаете, заключен незначительный объем информации (всего лишь один символ), поэтому обычно применяют более крупные единицы.

1 килобайт (Кбайт) = 1024 байт;
1 мегабайт (Мбайт) = 1024 килобайт;
1 гигабайт (Гбайт) = 1024 мегабайтам;
1 терабайт (Тбайт) = 1024 гигабайтам.

Приставки «кило», «мега» и т. п. позаимствованы из обычной жизни, но в отличие от, например, 1 километра, содержащего 1000 метров, 1 килобайт содержит 1024 байта. Почему так произошло нам знать совсем не обязательно. Объем информации - это величина весьма условная и в обычной жизни все давно округляют 1024 до 1000.

Итак, объем носителя информации – это основной его показатель, влияющий на его стоимость. Чем больше объем носителя информации, тем выше его стоимость.

  1. Скорость чтения (записи) информации с носителя (на носитель). Поскольку объемы съемных носителей с каждым годом растут, то этот показатель становится немаловажным. Конечно, если вы приобретете флешку для переноса ваших текстовых документов с компьютера на компьютер, то скорость в этом случае практически не важна, так как текстовые файлы обычно имеют незначительный объем. А вот если вам нужно переписать на флешку большое количество видео или музыкальных файлов, то тут скорость записи играет важную роль, и от нее будет напрямую зависеть время, через которое файлы перепишутся на флешку. Тоже самое касается и флеш-карт, которые используются в цифровых фотоаппарата. Чем быстрее скорость записи такой флеш-карты, тем быстрее происходит запись фотографии на нее и тем быстрее фотокамера готова к съемке следующего кадра.Давайте разберемся с понятием скорости передачи данных, так как оно используется очень часто и у начинающих пользователей с этим возникают проблемы.За базовую единицу измерения скорости передачи информации в компьютерном мире был принят бит в секунду , также обозначается - бит/с (англ. bits per second, bps ). Скорость передачи информации может указываться не только как характеристика носителей информации, но и применяется в сетях, в том числе скорость подключения к сети Интернет обозначается именно в битах в секунду .

Мы уже знаем, что бит , это минимальный объем информации и в основном используют большую величину – байт , равную восьми битам. Поэтому, когда вам говорят, что скорость вашего подключения к сети Интернет равна 1 Мбит/с, то это НЕ ЗНАЧИТ , что вы за секунду скачаете 1 Мегабайт информации. Чтобы перевести Мегабиты в Мегабайты нам нужно разделить скорость вашего подключения на 8 и в нашем случае мы получим 0,125 Мбайт/с, что составляет 125 килобайт за секунду . Часто встречается такое обозначение:

Килобит за секунду – Кб/с
Килобайт за секунду – КБ/с

Обращайте внимание на то, заглавная или строчная буква «Б» в этом обозначении.

  1. Размер устройства . Этот параметр весьма условный и подходит не для всех типов устройств, но в основном тенденция такова – чем меньше устройство, тем выше его цена

Урок #67. Оптические диски

CD диски (рис.197) или их еще называют компакт-дисками (CD произошло от англ. Compact Disc ) уже практически вышли из употребления, хотя они длительное время были основным носителем для переноса информации между компьютерами. Их объем обычно составлял около 700 Мб. Для чтения таких дисков используется специальное устройство – CD-привод (рис. 198).

Рис. 197. Оптический диск Рис. 198. CD-привод оптических дисков

Данные с диска читаются при помощи лазерного луча. Есть приводы, которые позволяют производить только чтение данных с CD дисков, а есть и так называемые пишущие приводы , которые позволяют производить запись на диск.

Пустые диски, предназначенные для записи, на компьютерном сленге называют болванкой . Различают две основные группы компакт-дисков (болванок):

  • CD-R – на такой диск можно записать информацию только один раз;
  • CD-RW – диски предназначенные для многократной записи. Информацию на таких дисках можно стирать и записывать вновь.

Обычно на CD-приводе указывается скорость чтения/записи, например, 24Х. Это скорость, с которой привод способен производить чтение данных с диска или записывать информацию на диск. Скорость указывается кратной 150 Кб/с (т. е. 153 600 бит/с). Например, 24-скоростной привод обеспечивает максимальную скорость чтения (или записи) CD, равную 24 × 150 = 3600 Кб/с. Это означает, что, например, при копировании информации с CD-диска на ваш компьютер, за одну секунду привод перенесет 450 килобайт данных. Если вы копируете фильм, который имеет размер 650 Мегабайт, то на его копирование на компьютер будет затрачено около 24 минут. Вот такая простая арифметика.

Со временем компакт-диски были вытеснены DVD дисками.

DVD (ди-ви-ди, англ. Digital Versatile Disc - цифровой многоцелевой диск; также англ. Digital Video Disc - цифровой видеодиск) - имеет такой же размер, как и компакт-диск, но использует другую технологию, позволяющую значительно увеличить объем информации, который он способен вместить. Для чтения DVD дисков используют DVD-приводы, которые также могут читать и компакт-диски. А вот CD-приводы неспособны прочесть DVD-диски.

В настоящий момент наиболее популярны DVD диски форматов DVD-5 и DVD-9. На диски DVD-5 можно записать 4,37 ГБ (Гигабайт) информации, а на диски DVD-9 – 7,95ГБ.

Единица скорости (1x) чтения/записи DVD составляет 1 385 000 бит/с (т.е. около 1352 Кб/с = 1,32 Мб/с), что примерно соответствует 9-й скорости (9x) чтения/записи CD, которая равна 9 × 150 = 1350 Кб/с. Таким образом, 16-скоростной привод обеспечивает скорость чтения (или записи) DVD равную 16 × 1,32 = 21,12 Мб/с.

Так же как и у компакт дисков, DVD диски разделяют на группы:

  • DVD-R – предназначены для однократной записи;
  • DVD-RW – перезаписываемые диски.

Также исторически появилось еще одно деление DVD дисков на «плюсовые» (обозначаютсяDVD+R и DVD+RW ) и «минусовые» (обозначаются DVD-R и DVD-RW ).

«Плюсовые» болванки появились позже и являются усовершенствованной версией «минусовых». Основное, значимое для конечного пользователя, отличие «плюсовых» и «минусовых» болванок состоит в следующем. При перезаписи DVD-RW диска нужно предварительно с него информацию удалить, а вот при перезаписи DVD+RW диска информацию удалять не нужно, привод способен записать новую информацию поверх старой. Но для работы с «плюсовыми» болванками нужно иметь пишущий DVD-привод, поддерживающий этот формат (практически все современный DVD-приводы этот формат поддерживают).

В погоне за увеличением объема носителей информации производители постоянно создают что-то новое. Так появился еще один формат – Blu-ray Disc , BD (блю-рэй, англ. blue ray - синий луч). Диски формата Blu-ray имеют те же размеры, что и CD и DVD диски (120 мм), но существенно отличаются вместительностью. По технологии Blu-ray изготавливают диски, имеющие один или два слоя для записи данных. Однослойные диски могут вмещать до 25ГБ информации, а двухслойные – до 50ГБ. Есть диски для одноразовой записи – BD-R , и для многоразовой записи –BD-RE .

Само собой, для чтения и записи таких дисков нужен специальный привод, поддерживающий технологию Blu-ray. Скорость записи также значительно выросла. Единица скорости (1x) чтения/записи Blu-ray составляет 36 Мбит/с, что позволяет записать объем информации в 25ГБ на однослойный диск на 12-ой скорости примерно за 8 минут.

Большинство компьютеров в настоящее время оснащаются приводами оптических дисков. Для того чтобы установить диск в привод, нужно нажать на кнопку, расположенную на нем (рис.199).

После того, как диск помещен в лоток достаточно легким нажатием закрыть лоток. После этого информация, записанная на диске, станет доступна и с ней можно будет ознакомиться, например, с помощью программы Проводник .

Урок #68. Флеш-накопители

Флеш-накопители или просто флешки – это самые популярные и распространенные в настоящее время съемные носители информации. В компьютерных магазинах вы сможете найти огромный выбор флешек. Они отличаются цветом, формой и материалом корпуса, и вы всегда сможете подобрать флешку по своему вкусу (рис.202). Но все же основной параметр флешки – это ее размер, т.е. объем информации, который на нее можно записать.

В продаже вы найдете флешки объемом от сотен мегабайт, до нескольких десятков и даже сотен гигабайт. Причем разница в цене может быть не пропорциональна разнице в объеме, поэтому перед покупкой флешки сравните цены разных по объему устройств и выберите оптимальное для себя сочетание цена-объем.

Флешка подключается к компьютеру через так называемый универсальный разъем – USB (Universal Serial Bus – универсальная последовательная шина, рис. 203).

Этот разъем стал очень популярным и с помощью него ккомпьютеру подключается огромное количество различных устройств, начиная с флешек и заканчивая принтерами, сканерами, фотоаппаратами и видеокамерами.

Обычно на компьютере вы можете найти несколько USB разъемов (2, 4 и даже 8). Они расположены на задней панели компьютера. Но так как эти разъемы стали очень популярны, то производители компьютерных корпусов стали их размещать на передней или боковой стенкекомпьютера, что позволило получить к разъемам быстрый доступ и подключать устройства без лишних движений. Обычно эти разъемы обозначены специальным значком (рис. 204).

На ноутбуках обычно устанавливают два или три USB разъема (рис.203).

Разъем USB, в отличие от других разъемов компьютера, позволяет подключать и отключать устройства во время работы компьютера. Это означает, что вы можете отключать устройство, например, вынимать флешку, не выключая компьютер, но тут есть свои нюансы работы и о них мы поговорим чуть позже.

Урок #69. Внешние жесткие диски

Наравне с флешками используются и внешние жесткие диски (рис.205). Они имеют большие габариты, нежели флешки, но и объем хранимой на них информации значительно больше. Объемы современных съемных жестких дисков исчисляются сотнями гигабайт и достигают нескольких терабайт. Соответственно и цена жесткого диска будет зависеть от его объема. Кроме этого на цену жесткого диска влияет и его геометрический размер – чем меньше жесткий диск, тем, как правило, большую сумму за него придется выложить.

Часто жесткие диски обозначают сокращенно HDD – от англ. Hard Drive Disk (жесткий диск). В разговорной речи вы можете услышать еще название «винчестер» или «винт».

Внешние жесткие диски подключаются к компьютеру через уже нам знакомый разъем USB (рис.206).

Урок #70. Карты памяти

Карты памяти или флеш-карты - это компактные электронные запоминающие устройства, используемые для хранения информации (рис.207). Современные карты памяти изготавливаются на основе флеш-памяти, т.е. по тому же принципу, что и флешки.

Если у вас есть цифровой фотоаппарат, то в нем обязательно будет установлена одна из карт памяти, изображенных на рисунке 207. Тип памяти, которая устанавливается в конкретную модель фотоаппарата, определяется производителем.
Наиболее популярные в настоящее время карты типа SD - Secure Digital Memory Card (рис.208). Эти карты имеют несколько типоразмеров и применяются в основном в портативныхустройствах (фотоаппараты, сотовые телефоны, КПК и т.д.).
Карты памяти используются именно как устройства хранения информации, т.е. на них фотоаппаратзаписывает отснятые фотографии, а в карманномкомпьютере (КПК) вы можете использовать карту как жесткий диск вашего компьютера, т.е. сохранять свои файлы на карту или устанавливать на нее программы.
При работе с портативными устройствами неминуемо возникает необходимость подключить устройство к компьютеру, для того чтобы переписать информацию на устройство или с устройства. Тоже самое и с цифровым фотоаппаратом – рано или поздно возникает необходимость перекинуть фотографии накомпьютер. Как же это сделать?

Рис. 209. Кардридер

С картами флеш-памяти очень удобно работать через устройство, которое называется кардридер , от англ. card reader (рис.209).
Обычно кардридер представляет собой маленькую коробочку с различными разъемами и вы можете одновременно подключить к компьютеру карты памяти различных форматов.
Сам кардридер подключается к компьютеру через USB разъем.
В продаже вы можете встретить кардридеры различной конфигурации и размеров, но при приобретении кардридера обращайте внимание на то, какие типы карт флеш-памяти он поддерживает. Есть кардридеры, которые поддерживают, например, только карты Secure Digital . Если вы хотите приобрести универсальный кардридер, то ищите в его обозначении надпись «all in one » или «all in 1 ». Это означает, что данное устройство работает со всеми типами памяти.

Урок #71. Как скачать фотографии с фотоаппарата

Если у вас есть цифровой фотоаппарат, но нет картридера, то для переноса фотографий можно воспользоваться следующим способом.

    1. В комплекте с фотоаппаратом всегда идет кабель для подключения к USB разъему. Подключите этим кабелем фотоаппарат к компьютеру.
    2. Включите фотоаппарат.
    3. Операционная система попытается самостоятельно определить, что за устройство было подключено к компьютеру.

Если у вас есть подключение к Интернету, то, скорее всего, вам просто понадобится подождать около минуты, пока Windows определит ваш фотоаппарат и установит необходимый драйвер.

Драйвер – это программа, которая является своеобразным посредником между операционной системой и устройством. Драйвер “объясняет” операционной системе, что это за устройство установлено и как нужно с ним работать.

Если у вас нет подключения к Интернету то, скорее всего вам понадобится установить драйвер самостоятельно. В комплекте с фотоаппаратом всегда идет диск, на котором обычно находится драйвер к устройству. Изучите инструкцию к фотоаппарату и установите необходимые программы в соответствии с описанием.

    1. После установки драйвера появиться диалоговое окно (рис.210):
  1. Самый простой вариант – это выбрать пункт Просмотр файлов . Откроется окно программыПроводник , в котором вы сможете работать с фотографиями на флеш-карте вашегофотоаппарата таким же образом, как и на компьютере. Т.е. вы сможете просто скопировать файлы и вставить их в нужную папку на компьютере.

Второй способ – это воспользоваться пунктом Импортировать изображения и видеозаписи . Появится окно Импорт изображений и видео (рис.211).


Рис. 211. Импорт изображений и видео

В этом окне можно настроить параметры импорта изображений, выбрав соответствующий пункт. Откроется окно Импорт параметров (рис.212). В этом окне можно настроить папку, в которую будут фотографии копироваться с фотокамеры. По умолчанию фотографии импортируются в папку Изображения , которая находится в Библиотеках . Далее вы можете задать имя папки, которая будет создаваться при импорте фотографий с фотокамеры.

Посмотрите на рисунок 212. Сейчас выбраны следующие настройки – фотографии будут импортироваться (копироваться) с фотокамеры в библиотеку Изображения , при этом в папкеИзображения будет создана новая папка и ей будет присвоено имя в виде сегодняшней даты.

Рис. 212. Импорт параметров

После того, как вы выполните настройки импорта, нажмите ОК и в окне Импорт изображений и видео нажмите кнопку Импорт (рис.211). Ваши фотографии будут скопированы на компьютер.

Урок #72. Работаем со съемными носителями

При работе со съемными носителями информации есть нюансы, которые следует знать. Когда мы устанавливаем диск в привод оптических дисков или подключаем к USB разъему компьютеравнешнее запоминающее устройство (флешку, съемный жесткий диск или кардридер с картой памяти), то в операционной системе Windows срабатывает автозапуск. Это означает, что операционная система автоматически обнаруживает новый носитель информации и, пытаясь предугадать наши действия, выводит окно со списком операций, которые мы можем провести (рис.213 и 214).

Вы можете выбрать из списка удобное вам действие или закрыть окно Автозапуск и получить доступ к информации съемного носителя информации через программу Проводник . Кстати говоря, пункт Открыть папку для просмотра файлов как раз приведет к запуску Проводника , в котором будет отображаться содержимое съемного носителя информации.

Окно Автозапуск может у вас и не появиться. Дело в том, что возможность Windows по автоматическому запуску используют злоумышленники для активации своих вирусов и вредоносных программ на вашем компьютере. По этой причине некоторые антивирусные программы и некоторые программы, предназначенные для защиты компьютера, могут блокировать Автозапуск . В этом случае доступ к информации, находящейся на съемном устройстве, можно получить через программу Проводник .

Запускаем Проводник и отобразим содержимое папки Компьютер (рис.215). Я подключил ккомпьютеру флешку, размером около двух гигабайт и установил DVD диск в привод оптических дисков.

На рисунке 215 вы видите, что появился новый раздел в папке Компьютер , который называетсяУстройства со съемными носителями . В этом разделе отображается значок привода оптических дисков (обозначен буквой Е ), и съемный диск G - это моя флешка.
Чтобы мне начать работать с информацией данных дисков (E и G ) мне нужно в них зайти, кликнув дважды левой кнопкой мыши на соответствующем значке съемного устройства.

Работать с файлами, расположенными на флеш-устройствах (флешках и картах памяти) и на съемных жестких дисках, ничем не отличается от работы с файлами на компьютере. Это значит, что вы можете копировать, перемещать и удалять информацию с этих устройств. Только будьте внимательны – при удалении информации со съемных носителей она НЕ ПОМЕЩАЕТСЯ вКорзину , а сразу удаляется.


Рис. 215. Отображение съемных устройств в Проводнике

Файлы, расположенные на оптических дисках, вы можете только копировать или запускать. Для удаления или записи информации на оптические диски нужно использовать дополнительную программу, о которой мы поговорим в дальнейшем.

Теперь давайте разберемся с тем, как правильно извлекать съемные носители информации изкомпьютера. Здесь есть несколько правил, которых я придерживаюсь и рекомендую их вам.

Если вы работаете с информацией, расположенной на оптическом диске, то до извлечения оптического диска из привода убедитесь, что с этого диска не запущен какой-либо файл или программа. Нет ничего страшного, если вы извлечете диск при запущенном с него файле. Просто операционная система потеряет связь с этим файлом и попросит вас снова установить диск. Т.е. никакого вреда ни диску, ни файлам на нем расположенным вы не нанесете, только потеряете немного времени на повторную установку диска и повторное его извлечение после закрытия файла.

С флешками, картами памяти и съемными жесткими дисками ситуация другая. Если вы просто извлечете устройство из разъема, то вы можете повредить информацию, которая на этом устройстве находится, а в некоторых случаях и само устройство.

Перед изъятием устройства из компьютера необходимо его отключить. Для этого в Windows есть инструмент, который называется . Чтобы получить к нему доступ необходимо в Области уведомлений выбрать соответствующий значок (рис.216), затем кликнуть на нем левой кнопкой мыши и появится меню (рис.217), в котором будут перечислены все диски, доступные на вашем компьютере. Из списка необходимо выбрать диск, который необходимо отключить, т.е. нашу флешку, кардридер с картами памяти или съемный жесткий диск.

После этого в Области уведомлений появится информационное сообщение (рис.218):

Домашнее задание:

1. Если в вашем компьютере установлен привод оптических дисков, то установите, с какими дисками он работает (CD, DVD, Blu-ray). Эта информация обычно находится на лотке привода (рис.199). Если привод позволяет записывать диски, то на нем будет надпись «RW» или «Recoder».

2. Если у вас есть карта памяти, например, в фотоаппарате, то выясните ее размер и тип. Эта информация вам понадобится, если вы решите приобрести карту большего объема или кардридер.

3. Если у вас нет кардридера, скопируйте фотографии с карты памяти с помощьюWindows (рис. 210).

4. Подключите вашу флешку к компьютеру через USB разъем, запустите с нее какой-либо файл и попробуйте ее отключить через Безопасное извлечение устройств и дисков (рис.216). Должно появиться окно с предупреждением (рис.219). Затем закройте файл, запущенный ранее, и повторите действие. Должно появиться информационное сообщение как на рисунке 218.

FDD (Floppy Disk Drive) -- Устройство для записи информации на съёмные магнитные диски (дискеты).

Дискета -- портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х -- конце 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД -- «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД -- «накопитель на гибких магнитных дисках»).

Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства -- дисковода гибких дисков (флоппи-дисковода).

Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения.

· 1971 -- Первая дискета диаметром в 200 мм (8?) с соответствующим дисководом была представлена фирмой IBM. Обычно само изобретение приписывается Алану Шугарту, работавшему в конце 1960-х годов в IBM.

· 1973 -- Алан Шугерт основывает собственную фирму Shugart Associates.

· 1976 -- Алан Шугерт разработал дискету диаметром 5,25?.

· 1981 -- Sony выводит на рынок дискету диаметром 3,5? (90 мм). В первой версии объём составляет 720 килобайт (9 секторов). Поздняя версия имеет объём 1440 килобайт или 1,40 мегабайт (18 секторов). Именно этот тип дискеты становится стандартом (после того, как IBM использует его в своём IBM PC).

Позже появились так называемые ED-дискеты (от англ. Extended Density -- «расширенная плотность»), имевшие объём 2880 килобайт (36 секторов), которые так и не получили широкого распространения.

Исчезновение

Одной из главных проблем, связанных с использованием дискет, была их недолговечность. Наиболее уязвимым элементом конструкции дискеты был жестяной или пластиковый кожух, закрывающий собственно гибкий диск: его края могли отгибаться, что приводило к застреванию дискеты в дисководе, возвращавшая кожух в исходное положение пружина могла смещаться, в результате кожух дискеты отделялся от корпуса и больше не возвращался в исходное положение. Сам пластиковый корпус дискеты не служил достаточной защитой гибкого диска от механических повреждений (например, при падении дискеты на пол), которые выводили магнитный носитель из строя. В щели между корпусом дискеты и кожухом могла проникать пыль.

Массовое вытеснение дискет из обихода началось с появлением перезаписываемых компакт-дисков, и особенно, носителей на основе флэш-памяти, обладающих гораздо меньшей удельной стоимостью, на порядки большей емкостью, большим фактическим числом циклов перезаписи и долговечностью и большей скоростью обмена данными.

CD-ROM (англ. compact disc read-only memory ) -- компактный оптический диск, содержащий данные доступные для компьютера. Поскольку диск изначально предполагался для сохранения и воспроизведения музыкальных произведений, впоследствии он был доработан для хранения цифровых данных. Диски CD-ROM -- популярное средство для распространения программного обеспечения, компьютерных игр, мультимедийных приложений. Некоторые CD содержат как компьютерные, так и аудио-данные с возможностью последующего воспроизведения в CD-плеере, в то время как компьютерные данные (такие как программное обеспечение или цифровое видео) становятся доступными только при помощи компьютера. Такой тип дисков называется усовершенствованными дисками (англ. Enhanced CD ).

Технические детали

Компакт-диск представляет собой поликарбонатную подложку толщиной 1,2 мм, покрытого тончайшим слоем металла (алюминий, золото, серебро и др.) и защитным слоем лака, на котором обычно наносится графическое представление содержания диска. Принцип считывания через подложку был принят, поскольку позволяет весьма просто и эффективно осуществить защиту информационной структуры и удалить её от внешней поверхности диска. Диаметр пучка на внешней поверхности диска составляет порядка 0,7 мм, что повышает помехоустойчивость системы к пыли и царапинам. Кроме того, на внешней поверхности имеется кольцевой выступ высотой 0,2 мм, позволяющий диску, положенному на ровную поверхность, не касаться этой поверхности. В центре диска расположено отверстие диаметром 15 мм. Вес диска без коробки составляет приблизительно 15,7 гр. Вес диска в обычной (не «слим») коробке приблизительно равен 74 гр.

Компакт-диски имеют в диаметре 12 см и изначально вмещали до 650 Мбайт информации. Однако, начиная приблизительно с 2000 года, всё большее распространение стали получать диски объёмом 700 Мбайт, впоследствии полностью вытеснившие диск объёмом 650 Мбайт. Встречаются и носители объёмом 800 мегабайт и даже больше, однако они могут не читаться на некоторых приводах компакт-дисков. Бывают также 8-сантиметровые диски, на которые вмещается около 140 или 210 Мб данных и CD, формой напоминающие кредитные карточки (т. н. диски-визитки).

CD-ROM под электронным микроскопом

Информация на диске записывается в виде спиральной дорожки так называемых питов (углублений), выдавленных в поликарбонатной основе. Каждый пит имеет примерно 100 нм в глубину и 500 нм в ширину. Длина пита варьируется от 850 нм до 3,5 мкм. Промежутки между питами называются лендом. Шаг дорожек в спирали составляет 1,6 мкм.

Различают диски только для чтения («алюминиевые»), CD-R -- для однократной записи, CD-RW -- для многократной записи. Диски последних двух типов предназначены для записи на специальных пишущих приводах.

CD-R (Compact Disc -Recordable , Записываемый Компакт-Диск) -- разновидность компакт-диска (CD), разработанная компаниями Philips и Sony для однократной записи информации. CD-R поддерживает все возможности стандарта «Red Book» и плюс к этому позволяет записать данные.

Технические детали

Обычный CD-R представляет собой тонкий диск из прозрачного пластика -- поликарбоната -- толщиной 1,2 мм, диаметром 120 мм (стандартный)вес 16-18гр. или 80 мм (мини) . Ёмкость стандартного CD-R составляет 74 минуты аудио или 650 МБ данных. Однако, на данный момент стандартным можно считать CD-R ёмкостью 702 МБ данных (точнее 736 966 656 байт) или 79 минут 59 секунд и 74 фрейма. Такая ёмкость достигается небольшим превышением допусков, описанных в стандарте «Оранжевой Книги» (CD-R/CD-RW). Также на рынке имеются 90 минутные / 790 МБ и 99 минутные / 870 МБ диски, которые получили гораздо меньшее распространение.

Поликарбонатный диск имеет спиральную дорожку для направления луча лазера при записи и считывании информации. С той стороны, где находится эта спиральная дорожка, диск покрыт записывающим слоем, который состоит из очень тонкого слоя органического красителя и затем отражающим слоем из серебра, его сплава или золота. Этот отражающий слой покрывается защитным фотополимеризуемым лаком и отверждается ультрафиолетовым излучением. И уже на этот защитный слой наносятся различные надписи краской.

Чистый CD-R не является полностью пустым, на нём имеется служебная дорожка с сервометками ATIP -- Absolute Time In Pregroove -- абсолютное время в служебной дорожке. Эта служебная дорожка нужна для системы слежения, которая удерживает луч лазера при записи на дорожке и следит за скоростью записи (то есть следит, чтобы длина пита была постоянной). Помимо функций синхронизации, служебная дорожка также содержит информацию об изготовителе этого диска, сведения о материале записывающего слоя, длине дорожки для записи и т. п. Служебная дорожка не разрушается при записи данных на диск и многие системы защиты от копирования используют её для того, чтобы отличить оригинал от копии.

Первыми компаниями, которые начали выпуск «болванок» CD-R были Taiyo Yuden, Kodak, Maxell и TDK. С тех пор стандарт CD-R подвергался дальнейшему развитию для обеспечения всё больших скоростей записи и в настоящее время (2006) максимальная возможная скорость записи CD-R равна 52x, то есть в 52 раза больше чем та, которая определена в стандарте «Оранжевой Книги» (1x = 150 КБ/с). Эти доработки заключаются, в основном, в новых материалах для записывающего слоя, лучшей геометрии дорожки и технологии нанесения записывающего слоя. Низкоскоростная запись 1х используется до сих пор для записи особых «аудио CD-R», так как записывающие деки на компакт-дисках были стандартизованы именно на эту скорость.

Используется три основных типа записывающего слоя для CD-R:

1. Цианин (англ. Cyanine ) -- Цианиновый краситель обладает сине-зелёным (цвет «морской волны») оттенком рабочей поверхности. Этот материал использовался в самых первых «болванках» CD-R и запатентован фирмой Taiyo Yuden. Этот краситель химически нестоек, что является причиной короткого срока гарантированного хранения записанной информации. Краситель может выцвести за несколько лет. Хотя многие производители используют дополнительные химические добавки для увеличения стабильности цианина, такие диски не рекомендуется использовать в целях резервного копирования и долговременного хранения архивных данных.

2. Azo -- Металлизированный азо-краситель, имеет тёмно-синий цвет. Его формула запатентована фирмой Mitsubishi Chemicals. Этот краситель химически стоек и его способность хранить информацию исчисляется десятилетиями (сами фирмы пишут о 100 годах).

3. Фталоцианин (англ. Phthalocyanine ) -- Чуть более поздняя разработка активного записываемого слоя. Фталоцианин практически бесцветен, с бледным оттенком салатового или золотистого цвета, из-за чего диски на основе фталоцианинового активного слоя часто называют «золотыми». Фталоцианин -- несколько более современная разработка. Диски на основе этого активного слоя менее чувствительны к солнечному свету и ультрафиолетовому излучению, что способствует увеличению долговечности записанной информации и несколько более надёжному хранению в неблагоприятных условиях (фирмы заявляют о сотнях лет).

К сожалению, многие производители используют различные добавки в записывающий слой, чтобы цианиновые болванки были похожи по цвету на фталоцианиновые. Поэтому нельзя просто по цвету определить материал записывающего слоя. Также и отражающий слой «золотого» цвета не гарантирует, что это фталоцианиновый CD-R.

CD-RW (англ. Compact Disc-Rewritable , Перезаписываемый компакт-диск) -- разновидность компакт-диска (CD), разработанный в 1997 году для многократной записи информации.

Технические детали

CD-RW является дальнейшим логическим развитием записываемого лазерного компакт-диска CD-R, однако, в отличие от него, позволяет многократно перезаписывать данные. Этот формат был представлен в 1997 году и в процессе разработки назывался CD-Erasable (CD-E, Стираемый Компакт-Диск). CD-RW во многом похож на своего предшественника CD-R, но его записывающий слой изготавливается из специального сплава халькогенидов, который при нагреве выше температуры плавления переходит из кристаллического агрегатного состояния в аморфное. Фазовые переходы между различными состояниями вещества всегда сопровождаются изменением физических параметров среды. Нормальным состоянием твердых тел и основным в окружающей нас природе является кристаллическое. В этом отношении аморфные тела -- редкость, так как стеклообразное (аморфное) состояние реализуется только при затвердевании переохлажденного расплава. От других аморфных состояний стекла отличаются тем, что процессы перехода расплав -- стекло и стекло -- расплав обратимы. Эта их особенность чрезвычайно важна для создания реверсивных носителей оптической записи, то есть обеспечивающих многократную перезапись. Основным условием образования стекловидных состояний, в том числе металлов, является охлаждение, настолько быстрое, что атомы не успевают занять отведенные им места в кристаллических ячейках и «замирают» как попало, когда тепловая релаксация атомов сопоставима или становится меньше межатомных расстояний. При толщине активного слоя оптического диска в 0,1 мкм создать условия для сверхбыстрого охлаждения не трудно. Полный цикл: запись -- многократное воспроизведение -- стирание -- новая запись выглядит следующим образом. Подогревая лазером, рабочий слой оптического диска, находящийся в кристаллическом состоянии, переводят в расплав. За счет быстрой диффузии тепла в подложку расплав быстро охлаждается и переходит в фазу стекла. Кристаллическому и стеклообразному состояниям присущи разные диэлектрическая проницаемость, коэффициент отражения, а следовательно, и интенсивность отраженного света, которая и несет информацию о записи на диске. Считывание производится при пониженной интенсивности излучения лазера, не влияющей на фазовые переходы. Для новой записи необходимо вернуть рабочий слой в исходное кристаллическое состояние. Для этого используется двухступенчатая модуляция (короткий мощный импульс для расплава активного слоя и длинный импульс для постепенного охлаждения вещества) мощности лазера. Перегрев замедлит процесс диффузии тепла и создаст условия для возврата в кристаллическую фазу. Активный слой обычно изготовляют из халькогенидного стекла -- сплава серебра (Ag), индия (In), сурьмы (Sb) и теллура (Te).

Многократная перезапись в принципе может приводить к механической усталости рабочего слоя и, как следствие, к его разрушению. Поэтому при выборе веществ важным фактором становится отсутствие эффекта накопления усталости. Современные CD-RW диски позволяют перезаписывать информацию порядка 1000 раз. Работа с дисками CD-RW очень похожа на работу с однократно записываемыми дисками CD-R. Позднее появился новый формат записи болванок CD-RW -- Universal Disk Format (UDF, Packet Writing), который позволяет «отформатировать» диск и работать с ним как с обычной большой дискетой, позволяющей чтение/запись/удаление/изменение данных. Объём таких UDF-форматированных дисков равен примерно 530 Мбайт, в отличие от обычных 700 Мбайт при записи одной сессией на весь диск.

CD-RW диски не удовлетворяют требованиям, описанным в стандартах «Red Book» (CD-ROM) и «Orange Book Part II» (CD-R), в отношении коэффициента отражения. Поэтому такие диски не читаются в старых приводах компакт-дисков, выпущенных до 1997 года. CD-R считается более подходящим стандартом носителей для резервного копирования, так как записанная на них информация уже не может быть изменена и производители «болванок» указывают бомльшее время хранения данных для дисков CD-R, чем для CD-RW.

При обычной записи на CD-RW (не UDF), периодически нужно полностью стирать диск. Существует два вида стирания -- «полное» и «быстрое». Как следует из названия, при «полном» стирании весь диск переводится в кристаллическое состояние и старая информация уничтожается физически. А «быстрое» стирание очищает только небольшую часть диска (англ. Lead-in -- зона, где хранится информация о содержании диска), что происходит гораздо быстрее. Однако при этом существует техническая возможность восстановить данные. Поэтому, если есть необходимость сохранения конфиденциальности информации, то нужно использовать полное стирание.

DVD (англ. Digital Versatile Disc -- цифровой многоцелевой диск; также англ. Digital Video Disc -- цифровой видеодиск) -- носитель информации, выполненный в виде диска, внешне схожий с компакт-диском, однако имеющий возможность хранить бомльший объём информации за счёт использования лазера с меньшей длиной волны, чем для обычных компакт-дисков.

Первые диски и проигрыватели DVD появились в ноябре 1996 года в Японии и в марте 1997 года в США.

В начале 1990-х годов разрабатывалось два стандарта для оптических информационных носителей высокой плотности. Один из них назывался Multimedia Compact Disc (MMCD ) и разрабатывался компаниями Philips и Sony, второй -- Super Disc -- поддерживали 8 крупных корпораций, в числе которых были Toshiba и Time Warner. Позже усилия разработчиков стандартов были объединены под началом IBM, которая не хотела повторения кровопролитной войны форматов, как было со стандартами кассет VHS и BetaMax в 1970-х. Официально DVD был анонсирован в сентябре 1995 года. Первая версия спецификаций DVD была опубликована в сентябре 1996 года. Изменения и дополнения в спецификации вносит организация DVD Forum (ранее называвшаяся DVD Consortium), членами которой являются 10 компаний-основателей и более 220 частных лиц.

Первый привод, поддерживающий запись DVD-R, выпущен Pioneer в октябре 1997 года. Стоимость этого привода, поддерживающего спецификацию DVD-R версии 1.0, составляла 17 000 долл. Болванки объёмом 3,95 Гб стоили по 50 долл. каждая.

Изначально «DVD» расшифровывалось как «Digital Video Disc» (цифровой видеодиск), поскольку данный формат первоначально разрабатывался как замена видеокассетам. Позже, когда стало ясно, что носитель подходит и для хранения произвольной информации, многие стали расшифровывать DVD как Digital Versatile Disc (цифровой многоцелевой диск). Toshiba, заведующая официальным сайтом DVD Forum"а, использует «Digital Versatile Disc».

К консенсусу не пришли до сих пор, поэтому сегодня «DVD» официально вообще никак не расшифровывается.

Техническая информация

Для считывания и записи DVD используется красный лазер с длиной волны 650 нанометров.

DVD по структуре данных бывают четырёх типов:

· DVD-видео -- содержат фильмы (видео и звук);

· DVD-Audio -- содержат аудиоданные высокого качества (гораздо выше, чем на аудио-компакт-дисках);

· DVD-Data -- содержат любые данные;

· смешанное содержимое.

В отличие от компакт-дисков, в которых структура аудиодиска фундаментально отличается от диска с данными, в DVD всегда используется файловая система UDF (для данных может быть использована ISO 9660).

Любой из типов носителей DVD может нести любую из четырёх структур данных (см. выше).

Физически DVD может иметь одну или две рабочие стороны и один или два рабочих слоя на каждой стороне. От их количества зависит ёмкость диска (из-за чего они получили также названия DVD-5, -9, -10, -14, -18, по принципу округления ёмкости диска в Гб до ближайшего сверху целого числа):

Указанные цифры -- приблизительные. На DVD данные записываются секторами; один сектор содержит 2048 байт. Поэтому точное значение ёмкости DVD можно определить умножением 2048 на число секторов на диске, которое слегка варьируется у различных типов DVD носителей (цифры даны для 1-сторонних дисков; у 2-сторонних, соответственно, всё в 2 раза больше):

Примечание: формат DVD-R(W) не задаёт точное число секторов, а лишь требует, чтобы ёмкость была не ниже 4,7 млрд байт. Однако большинство производителей придерживаются цифры 2 298 496 секторов, что и указано в таблице.

Вместимость можно определить на глаз -- нужно посмотреть, сколько рабочих (отражающих) сторон у диска и обратить внимание на их цвет: двухслойные стороны обычно имеют золотой цвет, а однослойные -- серебряный, как компакт-диск.

Единица скорости (1x) чтения/записи DVD составляет 1 385 000 байт/с (то есть около 1352 Кбайт/с = 1,32 Мбайт/с), что примерно соответствует 9-й скорости (9x) чтения/записи CD, которая равна 9 ? 150 = 1350 Кбайт/с. Таким образом, 16-скоростной привод обеспечивает скорость чтения (или записи) DVD равную 16 ? 1,32 = 21,12 Мбайт/с.

Форматы DVD±R и их совместимость

Стандарт записи DVD-R(W) был разработан в 1997 году группой компаний, входящих в DVD Forum, как официальная спецификация записываемых (впоследствии и перезаписываемых) дисков. Однако цена лицензии на эту технологию была слишком высока, и поэтому несколько производителей пишущих приводов и носителей для записи объединились в DVD+RW Alliance (англ.), который и разработал в середине 2002 года стандарт DVD+R(W), стоимость лицензии на который была ниже. Поначалу болванки (чистые диски для записи) DVD+R(W) были дороже, чем болванки DVD-R(W), но теперь цены сравнялись.

Все приводы для DVD могут читать оба формата дисков, и большинство пишущих приводов также могут записывать оба типа болванок. Среди остальных приводов форматы «+» и «-» одинаково популярны -- половина производителей поддерживает один стандарт, половина -- другой. Идут споры, вытеснит ли один из этих форматов своего конкурента или они продолжат мирно сосуществовать. Однако, поскольку формат DVD-R(W) появился почти на 5 лет раньше DVD+R(W), многие старые или дешёвые плееры вероятнее всего поддерживают лишь DVD-R(W). Это следует учитывать, особенно при записи дисков для распространения, когда тип читающего устройства (плеера или DVD-привода) заранее не известен.

BD-ROM (англ. blue ray -- синий луч и disc -- диск) -- формат оптического носителя, используемый для записи и хранения цифровых данных, включая видео высокой чёткости с повышенной плотностью. Стандарт Blu-ray был совместно разработан консорциумом BDA.

Blu-ray (букв. «синий-луч») получил своё название от использования для записи и чтения коротковолнового (405 нм) «синего» (технически сине-фиолетового) лазера. Представлен на международной выставке потребительской электроники Consumer Electronics Show (CES), которая прошла в январе 2006 года. Коммерческий запуск формата Blu-ray прошел весной 2006 года.

С момента появления формата в 2006 году и до начала 2008 года у Blu-ray существовал серьезный конкурент -- альтернативный формат HD DVD. В течение двух лет многие крупнейшие киностудии, которые изначально подерживали HD DVD, постепенно перешли на Blu-ray. Warner Brothers, последняя компания, выпускавшая свою продукцию в обоих форматах, отказалась от использования HD DVD в январе 2008 года. 19 февраля того же года Toshiba, создатель формата, прекратила разработки в области HD DVD. Это событие положило конец так называемой «войне форматов».

Вариации и размеры

Однослойный диск Blu-ray (BD) может хранить 23,3/25/27 или 33 Гб, двухслойный диск может вместить 46,6/50/54 или 66 Гб. Также в разработке находятся диски вместимостью 100 Гб и 200 Гб с использованием соответственно четырёх и восьми слоёв. Корпорация TDK уже анонсировала прототип четырёхслойного диска объёмом 100 Гб.

На данный момент доступны диски BD-R и BD-RE, в разработке находится формат BD-ROM. В дополнение к стандартным дискам размером 120 мм, выпущены варианты дисков размером 80 мм для использования в цифровых фото- и видеокамерах. Планируется, что их объём будет достигать 15 Гб для двухслойного варианта

Технические особенности

Лазер и оптика

В технологии Blu-ray для чтения и записи используется сине-фиолетовый лазер с длиной волны 405 нм. Обычные DVD и CD используют красный и инфракрасный лазеры с длиной волны 650 нм и 780 нм соответственно.

Такое уменьшение позволило сузить дорожку вдвое по сравнению с обычным DVD-диском (до 0,32 мкм) и увеличить плотность записи данных.

Более короткая длина волны сине-фиолетового лазера позволяет хранить больше информации на 12 см дисках того же размера, что и у CD/DVD. Эффективный «размер пятна», на котором лазер может сфокусироваться, ограничен дифракцией и зависит от длины волны света и числовой апертуры линзы, используемой для его фокусировки. Уменьшение длины волны, использование большей числовой апертуры (0,85, в сравнении с 0,6 для DVD), высококачественной двухлинзовой системы, а также уменьшение толщины защитного слоя в шесть раз (0,1 мм вместо 0,6 мм) предоставило возможность проведения более качественного и корректного течения операций чтения/записи. Это позволило записывать информацию в меньшие точки на диске, а значит, хранить больше информации в физической области диска, а также увеличить скорость считывания до 432 Мбит/с.

Предложены съемный носитель информации, устройство воспроизведения информации со съемного носителя и способ защиты информации на съемном носителе. Съемный носитель состоит из двух модулей, соединенных между собой и снабженных пазом. Один из модулей содержит контактную группу, а другой - чип флеш-памяти. Носитель выполнен одноразовым, разрушающимся при извлечении, за счет того, что модули соединены между собой посредством общего внешнего контура, который выполнен гибким, при этом внешний контур соединяет модули с одной стороны. Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является обеспечение невозможности воспроизведения информации со съемного носителя вне системы распределенных устройств, снабженных соответствующим разъемом, а также невозможность повторного воспроизведения информации. 3 н.п. ф-лы, 5 ил.

Рисунки к патенту РФ 2488901

Изобретение относится к области компьютерной техники и информационных технологий.

В указанной области техники существует проблема защиты информации от несанкционированных действий (далее НСД), например, несанкционированный доступ (ознакомление), внесение изменений в информацию, являющуюся, в частности, объектом авторского права (программную и медиа- продукцию), несанкционированное воспроизведение или копирование с целью безвозмездного использования или незаконного извлечения прибыли и т.п.

В настоящее время широкое распространение получили электронные съемные носители информации, флэш-память. Для компактных мобильных устройств используется, как правило, флэш-память формата SD (microSD, miniSD).

Широкие функциональные возможности съемного носителя позволяют недобросовестному пользователю, осуществить несанкционированные действия в отношении информации, записанной на съемный носитель. Обычно предотвращение НСД производится путем блокирования разъемов подключения внешних устройств к компьютерам (обычно USB-портов), организационно-техническим (заклеивание или удаление) и/или программными (блокирование или запрет записи специальной программой) способами. Однако такие способы недостаточно надежны и резко понижают удобство работы пользователей и функциональность компьютерной системы.

Известен съемный носитель информации - патент на полезную модель № 97851, с приоритетом от 24.07.2009 г., патентообладатели Тимофеев Ю.А. и др. «Съемный носитель информации, использование которого в компьютерной системе исключает несанкционированный перенос служебной информации на данный носитель». Съемный носитель представляет собой внешнее устройство, работающее в двух режимах: внешнем (минимальный объем памяти) и рабочем (максимальный объем памяти), в котором устройство открыто для чтения и записи.

Использование этого съемного носителя исключает несанкционированный перенос служебной информации с компьютера на данный носитель и защищает компьютерную систему от хищения информации путем копирования ее на внешний носитель. Проверка съемного носителя на возможность подсоединения и работы в системе компьютера производится в несколько этапов. Первоначально при присоединении съемного носителя к компьютеру запрашивается пароль, который проверяется в системе, и в случае не совпадения блокируется. Если пароль верен, то производится его аутентификация с административным носителем, где также проводится дополнительная проверка на возможность использования. В результате чего может быть получено разрешение на работу в системе или отказ от работы.

При этом, задача предотвращения НСД оказывается решенной лишь частично, поскольку в съемном носителе предусмотрен внешний режим, при котором некоторый объем данных открыт всегда.

Наиболее близким к заявленному техническому решению, взятому за прототип, является съемный носитель по патенту на полезную модель № 102139« Съемный носитель информации» с приоритетом от 22.07.2010 г., патентообладатель ЗАО «Особое Конструкторское Бюро Систем Автоматизированного Проектирования».

В данном техническом решении съемный носитель информации представляет собой внешнее устройство, содержащее контактную группу и чип флеш-памяти. Съемный носитель выполнен на основе полупроводниковых схем энергонезависимой памяти, при этом весь объем памяти разделен на ряд блоков, функционально подобных секторам жестких магнитных дисков, по меньшей мере, один из блоков выполнен доступным для программирования (записи) из внешней среды только один раз, а далее доступным только для чтения. Все остальные блоки памяти съемного носителя (при их наличии) могут быть выполнены на основе обычной флэш-памяти, допускающей возможность электрического перепрограммирования (повторной записи информации) неограниченное количество раз.

Недостатком вышеприведенных решений является сложность в осуществлении многоэтапной процедуры идентификации/аутентификации съемного носителя.

В настоящее время имеется большое количество устройств обработки информации с использованием съемных носителей информации. Эти устройства имеют различное функциональное назначение, например, патент № 2376628 «Устройство обработки информации, носитель записи информации, способ обработки информации и компьютерная программа», приоритет от 10.08.2004, патентообладатель СОНИ КОРПОРЕИШН (JP) реализуют при использовании содержания носителей записи информации, для которых требуется обеспечить администрирование авторского права каждой части данных, полученных в результате сегментирования содержания записанного на носителе записи.

Наиболее близким техническим решением, взятым за прототип устройства, является патент № 2224283 «Электронное устройство, предпочтительно электронная книга» с приоритетом от 20.02.2001 года, патентообладатель Монек Мобайл Нетворк компьютеринг ЛТД». Электронное устройство состоит из корпуса, дисплея, электронной схемы, памяти, приемника для данных из системы, средств ввода информации и источника питания. Электронная книга многофункциональна, имеет один или более интерфейс для приема и передачи сигналов посредством радиосети. Защиту от копирования информации, загруженной или хранимой в электронной книге, обеспечивает персональный код идентификационного номера (ПИН) на плате микросхемы. Устройство представляет собой сложную систему, оснащенную большим количеством компонентов в конструкции, что делает его использование не достаточно простым для обыкновенного пользователя, а также не обеспечивает защиту информации, загруженной периферийным устройством, например от повторного использования.

Существует большое количество способов защиты информации от несанкционированного доступа (НСД), например: патент № 2401454 «Способ защиты от НСД», приоритет 01.09.2008 г., патентообладатель Цацура Е.Е. и Котляревский В.В., патент № 2211483 «Способ защиты информации», приоритет 26.02.2002, Патентообладатель Кузнецов А.А. и другие. Большинство способов основано на том, что в системе производится проверка установленного пароля или данных распознавания, в результате чего соответствующая команда либо запрещает доступ к информации вплоть до ее полного удаления, либо разрешает использование.

Наиболее близким техническим решением является способ по заявке № 2009130827 (решение о выдаче патента от 16.02.2011 г.) «Способ уничтожения информации с электронных носителей и взрывное режущее устройство», заявитель ФГУП «РФЯЦ-ВНИИЭФ», приоритет 12.08.2009 г. Способ включает в себя уничтожение информации с электронных носителей, вплоть до разрушения носителя до состояния, обеспечивающего невозможность восстановления информации. Разрушение происходит за счет действия плоской кумулятивной режущей струи на носитель информации как непосредственно, так и через преграду. Необходимо отметить сложность реализации способа, поскольку для осуществления его требуется режущее устройство специальной конструкции.

Задачей заявляемого технического решения является создание системы (комплекса), в которой предполагается использование мобильных компактных устройств воспроизведения информации (предпочтительно электронных книг) и флэш-памяти, в качестве СН информации, защищенной авторскими или иными правами, в которой будет обеспечена защита от несанкционированного доступа к этой информации.

Поставленная цель достигается за счет того, что съемный носитель информации, представляющий собой внешнее устройство, содержащее контактную группу и чип флеш-памяти, конструктивно выполнен состоящим из двух модулей, соединенных между собой и снабжен пазом, при этом один из модулей содержит контактную группу, а другой - чип флеш-памяти, а модули соединены между собой посредством общего внешнего контура, который выполнен гибким. А также за счет того, что в устройстве воспроизведения информации со съемного носителя (электронная книга), содержащего дисплей и, по меньшей мере, один слот для съемного носителя информации, слот для съемного носителя информации снабжен подвижным фиксатором, который в рабочем положении заходит в паз съемного носителя, при этом внутренняя конфигурация разъема слота повторяет конфигурацию контура съемного носителя информации. Кроме того, фиксатор снабжен пружиной и может быть включен в цепь одной из контактных пар контактной группы слота. Согласно способу защиты информации на съемном носителе, включающему разрушение носителя информации до состояния, обеспечивающего невозможность повторного использования носителя и восстановления информации, разрушение осуществляют механически, посредством фиксатора, который при извлечении съемного носителя фиксирует один из модулей и производит их необратимое отделение друг от друга.

Техническим результатом, обеспечиваемым приведенной совокупностью признаков, является невозможность воспроизведения (чтения) информации со съемного носителя вне системы распределенных устройств, снабженных соответствующим разъемом, а также невозможность повторного воспроизведения информации. Для чего предлагается использовать одноразовый съемный носитель флэш-памяти формата SD (microSD, miniSD) совместно с устройством воспроизведения информации (чтения), оснащенным слотом только для этого носителя.

Достижение указанного технического результата обеспечивается за счет использования пары: съемный одноразовый разрушаемый носитель и устройство воспроизведения, оснащенное слотом, предназначенным для считывания информации только с этого носителя, что обеспечивается тем, что внутренняя конфигурация разъема слота повторяет конфигурацию внешнего контура съемного носителя информации. Кроме того, слот устройства воспроизведения для съемного носителя информации снабжен фиксатором с пружиной, а съемный носитель выполнен состоящим из двух модулей, соединенных между собой посредством общего внешнего контура, при этом один из модулей содержит контактную группу, а другой - чип флеш-памяти, а между модулями расположен паз, в который при установке носителя в слот заходит фиксатор, а при извлечении носителя он фиксирует один из модулей, например модуль, содержащий контактную группу, что приводит к отделению модуля и механическому разрушению всех проводников между контактной группой и чипом флэш-памяти и необратимому разрушению съемного носителя информации. Кроме того, фиксатор может быть включен в цепь одной из контактных пар контактной группы слота таким образом, что цепь замыкается только тогда, когда фиксатор зайдет в паз. Таким образом, заявленный способ защиты информации, переносимой на съемном носителе информации (флэш-памяти) с применением уникальной формы пары носитель-разъем, может быть применен в замкнутых информационных системах, состоящих из распределенных устройств, не связанных между собой проводными и беспроводными сетями передачи данных и имеющих уникальную форму контура съемного носителя флэш-памяти и разъема слота чтения под эту форму.

Заявленная совокупность признаков не известна заявителю из доступных источников информации, что позволяет сделать вывод о том, что заявленное изобретение соответствует критерию «новизна».

Анализ известных технических решений показал, что заявленное решение за счет создания уникальной конструкции пары носитель-разъем позволило получить принципиально новый комплекс защиты информации, не применявшийся ранее и обеспечивающий решение поставленной задачи, что позволяет сделать вывод о соответствии заявленного решения критерию «изобретательский уровень».

Заявленное решение поясняется чертежами.

На фиг.1 представлен общий вид в сборе, съемный носитель информации вставлен в устройство воспроизведения информации.

На фиг.2 представлен разъем для съемного носителя информации в его пустом состоянии.

На фиг.3 представлен съемный носитель информации.

На фиг.4 представлена электрическая схема подключения фиксатора.

На фиг.5 представлена работа системы в динамике.

В заявленном решении предлагается использовать съемный одноразовый разрушаемый носитель информации 1 (флэш-памяти) формата SD (microSD, miniSD) специальной формы носителя и расположения контактной группы, совместно с устройством воспроизведения информации (не показано) с него, оснащенным слотом 2 только для рассматриваемого носителя 1 (фиг.1).

Съемный носитель информации (флеш-память) содержит внешний контур 3, контактную группу 4 и чип флеш-памяти 5 в оболочке. Конструктивно съемный носитель информации 1 выполнен состоящим из двух модулей, соединенных между собой внешним контуром 3, один модуль (в данном случае - верхний) содержит контактную группу 4, а другой - оболочку с чипом флеш-памяти 5. Между модулями расположен паз 6.

Слот 2 устройства воспроизведения информации со съемного носителя (электронная книга) снабжен фиксатором 7 с пружиной 8. В приведенном решении фиксатор 7 жестко соединен с пружиной 8, а пружина - с корпусом разъема 2. Но возможны и другие конструктивные решения, например того же результата можно достичь только за счет формы самого фиксатора и деталей корпуса, при этом жесткое соединение с пружиной будет необязательно. В рабочем состоянии фиксатор 7 установлен в пазу 6 и фиксирует контактную группу 4 съемного носителя 1. Внешняя конфигурация разъема 9 слота 2 повторяет конфигурацию контура верхнего модуля съемного носителя информации 1. Форма внешнего контура съемного носителя информации, показанная на чертежах, является примером, Однако не единственной возможной, могут быть и другие конструктивные варианты исполнения.

На фиг.5 представлена работа системы в динамике. На первом этапе разъем 2 пустой, съемный носитель информации 1 с предварительно промышленно записанной на него информацией, вставляют в слот 2, при этом он отжимает фиксатор 7 и по мере перемещения съемного носителя 1 фиксатор 7 скользит по контуру верхнего модуля и попадает в паз 6 между верхним и нижним модулем. Съемный носитель информации 1 корректно установлен в разъем 2 устройства воспроизведения информации (фиг.1) и система готова к работе в режиме воспроизведения информации (например, чтения). По окончании работы (чтения), съемный носитель информации 1 извлекают из разъема 2, при этом фиксатор 7 фиксирует верхний модуль с контактной группой 4 и производит разрыв цепи контактной группы (проводников между контактной группой 4 и чипом флеш-памяти 5) и механически повреждает носитель информации 1.

С целью исключения несанкционированного доступа к информации на съемном носителе путем заклеивания паза 6 (что позволит изъять его из устройства без разрушения), фиксатор 7 может быть включен в цепь одной из контактных пар контактной группы слота (на фиг.4 изображен фиксатор со схематичным изображением контактов разъема SD, выведенных на отделяемую контактную группу). При этом цепь контактной группы слота будет замкнута только в том случае, когда фиксатор будет находиться в пазу 6.

Из современного развития техники известно, что существующий носитель флэш-памяти формата SD (microSD, miniSD) использует контактную группу из девяти разъемов для подключения к считывающим устройствам. В предлагаемом решении предполагается включить фиксатор в цепь одной из контактных пар разъема (в приведенной схеме это группа 9, но принципиально может использоваться любая). При этом фиксатор 7 имеет три рабочих положения: 1 - разомкнут, разъем пустой, 2 - разомкнут, разъем заполнен, 3 -замкнут, носитель корректно установлен в разъем (фиг.5).

Поскольку информация на чипе флэш-памяти не уничтожается, использование пластика для изготовления внешнего контура одноразового носителя предпочтительней с точки зрения предотвращения попыток повторного припаивания контактной группы.

Предлагаемое техническое решение может быть промышленно осуществимо с использованием стандартных комплектующих и существующих технологий.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Съемный носитель информации, представляющий собой внешнее устройство, состоящее из двух модулей, соединенных между собой и снабженных пазом, при этом один из модулей содержит контактную группу, а другой - чип флеш-памяти, отличающийся тем, что он выполнен одноразовым, разрушающимся при извлечении, за счет того, что модули соединены между собой посредством общего внешнего контура, который выполнен гибким, при этом внешний контур соединяет модули с одной стороны.

2. Устройство воспроизведения информации со съемного носителя, например электронная книга, содержащее дисплей и, по меньшей мере, один слот для съемного носителя информации, снабженный подвижным фиксатором, который в рабочем положении заходит в паз съемного носителя, отличающийся тем, что фиксатор включен в цепь одной из контактных пар контактной группы слота.

3. Способ защиты информации на съемном носителе, включающий разрушение носителя информации до состояния, обеспечивающего невозможность повторного использования носителя информации, отличающийся тем, что разрушение осуществляют механически, посредством фиксатора, который при извлечении съемного носителя фиксирует один из модулей и производит их необратимое отделение друг от друга.

Если верить археологам, желание записать информацию у человека появилось примерно сорок тысяч лет назад. Самым первым носителем была скала. У этого стационарного хранилища данных была масса достоинств (надежность, устойчивость к повреждениям, большая емкость, высокая скорость считывания) и один недостаток (трудоемкость и неспешность записи). Поэтому с течением времени стали появляться все более и более продвинутые носители информации.


Перфорированная бумажная лента




В большинстве ранних компьютеров использовалась бумажная лента, намотанная на бобины. Информация хранилась на ней в виде дырочек. Некоторые машины, такие как Colossus Mark 1 (1944), работали с данными, которые вводились при помощи ленты в реальном времени. Более поздние компьютеры, например, Manchester Mark 1 (1949), считывали программы с ленты и для последующего выполнения загружали их в примитивное подобие электронной памяти. Перфорированная лента использовалась для записи и чтения данных на протяжении тридцати лет.

Перфокарты





История перфокарт уходит корнями в самое начало XIX века, когда они использовались для управления ткацкими станками. В 1890 году Герман Холлерит применил перфокарту для обработки данных переписи населения в США. Именно он нашел компанию (будущую IBM), которая использовала такие карты в своих счетных машинах.

В 1950-х годах IBM уже вовсю использовала в своих компьютерах перфокарты для хранения и ввода данных, а вскоре этот носитель стали применять и другие производители. Тогда были распространены 80-столбцовые карты, в которых для одного символа отводился отдельный столбец. Кто-то может удивиться, но в 2002 году IBM все еще продолжала разработки в области технологии перфокарт. Правда, в XXI веке компанию интересовали карточки размером с почтовую марку, способные хранить до 25 миллионов страниц информации.

Магнитная лента






Вместе с выходом первого американского коммерческого компьютера UNIVAC I (1951) в IT-индустрии началась эра магнитной пленки. Первопроходцем, как водится, снова стала IBM, потом «подтянулись» другие. Магнитная лента наматывалась открытым способом на катушки и представляла собой очень тонкую полосу пластика, покрытого магниточувствительным веществом.

Машины записывали и считывали данные при помощи специальных магнитных головок, встроенных в привод бобин. Магнитная лента широко использовалась во многих моделях компьютеров (особенно мейнфреймах и мини-компьютерах) вплоть до 1980-х, пока не изобрели ленточные картриджи.

Первые съемные диски






В 1963 году IBM представила первый винчестер со съемным диском – IBM 1311. Он представлял собой набор взаимозаменяемых дисков. Каждый набор состоял из шести дисков диаметром 14 дюймов, вмещавших до 2 Мб информации. В 1970-х многие винчестеры, к примеру, DEC RK05, поддерживали такие дисковые наборы, особенно часто их использовали производители миникомпьютеров для продажи программного обеспечения

Ленточные картриджи





В 1960-х производители компьютерного железа научились помещать рулоны магнитной ленты в миниатюрные пластиковые картриджи. От своих предшественниц, бобин, они отличались большим сроком жизни, портативностью и удобством. Наибольшее распространение они получили в 1970-е и 1980-е. Как и бобины, картриджи оказались очень гибкими носителями: если нужно было записать очень много информации, в картридж просто помещалось больше ленты.

Сегодня ленточные картриджи типа 800-гигабайтного LTO Ultrium используются для масштабной поддержки серверов, хотя в последние годы их популярность упала ввиду большего удобства переноса данных с винчестера на винчестер.

Печать на бумаге






В 1970-х благодаря относительно низкой стоимости популярность набирают персональные компьютеры. Однако существовавшие способы хранения данных многим оказались не по карману. Один из первых ПК, MITS Altair поставлялся и вовсе без носителей для записи информации. Пользователям предлагалось вводить программы при помощи специальных тумблеров на передней панели. Тогда, на заре развития «персоналок», пользователям нередко приходилось в буквальном смысле вставлять в компьютер листки с
написанными от руки программами. Позднее программы стали распространяться в печатном виде через бумажные журналы.

Дискеты




В 1971 году на свете появилась первая дискета IBM. Она представляла собой покрытый магнитным веществом 8-дюймовый гибкий диск, помещенный в пластиковый корпус. Пользователи быстро поняли, что для загрузки данных в компьютер «флоппи-диски» быстрее, дешевле и компактнее, чем стопки перфокарт. В 1976 году один из создателей первой дискеты, Алан Шугарт, предложил ее новый формат – 5,25-дюймов. В таком размер просуществовала до конца 1980-х, пока не появились 3.5-дюймовые дискеты Sony. Как это начиналось...

В конце 60-х годов американская фирма IBM предложила новое запоминающее устройство, которое использовало гибкий диск (флоппидиск). Гибкий диск работает так же, как и жесткий, но выполнен в виде упругой круглой пластинки с пластиковой основой, покрытой магнитным составом. Диск помещен в специальный гибкий конверт-кассету, предохраняющий его от механических повреждений и пыли.

Диск с конвертом устанавливается пользователем в специальное устройство (дисковод). В этом устройстве он вращается внутри конверта со скоростью около 300 об/мин.

Для уменьшения трения внутренняя часть конверта покрывается особым материалом. Через специально сделанные прорези магнитная головка считывания-записи дисковода контактирует с поверхностью диска и производит считывание или запись соответствующей информации. Накопитель на гибких магнитных дисках (НГМД) - сложное механическое устройство, оно требует подключения к компьютеру специального электронного блока-контроллера, который преобразует команды, поступающие от машины к накопителю, и следит за их выполнением, а также управляет процессом обмена данными.

Фирма IBM предложила использовать гибкие диски диаметром 203 мм (8 англ. дюймов) и разработала соответствующий стандарт на эти дисковые накопители.

Новое устройство внешней памяти начало приобретать большую популярность. В 1976 г. было продано около 200 тыс. устройств, в 1981 г. уже 3-4 млн, на общую сумму 2,3 млрд. долл., а в 1984 г. было поставлено 8,2 млн. НГМД на сумму 4,2 млрд. долл. Только в США в 1984 г. для НГМД было изготовлено 285 млн. гибких дисков.

Вместе с бурным развитием вычислительной техники усовершенствовались и НГМД . В начале 70-х годов американский изобретатель Ален Шугарт предложил уменьшить диаметр дисков до 133 мм (5,25 дюйма). В 1976 г. образованная им фирма "Шугарт Ассошиэйтс" выпустила первые накопители с гибкими дисками такого размера, получившие название минидисков (минифлоппи). Несмотря на первоначально меньший объем внешней памяти, эти накопители были вдвое дешевле стандартных с 203-мм дисками. Последнее обстоятельство сразу привлекло к ним внимание широкой группы пользователей ПК.

Улучшение качества записи и качества магнитных головок позволило перейти к гибким дискам с двойной плотностью записи.

Первые 203-мм и 133-мм гибкие диски использовали в работе только одну сторону диска. С целью увеличения объема внешнего накопителя были разработаны и начали поставляться устройства, в которых информация записывалась и считывалась с обеих сторон диска. Это увеличило объем памяти в 2 раза, а с учетом двойной плотности записи - в 4 раза.

Разработкой и производством НГМД занималось несколько десятков фирм в США, Японии, ФРГ и других странах. Эти устройства быстро вытеснили накопители на магнитной ленте во многих случаях применения ПК. Использование НГМД на порядок увеличивало быстродействие системы.

В настоящее время внешняя память на гибких магнитных дисках стала неотъемлемой частью типовой конфигурации большинства учебных и всех профессиональных ПК.

В каких направлениях шло дальнейшее техническое развитие НГМД ?

Во-первых, продолжалось уменьшение физических размеров накопителей, в частности, по высоте. Многие фирмы выпускали накопители половинной высоты, т. е. в прежнем корпусе можно было разместить уже два устройства.

Во-вторых, были реализованы успешные попытки уменьшить диаметр дисков, а следовательно, и габариты накопителя.Так, японская фирма "Сони" разработала НГМД с дисками диаметром 89 мм (3,5 дюйма). Диск помещен в жесткий конверт размером 90x94 мм (3,54x3,7 дюйма) и толщиной 1,3 мм., оборудованный специальной металлической "шторкой". Когда диск вставляется в дисковод, "шторка" автоматически сдвигается и открывает прорезь в конверте, через которую магнитная головка взаимодействует с гибким диском. При двойной плотности записи подобный диск с односторонней записью вмещает 360 Кбайт, а при двусторонней записи - 720 Кбайт.

Стандартный накопитель фирмы "Сони" стоил примерно 10% дороже, чем накопитель на 133-мм дисках, а сами 89-мм диски были дороже аналогичных 133-мм дисков в 2-2,5 раза. Однако малый размер дисков и самого накопителя жесткая конструкция конверта с диском и защита поверхности диска с помощью "шторки" привлекли к этому типу НГМД значительное количество пользователей. Накопители с 89-мм дисками объемом 720 Кбайт нашли применение во многих портативных ПК, например в моделях японской фирмы "Тошиба" - T1100, Т1200, Т3100, американских фирм"Зенит Дейта Системс" - Z181, "Бондвелл Инк. " - Bondwell 8 и др. Фирма IBM в моделях ПК серии PS/2 использует НГМД c дисками диаметром 89 мм, объемом 720 Кбайт и 1,44 Мбайт.

В-третьих, за счет использования новых технических средств и технологий ряд фирм разрабатывали НГМД сповышенным объемом памяти.

Так, фирма IBM в PC AT применила накопители на 133-мм дисках объемом 1,2 Мбайт форматированной памяти. За счет перехода к большей плотности расположения дорожек на диске удалось более чем вдвое повысить объем внешнего накопителя ПК.

Японская фирма "Хитачи-Максвелл" объявила о разработке 133-мм гибких магнитных дисков с объемом памяти 19 Мбайт на диск. За короткий срок объем 89-мм дисков возрос с 360 Кбайт до 1,44 Мбайт.

К началу 1987 г. наиболее распространенными в мире были 133-мм диски для ПК фирмы IBM и практически пересталивыпускаться накопители на дисках диаметром 203 мм. Очень быстро растет рынок 89-мм НГМД .

По оценкам фирмы "Дейтаквест" (США) производство 133-мм накопителей росло с 8,2 млн. штук в 1985 г. до 11 млн.штук в 1987 г., а затем упало к 1991 г. до 7,3 млн. штук. Одновременно возросло производство 89-мм накопителей с 603 тыс. штук в 1985 г. до 14 млн. штук в 1991 г., т. е. к концу 80-х годов оно превысило производство 133-мм накопителей.

Стоимость стандартного накопителя для IBM PC с 133-мм дисками объемом 360 Кбайт составляла в США в середине 1987 г., 65 долл., а с 89-мм дисками объемом 720 Кбайт - 150 долл.

Компакт-кассеты





Компакт-кассета была изобретена компанией Philips, которая догадалась помесить две небольшие катушки магнитной пленки в пластиковый корпус. Именно в таком формате в 1960-х годах делались аудиозаписи. HP использовала такие кассеты в своем десктопе HP 9830 (1972), но по началу такие кассеты в качестве носителей цифровой информации особой популярностью не пользовались. Потом искатели недорогих носителей данных все же обернули свой взор в сторону кассет, которые с их легкой руки оставались востребованными до начала 1980-х. данные на них, кстати, можно было загружать с обычного аудиоплеера.

После появления первого устройства магнитного хранения данных (IBM RAMAC) рост поверхностной плотности записи достигал 25 % в год, а с начала 1990-х - 60 процентов. Разработка и внедрение магниторезистивных (1991 года) и гигантских магниторезистивных (1997 года) головок еще больше ускорили увеличение поверхностной плотности записи. За 45 лет, прошедших с момента появления первых устройств магнитного хранения данных, поверхностная плотность записи выросла более чем в 5 миллионов раз.

В современных накопителях размером 3.5 дюйма величина этого параметра составляет 10-20 Гбит/дюйм 2 , а в экспериментальных моделях достигает 40 Гбит/дюйм 2 . Это позволяет выпускать накопители емкостью более 400 Гбайт.


ROM-картриджи




ROM-картридж – это плата, состоящая из постоянного запоминающего устройства (ROM) и коннектора, помещенных в твердую оболочку. Область применения картриджей – компьютерные игры и программы. Так, в 1976 году компания Fairchild выпустила ROM-картридж для записи ПО под видеоприставку Fairchild Channel F. Вскоре под использование ROM- картриджей были адаптированы и домашние компьютеры типа Atari 800 (1979) или TI-99/4 (1979).

ROM-картриджи были просты в использовании, но относительно дороги, из-за чего, собственно, и «умерли».



Великие эксперименты с дискетами





В 1980-х многие компании попробовали создать альтернативу дискете размером 3,5 дюйма. Одно такое изобретение (на фото вверху в центре) трудно назвать дискетой даже с натяжкой: картридж ZX Microdrive состоял из огромного мотка магнитной ленты, по принципу восьмидорожковой кассеты. Другой экспериментатор, Apple, создал дискету FileWare (справа), которая поставлялась вместе с первым компьютером Apple Lisa – худшим девайсом в истории компании по версии Network World, a также 3-дюймовый Compact Disk (внизу слева) и редкую сейчас 2-дюймовую дискету

LT-1 (вверху слева), использовавшуюся исключительно в ноутбуке Zenith Minisport 1989 года выпуска. Остальные эксперименты завершились созданием продуктов, которые стали нишевыми и не смогли повторить успех своих 5,25-дюймовой и 3,5-дюймовой предшественниц.

Оптический диск






Компакт-диск, изначально использовавшийся как носитель цифровой аудиоинформации, обязан своим рождением совместному проекту Sony и Philips и впервые появился на рынке в 1982 году. Цифровые данные хранятся на этом пластиковом носителе в виде микроуглублений на его зеркальной поверхности, а считывается информация при помощи лазерной головки.
Как оказалось, что цифровые CD как нельзя лучше подходят для хранения компьютерных данных, и вскоре те же Sony и Philips доработали новинку.

Так в 1985 году мир узнал о CD-ROMах.

На протяжении последующих 25 лет оптический диск претерпел массу изменений, его эволюционная цепочка включает DVD, HD-DVD и Blu-ray. Значимой вехой было появление в 1988 году CD-Recordable (CD-R), позволившего пользователям самостоятельно записывать данные на диск. В конце 1990-х оптические диски, наконец, подешевели, и окончательно отодвинули дискеты на задний план.

Магнитооптические носители




Как и компакт-диски, магнитооптические диски «читает» лазер. Однако в отличие от обычных CD и CD-R большинство магнитооптических носителей позволяют многократно наносить и стирать данные. Это достигается посредством взаимодействия магнитного процесса и лазера при записи данных. Первый магнитооптический диск входил в комплект компьютера NeXT (1988 год, фото справа внизу), а емкость его составляла 256 Мб. Самый известный носитель этого типа – аудиодиск MiniDisc Sony (вверху в центре, 1992 год). Был у него и «собрат» для хранения цифровых данных, который назывался MD-DATA (слева вверху). Магнитооптические диски производятся до сих пор, однако из-за малой емкости и относительновысокой стоимости они перешли в разряд нишевых продуктов.

Iomega и Zip Drive





Iomega заявила о себе на рынке носителей информации в 1980-х, выпустив картриджи с магнитными дисками Bernoulli Box, емкостью от 10 до 20 Мб.

Более поздняя интерпретация этой технологии воплотилась в так называемом носителе Zip (1994 год), который вмещал до 100 Мб информации на недорогой 3,5-дюймовом диске. Формат пришелся по душе демократичной ценой и хорошей емкостью, и диски Zip оставались на гребне популярности до конца 1990-х. Однако на уже появившиеся в то время CD-R можно было записать до 650 Мб, и когда их цена снизилась до нескольких центов за штуку, продажи Zip-дисков катастрофически упали. Iomega сделала попытку спасти технологию и разработала диски размером 250 и 750 Мб, однако CD-R к тому времени уже окончательно завоевали рынок. Так Zip стал историей.

Флоппиобразные-диски




Первую супердискету выпустила компания Insight Peripherals в 1992 году. На 3,5-дюймовом диске вмещалось 21 Мб информации. В отличие от других носителей, этот формат был совместим с более ранними традиционными приводами для 3,5-дюймовых дискет. Секрет высокой эффективности таких накопителей крылся в сочетании гибкого диска и оптики, то есть данные записывались в магнитной среде при помощи лазерной головки, при этом обеспечивалась более точная запись и больше дорожек, соответственно, больше места. В конце 1990-х появились два новых формата – Imation LS-120 SuperDisk (120 Мб, справа внизу) и Sony HiFD (150 Мб, справа вверху). Новинки стали серьезными конкурентами Iomega Zip drive, однако в конечном итоге всех победил формат CD-R.

Бардак в мире портативных носителей





Громкий успех Zip Drive в середине 1990-х породил массу подобных устройств, производители которых надеялись отхватить кусок рынка у Zip. Среди основных конкурентов Iomega можно отметить SyQuest, который сначала раздробил собственный сегмент рынка, а потом погубил свою продуктовую линейку чрезмерным разнообразием – SyJet, SparQ, EZFlyer и EZ135. Еще один серьезный, но «мутный» соперник – Castlewood Orb, придумавший диск наподобие Zip емкостью 2,2 Гб.

Наконец, сама компания Iomega сделала попытку дополнить диск Zip другими типами съемных носителей – от больших съемных винчестеров (1- и 2-гигабайтные Jaz Drive) до миниатюрного Clik drive на 40 Мб. Но ни один не достиг высот Zip.

Flash наступает





В начале 1980-х Toshiba придумала флеш-память NAND, однако технология стала популярной только спустя десятилетие, вслед за появлением цифровых камер и PDA. В это время она начинает реализовываться в разных формах – от больших кредитных карт (предназначенных для использования в ранних наладонниках) до карточек CompactFlash, SmartMedia, Secure Digital, Memory Stick и xD Picture Card.

Карты флеш-памяти удобны, прежде всего, тем, что в них нет подвижных частей. Кроме этого, они экономичны, прочны и относительно недороги при постоянно увеличивающемся объеме памяти. Первые карточки CF вмещали 2 Мб, сейчас же их емкость достигает 128 Гб.

Куда уж меньше






На промослайде IBM/Hitachi изображен крошечный винчестер Microdrive. Появился он в 2003 году и на какое-то время завоевал сердца компьютерных пользователей.

Дебютировавший в 2001 году iPod и другие медиа-плееры оснащены похожими устройствами на базе вращающегося диска, однако производители быстро разочаровались в таком накопителе: слишком уж он хрупок, энергоемок и мал по объему. Так что этот формат уже почти «похоронен».

1956 год - жёсткий диск IBM 350 в составе первого серийного компьютера IBM 305 RAMAC. Накопитель занимал ящик размером с большой холодильник и имел вес 971 кг, а общий объём памяти 50 вращавшихся в нём покрытых чистым железом тонких дисков диаметром 610 мм составлял около 5 миллионов 6-битных байт (3,5 Мб в пересчёте на 8-битные байты).

А вот то, что касается жестких дисков.
* 1980 год - первый 5,25-дюймовый Winchester, Shugart ST-506, 5 Мб.
* 1981 год - 5,25-дюймовый Shugart ST-412, 10 Мб.
* 1986 год - стандарты SCSI, ATA(IDE).
* 1991 год - максимальная ёмкость 100 Мб.
* 1995 год - максимальная ёмкость 2 Гб.
* 1997 год - максимальная ёмкость 10 Гб.
* 1998 год - стандарты UDMA/33 и ATAPI.
* 1999 год - IBM выпускает Microdrive ёмкостью 170 и 340 Мб.
* 2002 год - стандарт ATA/ATAPI-6 и накопители емкостью свыше 137 Гб.
* 2003 год - появление SATA.
* 2005 год - максимальная ёмкость 500 Гб.
* 2005 год - стандарт Serial ATA 3G (или SATA II).
* 2005 год - появление SAS (Serial Attached SCSI).
* 2006 год - применение перпендикулярного метода записи в коммерческих накопителях.
* 2006 год - появление первых «гибридных» жёстких дисков, содержащих блок флеш-памяти.
* 2007 год - Hitachi представляет первый коммерческий накопитель ёмкостью 1 Тб.
* 2009 год - на основе 500-гигабайтных пластин Western Digital, затем Seagate Technology LLC выпустили модели ёмкостью 2 Тб.
* 2009 год - Western Digital объявила о создании 2,5-дюймовых HDD объемом 1 Тб (плотность записи - 333 Гб на одной пластине)
* 2009 год - появление стандарта SATA 3.0 (SATA 6G).

Пришествие USB





В 1998 году началась эпоха USB. Неоспоримое удобство USB-девайсов сделало их практически неотъемлемой частью жизни всех ПК-пользователей. С годами они уменьшаются в физических размерах, но становятся все более емкими и дешевыми. Особенно популярны появившиеся в 2000 году «флешки», или USB thumb drives (от англ. thumb – «большой палец»), названные так за свой размер – с человечески палец. Благодаря большой емкости и маленькому размеру USB-накопители стали, пожалуй, самым лучшим носителем информации, придуманных человечеством.

Переход в виртуальность




На протяжении последних пятнадцати лет локальные сети и интернет постепенно вытесняют портативные носители информации из жизни ПК-пользователей. Поскольку сегодня практически любой компьютер имеет выход в глобальную сеть, пользователям нечасто требуется переносить данные на внешние девайсы или переписывать на другой компьютер. В наше время за перенос информации отвечают провода и электронные сигналы. Беспроводные стандарты Bluetooth и Wi-Fi и вовсе делают физические компьютерные соединения ненужными.