Как осуществляется реверс двигателя. Схемы подключения трехфазных электродвигателей

Отправим материал вам на e-mail

В последние годы все большую популярность стало набирать . Это вызвано тем, что используемые в светильниках светодиоды, их еще называют светоизлучающими диодами (СИД), довольно яркие, экономичные и долговечные. При помощи светодиодных элементов создаются интересные и оригинальные световые эффекты, которые можно применять в самых различных интерьерах. Однако, такие осветительные приборы очень требовательны к параметрам электросетей, особенно к величине тока. Поэтому для нормальной работы освещения в цепь должны быть включены драйверы для светодиодов. В этой статье мы попробуем разобраться, что же такое светодиодные драйверы, каковы их основные характеристики, как не ошибиться при выборе и можно ли сделать его своими руками.

Без такого миниатюрного устройства светодиоды работать не будут

Поскольку светодиоды являются токовыми приборами, то соответственно они очень чувствительны к этому параметру. Для нормальной работы освещения требуется, чтобы через LED-элемент проходил стабилизированный ток с номинальной величиной. Для этих целей и был создан драйвер для светодиодных светильников.

Некоторые читатели, увидев слово драйвер, будут в недоумении, поскольку все мы привыкли, что этим термином обозначается некое ПО, позволяющее управлять программами и устройствами. В переводе с английского языка driver означает: водитель, машинист, поводок, мачта, управляющая программа и еще более 10 значений, но всех их объединяет одна функция – управление. Так обстоит дело и с драйверами для , только управляют они током. Итак, с термином разобрались, теперь перейдем к сути.


LED-драйвер – электронное устройство, на выходе которого, после стабилизации, образуется постоянный ток необходимой величины, обеспечивающий нормальную работу светодиодных элементов. В этом случае стабилизируется именно ток, а не напряжение. Устройства, стабилизирующие выходное напряжение называются блоками питания , которые также используются для питания светодиодных элементов освещения.

Как мы уже поняли, основным параметром драйвера для светодиодов является выходной ток, который устройство может обеспечивать длительное время при включении нагрузки. Для нормального и стабильного свечения LED-элементов требуется, чтобы через светодиод протекал ток, величина которого должна совпадать со значениями указанными в техническом паспорте полупроводника.

Где нашли применение драйвера для светодиодов

Как правило, светодиодные драйверы рассчитаны на работу с напряжением 10, 12, 24, 220 В и постоянным током в 350 мА, 700 мА и 1 А. Стабилизаторы тока для светодиодов производят, в основном, под определенные изделия, но существуют и универсальные устройства, подходящие к LED-элементам ведущих производителей.

В основном LED-драйвера в сетях с переменным током используются для:

В электроцепях с постоянным током стабилизаторы нужны для нормальной работы бортового освещения и фар автомобиля, переносных фонарей и т.д.


Токовые стабилизаторы адаптированы для работы с системами контроля и датчиками фотоэлементов , а в силу своей компактности могут быть легко установлены в распределительных коробках. Также посредством драйверов можно легко менять яркость и цвет светодиодных элементов, уменьшая величину тока посредством цифрового управления.

Как работают стабилизирующие устройства для светодиодов

Принцип работы преобразователя для и лент состоит в поддержании заданной величины тока независимо от выходного напряжения. В этом и заключается разница между блоком питания и драйвером для светодиодов.


Если посмотреть на представленную выше схему то мы увидим, что ток, благодаря резистору R1, стабилизируется, а конденсатор C1 задает необходимую частоту. Далее в работу включается диодный мост, в результате чего на светодиоды поступает стабилизированный ток.

Характеристики устройства, на которые нужно обратить внимание

Подбирая ЛЕД-драйвер для светодиодных светильников необходимо обязательно учитывать тот основных параметра, а именно: ток, выходное напряжение и мощность, потребляемая подключаемой нагрузкой.

Выходное напряжение токового стабилизатора зависит от следующих факторов:

  • количество LED-элементов;
  • падение напряжения на СИД;
  • способ подключения.

Ток на выходе устройства обусловлен мощностью и яркостью светодиодов . Мощность нагрузки оказывает влияние на потребляемый ею ток в зависимости от требуемой интенсивности свечения. Именно стабилизатор обеспечивает светодиодам ток необходимой величины.

Мощность светодиодного светильника зависит непосредственно от:

  • мощности каждого LED-элемента;
  • общего количества светодиодов;
  • цвета.

Потребляемую нагрузкой мощность можно рассчитать по следующей формуле:

PН = PLED × N , где

  • PН – общая мощность нагрузки;
  • PLED – мощность отдельного светодиода;
  • N – количество светодиодных элементов, подключаемых в нагрузку.

Максимальная мощность токового стабилизатора не должна быть меньше PН. Для нормальной работоспособности LED-драйвера рекомендуется обеспечить запас мощности минимум на 20÷30%.

Помимо мощности и количества СИД, мощность нагрузки, подключаемой к драйверу, зависит и от цвета светодиодных элементов. Дело в том, что светодиоды разного цвета обладают разной величиной падения напряжения при одинаковом значении тока. Так, например, у светодиода CREE XP-E красного цвета падение напряжения при токе в 350 мА составляет 1,9÷2,4 В, и средняя мощность потребления будет порядка 750 мВт. У зеленого светодиодного элемента при том же токе падение напряжения будет 3,3÷3,9 В, а средняя мощность составит уже почти 1,25 Вт. Соответственно стабилизатором тока рассчитанным на мощность 10 Вт можно запитывать 12÷13 СИД красного цвета или 7-8 зеленых светодиодов.

Виды стабилизаторов по типу устройства

Токовые стабилизаторы для светоизлучающих диодов разделяются по типу устройства на импульсные и линейные.

У линейного драйвера выходом является токовый генератор, обеспечивающий плавную стабилизацию выходного тока при неустойчивом входном напряжении, не создавая при этом высокочастотных электромагнитных помех. Такие устройства имеют простую конструкцию и невысокую стоимость, однако не очень высокий КПД (до 80%) сужает область их использования до маломощных LED-элементов и лент.

Устройства импульсного типа позволяют создавать на выходе череду токовых импульсов высокой частоты. Подобные драйвера работают по принципу широтно-импульсной модуляции (ШИМ), то есть средняя величина тока на выходе определяется отношением ширины импульсов к их частоте. Подобные устройства более востребованы в силу своей компактности и более высокого КПД, составляющего порядка 95%. Однако в сравнении с линейными драйверами ШИМ стабилизаторы имеют больший уровень электромагнитных помех.

Как подобрать драйвер для светодиодов

Необходимо сразу заметить, что резистор не может являться полноценной заменой драйверу, поскольку он не в состоянии защитить светодиоды от перепадов в сети и импульсных помех. Также не лучшим вариантом будет использование линейного источника тока вследствие его низкой эффективности, ограничивающей возможности стабилизатора.

При выборе LED-драйвера для светодиодов стоит придерживаться следующих основных рекомендаций:

  • приобретать стабилизатор тока лучше всего одновременно с нагрузкой;
  • учитывать падение напряжения на СИД;
  • ток высокого номинала уменьшает КПД светодиода и приводит его перегреву;
  • учитывать мощность нагрузки, подключаемой к драйверу.

Также необходимо обращать внимание, чтобы на корпусе стабилизатора была указана его мощность, рабочие диапазоны входного и выходного напряжения, номинальный стабилизированный ток и степень влаго- и пылезащищенности устройства.

Рекомендация! Насколько мощный и качественный будет драйвер для светодиодной ленты или СИД выбирать, конечно же, вам. Тем не менее, следует помнить, что для нормальной работы всей создаваемой системы освещения лучше всего купить фирменный преобразователь, особенно если речь идет о светодиодных прожекторах и других мощных осветительных приборах.

Подключение преобразователей тока для светодиодов: схема драйвера для светодиодной лампы 220 В

Большинство производителей выпускают драйвера на интегральных микросхемах (ИМС), которые позволяют запитываться от пониженного напряжения. Все преобразователи для , существующие на данный момент, делятся на простые, созданные на основе 1÷3 транзисторов и более сложные, выполненные с применением микросхем с ШИМ.

Выше представлена схема драйвера на базе микросхемы, но как мы упоминали, существуют способы подключения при помощи резисторов и транзисторов. На самом деле вариантов подключения много и рассмотреть их все подробно в одном обзоре просто невозможно. На просторах интернета можно найти практически любую схему, подходящую именно для вашей ситуации.

Как рассчитать токовый стабилизатор для светодиодного освещения

Для определения выходного напряжения преобразователя требуется рассчитать соотношение мощности и тока. Так, например, при мощности 3 Вт и токе 0,3 А максимальное напряжение на выходе будет равно 10 В. Далее необходимо определиться со способом подключения, параллельное или последовательное, а также количеством светодиодов. Дело в том, что от этого зависит номинальная мощность и напряжение на выходе драйвера. После вычисления всех этих параметров можно подбирать соответствующий стабилизатор.

Стоит отметить, что у преобразователей рассчитанных на определенное количество LED-элементов имеется защита от внештатных ситуаций. Такой тип устройств отличается некорректной работой при подключении меньшего числа светодиодов – наблюдается мерцание или вообще не работают.

Диммируемый драйвер для LED-элементов - что это?

Последние модели преобразователей для светодиодов адаптированы для работы с регуляторами яркости свечения полупроводниковых кристаллов – . Использование этих устройств позволяет более рационально использовать электроэнергию и увеличить ресурс LED-элемента.

Диммируемые преобразователи бывают двух типов. Одни включены в цепь между стабилизатором и светодиодными элементами освещения и работают посредством ШИМ-управления. Преобразователи подобного типа используются для работы со светодиодными лентами, бегущей строкой и т.п.

Во втором варианте диммер устанавливается на разрыве между источником питания и стабилизатором, а принцип работы заключается, как в управлении параметрами тока, проходящего через светодиоды, так и при помощи широтно-импульсной модуляции.

Особенности китайских преобразователей тока для светодиодов

Высокая востребованность драйверов для LED-освещения привела к их массовому производству в азиатском регионе, частности в Китае. А эта страна славится не только качественной электроникой, но и массовым производством всевозможных подделок. Светодиодные драйвера китайского производства представляют собой импульсные преобразователи тока, как правило, рассчитанные на 350÷700 мА и в бескорпусном исполнении.

Преимущества китайских преобразователей тока заключаются лишь в невысокой стоимости и наличии гальванической развязки, а вот недостатков все-таки больше и состоят они в:

  • высоком уровне радиопомех;
  • ненадежности, вызванной дешевыми схемными решениями;
  • незащищенность от сетевых колебаний и перегрева;
  • высокий уровень пульсаций на выходе стабилизатора;
  • малый срок эксплуатации.

Обычно комплектующие китайского производства работают на пределе своих возможностей, без наличия какого-либо запаса. Поэтому если желаете создать надежно работающую систему освещения лучше всего покупать преобразователь для светодиодов от известного проверенного производителя.

Срок эксплуатации токовых преобразователей

Как и любое электронное устройство, драйвер для светодиодного источника тока имеет определенный срок эксплуатации, который зависит от следующих факторов:

  • стабильность напряжения в сети;
  • температурные перепады;
  • уровень влажности.

Известные производители дают гарантию на свои изделия в среднем на 30 000 часов работы. Дешевые самые простые стабилизаторы рассчитаны на эксплуатацию в течение 20 000 часов, среднего качества – 20 000 ч и японские – до 70 000 ч.

Схема светодиодного драйвера на базе РТ 4115

Благодаря появлению большого количества светодиодных элементов с мощностью 1÷3 Вт и невысокой ценой, большинство людей предпочитает на их основе делать домашнее и автомобильное освещение. Однако для этого необходим драйвер, который позволит стабилизировать ток до номинального значения.

Для корректной работы преобразователя рекомендуется использовать танталовые конденсаторы. Если не установить конденсатор по питанию, то интегральная микросхема (ИМС) просто выйдет из строя при включении устройства в сеть. Выше представлена схема драйвера для светодиода на ИМС PT4115.

Как сделать своими руками драйвер для светодиодов

При помощи готовых микросхем даже начинающий радиолюбитель в состоянии собрать преобразователь для светодиодов различной мощности. Для этого требуется умение чтения электросхем и опыт работы с паяльником.

Собрать токовый стабилизатор для 3-ваттных стабилизаторов, можно используя микросхему от китайского производителя PowTech – PT4115. Данная ИМС может быть использована для светодиодных элементов с мощностью более 1 Вт и состоит из блоков управления с довольно мощным транзистором на выходе. Преобразователь, созданный на основе PT4115, имеет высокую эффективность и минимальный набор компонентов.








Как видим при наличии опыта, знаний и желания можно собрать светодиодный драйвер практически по любой схеме. Теперь рассмотрим пошаговую инструкцию создания простейшего токового преобразователя для 3-х LED-элементов мощность по 1 Вт, из зарядного устройства для мобильного телефона. Кстати, это поможет лучше разобраться в работе устройства и позднее перейти к более сложным схемам, рассчитанным на большее количество светодиодов и ленты.

Инструкция по сборке драйвера для светодиодов

Изображение Описание этапа
Для сборки стабилизатора на потребуется старое зарядное устройство от мобильного телефона. Мы взяли от «Самсунга», так они надежны. Зарядное устройство с параметрами 5 В и 700 мА аккуратно разобрать.
Также нам понадобится переменный (подстроечный) резистор на 10 кОм, 3 светодиода по 1 Вт и шнур с вилкой.
Вот так выглядит разобранное зарядное, которое мы будет переделывать.
Выпаиваем выходной резистор на 5 кОм и на его место ставим «подстроечник».
Далее находим выход на нагрузку и определив полярность припаиваем светодиоды, заранее собранные последовательно.
Выпаиваем старые контакты от шнура и на их место подсоединяем провод с вилкой. Перед тем как проверить на работоспособность драйвер для светодиодов нужно убедиться в правильности соединений, их прочности и чтобы ничего не создало короткого замыкания. Только после этого можно приступать к тестам.
Подстроечным резистором начинаем регулировку пока светодиоды не начнут светиться.
Как видим LED-элементы горят.
Тестером проверяем необходимые нам параметры: выходное напряжение, ток и мощность. При необходимости выполняем регулировку резистором.
Вот, и все! Светодиоды горят нормально, нигде ничего не искрит и не дымит, а значит переделка прошла успешно, с чем вас и поздравляем.

Как видите сделать простейший драйвер для светодиодов очень просто. Конечно, опытным радиолюбителям эта схема может быть не интересна, но для новичка она отлично подойдет для практики.

Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.

Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.

Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.

За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.

Диод относится к полупроводниковым элементам и обладает только одним p-n переходом. По этой причине, главной характеристикой, определяющей степень яркости их свечения, является не напряжение, а ток

Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.

Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.

Для того, чтобы мощные светодиоды отработали указанное в характеристиках время, требуется стабилизирующее устройство – драйвер. На корпусе электронного механизма всегда показано его выходное напряжение

Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.

Техника может быть самых различных видов:

  • фары автомобилей, велосипедов, мотоциклов и т. д.;
  • небольшие переносные или уличные фонари;
  • , ленты, и модули.

Однако для , а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.

Принцип работы блока питания

Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.

Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.

Несмотря на подключение двух резисторов к источнику питания, второй на выходе будет создавать неизменное напряжение, т. к. при идеальных условиях не подчиняется нагрузке

Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).

Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).

Драйвер в отличие от источника напряжения поддерживает на выходе заданные параметры тока, однако мощность напряжения может меняться

Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.

Отличительные характеристики преобразователя

Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.

Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.

К главным факторам, влияющим на работу, относятся:

  • составляющие элементы, используемые в процессе сборки;
  • степень защиты (IP);
  • минимальные и максимальные значения на входе и выходе;
  • производитель.

Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).

В процессе работы блока питания для регулирования величины выходящего напряжения внедрен метод широтно-импульсной модуляции, при этом на выходе сохраняется аналогичный род тока, что и на входе

Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.

Правила подбора преобразователя тока

Для приобретения преобразователя LED лампы следует изучить ключевые . Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.

Мощность световых диодов

Разберем изначально выходное напряжение, которое подчинено нескольким фактором:

  • значение потерь напряжения на P-N переходах кристаллов;
  • количество световых диодов в цепочке;
  • схема подключения.

Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.

Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя - обеспечить этим элементам подачу нужного количества энергии.

Значение напряжения на выходе должно быть больше или идентичным общей сумме затраченной энергии на каждом блоке электросхемы

Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.

Для просчета потребляемой энергии используют такую формулу:

P H = P LED * N ,

  • N – количество кристаллов в цепи.
  • Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.

    Максимальная мощность прибора

    Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение P H .

    Таким образом формула приобретает вид:

    P max ≥ (1,2..1,3) * P H ,

    где P max - номинальная мощность блока питания.

    Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.

    Драйвер для LED лампы должен выдавать такое количество тока, которое необходимо для обеспечения максимальной яркости. При подборе устройства покупатель должен помнить о том, что мощность должна быть больше, чем используют все светодиоды

    Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.

    Их характеристики выглядят следующим образом:

    • падение напряжения 1,9-2,4 В;
    • ток 350 мА;
    • средняя мощность потребления 750 мВт.

    Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.

    Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.

    Схема подключения светодиодов

    Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.

    Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.

    Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.

    Недостатком поочередного расположения диодов является потребность в блоке питании с большим напряжением, если в цепи будет много кристаллов

    В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.

    Минусом параллельного размещения потребителей является разность яркости свечения каждой цепочки. Такое негативное явление возникает из-за разброса параметров диодов вследствие различий между током, проходящим по каждой линии

    Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.

    Метод последовательного расположения по два диода не может быть применен с заменой количества входящих в группу кристаллов – 3 и больше. Такие ограничения связаны с тем, что через один элемент может пройти слишком большой ток, а это создает вероятность выхода из строя всей цепи

    Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.

    Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.

    Многие виды рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.

    Виды драйверов по типу устройства

    Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.

    Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т.к. не вся представленная продукция имеет приемлемое качество.

    Электронный вид прибора

    В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.

    Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.

    Самые новые драйвера, в основном устанавливают на лампочки с цоколем E27. Исключение из правил – изделия Gauss GU5,3. Они оснащены безтрансформаторным преобразователем. Однако степень пульсации в них достигает нескольких сотен Гц

    Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио - можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.

    В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.

    Те, кто имеет общие понятия в подобных электросхемах, могут самостоятельно подбирать выходные параметры электронного преобразователя, изменяя номинал резисторов

    За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.

    Блок питания на основе конденсаторов

    Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.

    Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов - сглаживающий.

    Вследствие бесконтрольного заполнения рынка дешевым и некачественным товаром пользователи могут «ощущать» в лампах стопроцентную пульсацию. Даже не углубляясь в их устройство, можно утверждать об удалении из схемы сглаживающего элемента

    Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.

    Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.

    Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.

    Диммируемые преобразователи тока

    Драйверы-светорегуляторы для позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.

    Существует два метода подключения:

    • первый предполагает плавный пуск;
    • второй – импульсный.

    Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.


    Схема стандартного включения CPC9909 с питанием 220 В. Согласно схематическим указаниям, есть возможность управления одним или несколькими мощными потребителями

    При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.

    Этот же вывод обеспечивает и аналоговое регулирование - резистор на 2,2 кОм меняют на более мощный переменный аналог - 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.

    Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.

    С корпусом или без него?

    Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.

    Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.

    Питание всех представленных приборов может быть от сети 12 В или 220 В. Несмотря на то, что бескорпусные модели выигрывают в цене, они существенно отстают в плане безопасности и надежности механизма

    Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.

    Классическая схема драйвера

    Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

    Схема такого механизма составлена из трех основных каскадных областей:

    1. Разделитель напряжения на емкостном сопротивлении.
    2. Выпрямитель.
    3. Стабилизаторы напряжения.

    Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

    Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

    Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

    Процесс выпрямления на этом участке выполняется по схеме Гретца. Диодный мост подбирается, отталкиваясь от номинального тока и обратного напряжения. При этом последнее значение не должно быть меньше 600 В

    Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

    Так как питание светодиодов не должно превышать 12 В, для схемы необходимо использовать стабилизирующий элемент. Для этого вводится емкостный фильтр. Например, можно применять модель L7812

    Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

    Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

    Выводы и полезное видео по теме

    Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:

    Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:

    Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:

    Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.

    Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.

    Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.

    Гарантией яркости свечения, эффективности и долговечности LED-источников является правильное питание, которое могут обеспечить специальные электронные устройства - драйверы для светодиодов. Они преобразуют напряжение переменного тока в сети 220В в напряжение постоянного тока заданного значения. Разобраться в том, какую функцию выполняют преобразователи и на что обратить внимание при их выборе, поможет анализ основных видов и характеристик устройств.

    Основной функцией драйвера для светодиодов является обеспечение стабилизированного тока, проходящего через LED-прибор. Значение тока, протекающего через кристалл полупроводника, должно соответствовать паспортным параметрам светодиода. Это обеспечит устойчивость свечения кристалла и поможет избежать его преждевременной деградации. Кроме того при заданном токе падение напряжения будет соответствовать величине, необходимой для p-n перехода. Узнать соответствующее напряжение питания светодиода можно воспользовавшись вольт-амперной характеристикой.

    При освещении жилых и офисных помещений светодиодными лампами и светильниками применяют драйверы, питание которых обеспечивается от сети переменного тока 220В. В автомобильном освещении (фары, ДХО и пр.), велосипедных фарах, портативных фонарях используют источники питания постоянного напряжения в диапазоне от 9 до 36В. Некоторые светодиоды небольшой мощности можно подключать без драйвера, но тогда в схему включения светодиода в сеть 220 вольт должен быть внесен резистор.

    Напряжение драйвера на выходе указывается в интервале двух конечных значений, между которыми обеспечивается стабильное функционирование. Существуют адаптеры с интервалом от 3В до нескольких десятков. Чтобы запитать схему из 3-х последовательно соединенных светодиодов белого цвета, каждый из которых имеет мощность 1 Вт, потребуется драйвер с выходными значениями U – 9-12В, I – 350 мА. Падение напряжения для каждого кристалла составит около 3,3В, а в общей сумме 9,9В, что войдет в диапазон драйвера.

    Основные характеристики преобразователей

    Перед тем как купить драйвер для светодиодов, следует ознакомиться с основными характеристиками устройств. К ним относят напряжение на выходе, номинальный ток и мощность. Выходное напряжение преобразователя зависит от величины падения напряжения на LED-источнике, а также от способа подключения и количества светодиодов в схеме. Ток находится в зависимости от мощности и яркости излучающих диодов. Драйвер должен обеспечить светодиодам такой ток, который необходим им для поддержки требуемой яркости.

    Одной из важных характеристик драйвера считается мощность, которую прибор выдает в виде нагрузки. На выбор мощности драйвера влияет мощность каждого LED-прибора, общее количество и цвет свечения светодиодов. Алгоритм расчета мощности состоит в том, что максимальная мощность устройства не должна быть ниже потребления всех светодиодов:

    P = P(led) × n ,

    где P(led) – мощность единичного LED-источника, а n - количество светодиодов.

    Кроме того должно выполняться обязательное условие, при котором бы обеспечивался запас мощности в пределах 25-30%. Таким образом значение максимальной мощности должно быть не меньше значения (1,3 х P).

    Следует также брать во внимание цветовые характеристики светодиодов. Ведь различные по цвету полупроводниковые кристаллы имеют разную величину падения напряжения при прохождении через них тока одинаковой силы. Так падение напряжения у красного светодиода при токе 350 мА составляет 1,9-2,4В, тогда среднее значение его мощности будет равно 0,75 Вт. У аналога зеленого цвета величина падения напряжения находится в пределах от 3,3 до 3,9В и при таком же токе мощность составит уже 1,25 Вт. Значит к драйверу для светодиодов 12В можно подсоединить 16 красных LED-источников или 9 зеленых.

    Полезный совет! При выборе драйвера для светодиодов специалисты советуют не пренебрегать максимальным значением мощности прибора.

    Какими бывают драйверы для светодиодов по типу устройства

    Драйверы для светодиодов классифицируют по типу устройства на линейные и импульсные. Структура и типовая схема драйвера для светодиодов линейного типа представляет собой генератор тока на транзисторе с р-каналом. Такие устройства обеспечивают плавную стабилизацию тока при условии неустойчивого напряжения на входном канале. Они являются простыми и дешевыми устройствами, однако отличаются низкой эффективностью, выделяют при работе много тепла и не могут быть использованы как драйвера для мощных светодиодов.

    Импульсные устройства создают в выходном канале ряд высокочастотных импульсов. Их работа основана на принципе ШИМ (широтно-импульсной модуляции), когда средняя величина тока на выходе обуславливается коэффициентом заполнения, т.е. отношением длительности импульса к числу его повторений. Изменение величины среднего выходного тока происходит вследствие того, что частота импульсов остается неизменной, а коэффициент заполнения изменяется от 10-80%.

    Благодаря высокому КПД преобразований (до 95%) и компактности устройств, они нашли широкое применение для портативных светодиодных конструкций. Кроме того, эффективность устройств положительно сказывается на длительности функционирования автономных приборов питания. Преобразователи импульсного типа имеют компактные размеры и отличаются обширным диапазоном входных напряжений. Недостатком этих устройств является высокий уровень электромагнитных помех.

    Полезный совет! Приобретать LED-драйвер следует на этапе выбора светодиодных источников, предварительно определившись со схемой светодиодов от 220 вольт.

    Перед тем как подобрать драйвер для светодиодов, необходимо знать условия его функционирования и место размещения светодиодных приборов. Широтно-импульсные драйверы, в основе которых лежит одна микросхема, имеют миниатюрные размеры и рассчитаны на питание от автономных низковольтных источников. Основное применение этих устройств – тюнинг автомобилей и светодиодная подсветка. Однако ввиду использования упрощенной электронной схемы качество таких преобразователей несколько ниже.

    Диммируемые драйверы для светодиодов

    Современные драйверы для светодиодов совместимы с устройствами регулирования яркости свечения полупроводниковых приборов. Использование диммируемых драйверов позволяет управлять уровнем освещенности в помещениях: снижать интенсивность свечения в дневное время, подчеркивать или скрывать отдельные элементы в интерьере, зонировать пространство. Это, в свою очередь, дает возможность не только рационально использовать электроэнергию, но и экономить ресурс светодиодного источника света.

    Диммируемые драйверы бывают двух типов. Одни подсоединяются между блоком питания и LED-источниками. Такие устройства управляют энергией, поступающей от источника питания к светодиодам. В основе таких устройств используется ШИМ-управление, при котором энергия поступает к нагрузке в виде импульсов. Длительность импульсов определяет количество энергии от минимального до максимального значения. Драйверы такого типа применяются по большей части для светодиодных модулей с фиксированным напряжением, таких как светодиодные ленты, бегущие строки и др.

    Управление драйвером осуществляется с помощью или ШИМ

    Диммируемые преобразователи второго типа управляют непосредственно источником питания. Принцип их работы заключается как в ШИМ-регулировании, так и в управлении величиной протекающего через светодиоды тока. Диммируемые драйверы этого типа используются для LED-приборов со стабилизированным током. Стоит отметить, что при управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты.

    Сравнивая эти два метода регулирования, стоит отметить, что при регулировании величины тока через LED-источники наблюдается не только изменение яркости свечения, но и изменение цвета свечения. Так, белые светодиоды при меньшем токе излучают желтоватый свет, а при увеличении – светятся синим. При управлении светодиодами посредством ШИМ-регулирования наблюдаются негативно влияющие на зрение эффекты и высокий уровень электромагнитных помех. В связи с этим ШИМ-управление используется достаточно редко в отличие от регулирования тока.

    Схемы драйверов для светодиодов

    Многие производители выпускают для светодиодов микросхемы драйверов, позволяющие запитывать источники от пониженного напряжения. Все существующие драйверы делят на простые, выполненные на базе от 1-3 транзисторов и более сложные с использованием специальных микросхем с широтно-импульсной модуляцией.

    Компания ON Semiconductor предлагает в качестве основы для драйверов широкий выбор микросхем. Они отличаются приемлемой стоимостью, отличной эффективностью преобразования, экономичностью и низким уровнем электромагнитных импульсов. Производителем представлен драйвер импульсного типа UC3845 с величиной тока на выходе до 1А. На такой микросхеме можно реализовать схему драйвера для светодиода 10W.

    Электронные компоненты HV9910 (Supertex) являются популярной микросхемой для драйверов, благодаря простому схемному разрешению и невысокой цене. Она имеет встроенный регулятор напряжения и выводы для осуществления управления яркостью, а также вывод для программирования частоты переключений. Выходное значение тока составляет до 0,01А. На данной микросхеме возможно воплотить простой драйвер для светодиодов.

    На базе микросхемы UCC28810 (пр-во компании Texas Instruments) можно создать схему драйвера для мощных светодиодов. В такой схеме LED-драйвера может создаваться выходное напряжение величиной 70-85В для светодиодных модулей, состоящих из 28 LED-источников током 3 А.

    Полезный совет! Если вы планируете купить сверхяркие светодиоды мощностью 10 Вт, для конструкций из них можно использовать импульсный драйвер на микросхеме UCC28810.

    Компания Clare предлагает создание простого драйвера импульсного типа на основе микросхемы CPC 9909. Она включает контроллер преобразователя, размещенного в компактном корпусе. За счет встроенного стабилизатора напряжения допускается питание преобразователя от напряжения 8-550В. Микросхема CPC 9909 позволяет эксплуатировать драйвер в условиях широкого разброса температурных режимов от -50 до 80°С.

    Как подобрать драйвер для светодиодов

    На рынке представлен широкий ассортимент драйверов для светодиодов от разных производителей. Многие из них, особенно китайского производства, отличаются низкой ценой. Однако покупать такие устройства не всегда выгодно, так как большинство из них не соответствует заявленным характеристикам. Кроме того такие драйверы не сопровождаются гарантией, а в случае обнаружения брака их нельзя вернуть или заменить на качественные.

    Так существует вероятность приобретения драйвера, заявленная мощность которого составляет 50 W. Однако на деле оказывается, что эта характеристика имеет непостоянный характер и такая мощность является лишь кратковременной. В реальности же такое устройство будет работать как LED-driver 30W или максимум 40W. Так же может оказаться, что в начинке не будет хватать некоторых компонентов, отвечающих за устойчивое функционирование драйвера. Кроме того могут применяться компоненты низкого качества и с небольшим сроком службы, что является по сути браком.

    При покупке стоит обращать внимание на указание бренда изделия. На качественном товаре обязательно будет указан изготовитель, который предоставит гарантию и будет готов отвечать за свою продукцию. Следует отметить, что и срок службы драйверов от проверенных производителей будет гораздо больше. Ниже приведено ориентировочное время работы драйверов в зависимости от изготовителя:

    • драйвер от сомнительных производителей – не более 20 тыс. часов;
    • устройства среднего качества – около 50 тыс. часов;
    • преобразователь от проверенной фирмы-изготовителя с использованием качественных компонентов – свыше 70 тыс. часов.

    Полезный совет! Какого качества будет светодиодный драйвер – выбирать вам. Однако следует заметить, что особенно важно приобретать фирменный преобразователь, если речь идет о применении его для прожекторов из светодиодов и мощных светильников.

    Расчет драйверов для светодиодов

    Чтобы определить напряжение на выходе светодиодного драйвера, необходимо рассчитать отношение мощности (Вт) к значению тока (А). К примеру, драйвер имеет следующие характеристики: мощность 3 Вт и ток 0,3 А. Расчетное отношение составляет 10В. Таким образом, это будет максимальная величина выходного напряжения данного преобразователя.

    Статья по теме:


    Типы. Схемы подключения LED-источников. Расчет сопротивления для светодиодов. Проверка светодиода мультиметром. LED-конструкции своими руками.

    Если необходимо подключить 3 LED-источника, ток каждого из которых составляет 0,3 мА при напряжении питания 3В. Подключая к светодиодному драйверу один из приборов, то выходное напряжение будет равно 3В и ток 0,3 А. Собрав последовательно два LED-источника, выходное напряжение будет равно 6В и ток 0,3 А. Добавив в последовательную цепочку третий светодиод, получим 9В и 0,3 А. При параллельном соединении 0,3 А одинаково распределятся между светодиодами по 0,1 А. Подключая светодиоды к устройству на 0,3 А при значении тока 0,7, им достанется всего 0,3 А.

    Таков алгоритм функционирования светодиодных драйверов. Они выдают такое количество тока, на которое они рассчитаны. Способ подключения LED-приборов в этом случае не играет роли. Есть модели драйверов, предполагающие любое количество подключаемых к ним светодиодов. Но тогда существует ограничение по мощности LED-источников: она не должна превышать мощность самого драйвера. Выпускаются драйверы, рассчитанные на определенное число подключаемых светодиодов К ним разрешается подключить меньшее количество светодиодов. Но такие драйверы имеют низкую эффективность, в отличие от устройств, рассчитанных на конкретное количество LED-приборов.

    Следует отметить, что у драйверов, рассчитанных на фиксированное количество излучающих диодов, предусмотрена защита от аварийных ситуаций. Такие преобразователи некорректно работают, если к ним подключить меньшее число светодиодов: они будут мерцать или вообще не будут светиться. Таким образом, если подключить к драйверу напряжение без соответствующей нагрузки, он будет работать нестабильно.

    Где купить драйверы для светодиодов

    Купить LED-driver можно в специализированных точках по продаже радиодеталей. Кроме того гораздо удобней ознакомиться с продукцией и заказать необходимое изделие, используя каталоги соответствующих сайтов. Помимо этого в интернет-магазинах можно приобрести не только преобразователи, а также приборы светодиодного освещения и сопутствующую продукцию: , устройства управления, средства подключения, электронные компоненты для ремонта и сборки драйвера для светодиодов своими руками.

    Реализующими компаниями представлен огромный ассортимент драйверов для светодиодов, технические характеристики и цены которых можно увидеть в прайсах. Как правило цены на продукцию носят ориентировочный характер и уточняются при заказе у менеджера проекта. В ассортименте имеются преобразователи различной мощности и степени защиты, применяемые для наружного и внутреннего освещения, а также для подсветки и тюнинга автомобилей.

    Выбирая драйвер следует учитывать условия его использования и потребляемую мощность светодиодной конструкции. Поэтому приобретать драйвер необходимо перед покупкой светодиодов. Так, прежде чем купить драйвер для светодиодов 12 вольт, необходимо принять во внимание, что он должен иметь запас мощности около 25-30%. Это нужно для того, чтобы уменьшить риск повреждения или полного выхода из строя прибора при коротком замыкании или перепадах напряжения в сети. Стоимость преобразователя зависит от количества приобретаемых устройств, формы оплаты и сроков доставки.

    В таблице приведены основные параметры и размеры стабилизаторов напряжения 12 вольт для светодиодов с указанием их ориентировочной цены:

    Модификация LD DC/AC 12 V Габариты, мм (в/ш/г) Выходной ток, A Мощность, W Цена, руб.
    1x1W 3-4VDC 0.3A MR11 8/25/12 0,3 1х1 73
    3x1W 9-12VDC 0.3A MR11 8/25/12 0,3 3х1 114
    3x1W 9-12VDC 0.3A MR16 12/28/18 0,3 3х1 35
    5-7x1W 15-24VDC 0.3A 12/14/14 0,3 5-7х1 80
    10W 21-40V 0.3A AR111 21/30 0,3 10 338
    12W 21-40V 0.3A AR11 18/30/22 0,3 12 321
    3x2W 9-12VDC 0.4A MR16 12/28/18 0,4 3х2 18
    3x2W 9-12VDC 0.45A 12/14/14 0,45 3х2 54

    Изготовление драйверов для светодиодов своими руками

    Используя готовые микросхемы, радиолюбители могут самостоятельно собирать драйверы для светодиодов различной мощности. Для этого необходимо уметь читать электрические схемы и иметь навыки работы с паяльником. Для примера можно рассмотреть несколько вариантов LED-драйверов своими руками для светодиодов.

    Схему драйвера для светодиода 3W можно реализовать на основе микросхемы PT4115 китайского производства PowTech. Микросхема может быть применена для питания LED-приборов свыше 1W и включает в себя блоки управления, которые имеют на выходе достаточно мощный транзистор. Драйвер на базе PT4115 обладает высокой эффективностью и имеет минимальное количество компонентов обвязки.

    Обзор PT4115 и технические параметры ее компонентов:

    • функция управление яркостью свечения (диммирование);
    • входное напряжение – 6-30В;
    • значение выходного тока – 1,2 А;
    • отклонение стабилизации тока до 5%;
    • предохранение от разрывов нагрузки;
    • наличие выводов для диммирования;
    • эффективность – до 97%.

    Микросхема имеет следующие выводы:

    • для выходного переключателя – SW;
    • для сигнального и питающего участка схемы – GND;
    • для регулирования яркости – DIM;
    • входной датчик тока – CSN;
    • напряжение питания – VIN;

    Схема драйвера для светодиодов своими руками на базе PT4115

    Схемы драйвера для питания LED-приборов рассеивающей мощностью 3 Вт могут быть исполнены в двух вариантах. Первый предполагает наличие источника питания напряжением от 6 до 30В. В другой схеме предусмотрено питание от источника переменного тока напряжением от 12 до 18В. В этом случае в схему введен диодный мост, на выходе которого устанавливается конденсатор. Он способствует сглаживанию колебаний напряжения, емкость его составляет 1000 мкФ.

    Для первой и второй схемы особое значение имеет конденсатор (CIN): этот компонент призван уменьшить пульсацию и компенсировать накопленную катушкой индуктивности энергию при закрытии MOP-транзистора. В отсутствие конденсатора вся энергия индуктивности через полупроводниковый диод ДШБ (D) попадет на вывод напряжения питания (VIN) и станет причиной пробоя микросхемы относительно питания.

    Полезный совет! Следует обязательно учитывать, что подключение драйвера для светодиодов в отсутствие входного конденсатора не разрешается.

    Учитывая количество и то, сколько потребляют светодиоды, рассчитывается индуктивность (L). В схеме светодиодного драйвера следует подбирать индуктивность, величина которой 68-220 мкГн. Об этом свидетельствуют данные технической документации. Можно допустить небольшое увеличение значения L, однако следует учесть, что тогда снизится КПД схемы в целом.

    Как только подается напряжение, величина тока при прохождении его через резистор RS (работает как датчик тока) и L будет нулевая. Далее, CS comparator анализирует уровни потенциалов, находящихся до резистора и после него – в результате появляется высокая концентрация на выходе. Ток, идущий в нагрузку, нарастает до определенного значения, контролируемого RS. Ток увеличивается в зависимости от значения индуктивности и от величины напряжения.

    Сборка компонентов драйвера

    Компоненты обвязки микросхемы РТ 4115 подбираются с учетом указаний производителя. Для CIN следует применять низкоимпедансный конденсатор (конденсатор с низким ESR), так как применение других аналогов негативно скажется на эффективности драйвера. Если устройство будет запитано от блока со стабилизированным током, на входе понадобится один конденсатор емкостью от 4,7 мкФ. Его рекомендуется разместить рядом с микросхемой. Если ток переменный, потребуется ввести твердотельный танталовый конденсатор, емкость которого не ниже 100 мкФ.

    В схему включения для светодиодов 3 Вт необходимо установить катушку индуктивности на 68 мкГн. Она должна располагаться как можно ближе к выводу SW. Можно сделать катушку самостоятельно. Для этого потребуется кольцо из вышедшего из строя компьютера и обмоточный провод (ПЭЛ-0,35). В качестве диода D можно использовать диод FR 103. Его параметры: емкость 15 пФ, время восстановления 150 нс, температура от -65 до 150°С. Он может справиться с импульсами тока до 30 А.

    Минимальная величина резистора RS в схеме светодиодного драйвера составляет 0,082 Ом, ток – 1,2 А. Чтобы рассчитать резистор, необходимо использовать значение тока, необходимого для светодиода. Ниже приведена формула для расчета:

    RS = 0,1 / I ,

    где I – номинальная величина тока LED-источника.

    Величина RS в схеме светодиодного драйвера составляет 0,13 Ом, соответственно значение тока – 780 мА. Если такой резистор не удается отыскать, можно использовать несколько низкоомных компонентов, используя при расчете формулу сопротивления для параллельного и последовательного включения.

    Компоновка драйвера для светодиода 10 Ватт своими руками

    Собрать драйвер для мощного светодиода можно самостоятельно, используя электронные платы от вышедших из строя люминесцентных ламп. Чаще всего в таких светильниках перегорают лампы. Электронная плата остается рабочей, что позволяет использовать ее компоненты для самодельных блоков питания, драйверов и других устройств. Для работы могут понадобиться транзисторы, конденсаторы, диоды, катушки индуктивности (дроссели).

    Неисправную лампу необходимо аккуратно разобрать с помощью отвертки. Чтобы сделать драйвер для светодиода 10 Вт, следует воспользоваться люминесцентной лампой, мощность которой 20 Вт. Это необходимо для того, чтобы дроссель мог с запасом выдержать нагрузку. Для более мощной лампы следует либо подбирать соответствующую плату, либо заменить сам дроссель на аналог с большим сердечником. Для LED-источников с меньшей мощностью можно отрегулировать число витков обмотки.

    Далее поверх первичных витков обмотки необходимо сделать 20 витков провода и с помощью паяльника соединить эту обмотку с выпрямительным диодным мостом. После этого следует подать напряжение от сети 220В и измерить выходное напряжение на выпрямителе. Его значение составило 9,7В. LED-источник через амперметр потребляет 0,83 А. Номинал этого светодиода 900 мА, однако чтобы заниженное потребление тока позволит увеличить его ресурс. Сборка диодного моста осуществляется путем навесного монтажа.

    Новую плату и диодный мост можно разместить в подставке от старого настольного светильника. Таким образом, светодиодный драйвер можно собрать самостоятельно из имеющихся в наличии радиодеталей от вышедших из строя устройств.

    В силу того что светодиоды достаточно требовательны к источникам питания, необходимо правильно подбирать к ним драйвер. Если преобразователь выбран правильно, можно быть уверенным, что параметры LED-источников не ухудшатся и светодиоды прослужат положенный им срок.

    Небольшая лабораторка на тему «какой драйвер лучше?» Электронный или на конденсаторах в роли балласта? Думаю, что у каждого есть своя ниша. Постараюсь рассмотреть все плюсы и минусы и тех и других схем. Напомню формулу расчёта балластных драйверов. Может кому интересно?

    Свой обзор построю по простому принципу. Сначала рассмотрю драйверы на конденсаторах в роли балласта. Затем посмотрю на их электронных собратьев. Ну а в конце сравнительный вывод.
    А теперь перейдём к делу.
    Берём стандартную китайскую лампочку. Вот её схема (немного усовершенствованная). Почему усовершенствованная? Эта схема подойдёт к любой дешёвой китайской лампочке. Отличие будет только в номиналах радиодеталей и отсутствии некоторых сопротивлений (в целях экономии).


    Бывают лампочки с отсутствующим С2 (очень редко, но бывает). В таких лампочках коэффициент пульсаций 100%. Очень редко ставят R4. Хотя сопротивление R4 просто необходимо. Оно будет вместо предохранителя, а также смягчит пусковой ток. Если в схеме отсутствует, лучше поставить. Ток через светодиоды определяет номинал ёмкости С1. В зависимости от того, какой ток мы хотим пропустить через светодиоды (для самодельщиков), можно рассчитать его ёмкость по формуле (1).


    Эту формулу я писАл много раз. Повторюсь.
    Формула (2) позволяет сделать обратное. С её помощью можно посчитать ток через светодиоды, а затем и мощность лампочки, не имея Ваттметра. Для расчётов мощности нам ещё необходимо знать падение напряжения на светодиодах. Можно вольтметром измерить, можно просто посчитать (без вольтметра). Вычисляется просто. Светодиод ведёт себя в схеме как стабилитрон с напряжением стабилизации около 3В (есть исключения, но очень редкие). При последовательном подключении светодиодов падение напряжения на них равно количеству светодиодов, умноженному на 3В (если 5 светодиодов, то 15В, если 10 - 30В и т.д.). Всё просто. Бывает, что схемы собраны из светодиодов в несколько параллелей. Тогда надо будет учитывать количество светодиодов только в одной параллели.
    Допустим, мы хотим сделать лампочку на десяти светодиодах 5730smd. По паспортным данным максимальный ток 150мА. Рассчитаем лампочку на 100мА. Будет запас по мощности. По формуле (1) получаем: С=3,18*100/(220-30)=1,67мкФ. Такой ёмкости промышленность не выпускает, даже китайская. Берём ближайшую удобную (у нас 1,5мкФ) и пересчитываем ток по формуле (2).
    (220-30)*1,5/3,18=90мА. 90мА*30В=2,7Вт. Это и есть расчетная мощность лампочки. Всё просто. В жизни конечно будет отличаться, но не намного. Всё зависит от реального напряжения в сети (это первый минус драйвера), от точной ёмкости балласта, реального падения напряжения на светодиодах и т.д. При помощи формулы (2) вы можете рассчитать мощность уже купленных лампочек (уже упоминал). Падением напряжения на R2 и R4 можно пренебречь, оно незначительно. Можно подключить последовательно достаточно много светодиодов, но общее падение напряжения не должно превышать половины напряжения сети (110В). При превышении этого напряжения лампочка болезненно реагирует на все изменения напряжения. Чем больше превышает, тем болезненнее реагирует (это дружеский совет). Тем более, за этими пределами формула работает неточно. Точно уже не рассчитать.
    Вот появился очень большой плюс у этих драйверов. Мощность лампочки можно подгонять под нужный результат подбором ёмкости С1 (как самодельных, так и уже купленных). Но тут же появился и второй минус. Схема не имеет гальванической развязки с сетью. Если ткнуть в любое место включенной лампочки отвёрткой-индикатором, она покажет наличие фазы. Трогать руками (включенную в сеть лампочку) категорически запрещено.
    Такой драйвер имеет практически 100%-ный КПД. Потери только на диодах и двух сопротивлениях.
    Его можно изготовить в течение получаса (по-быстрому). Даже плату травить необязательно.
    Конденсаторы заказывал эти:


    Диоды вот эти:





    Но у этих схем есть ещё один серьёзный недостаток. Это пульсации. Пульсации частотой 100Гц, результат выпрямления сетевого напряжения.


    У различных лампочек форма незначительно будет отличаться. Всё зависит от величины фильтрующей ёмкости С2. Чем больше ёмкость, тем меньше горбы, тем меньше пульсации. Необходимо смотреть ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. Там же формула для расчёта (приложение Г).

    Но это не всё. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». В зависимости от предназначения помещения максимально допустимые пульсации от 10 до 20%.
    В жизни ничего просто так не бывает. Результат простоты и дешевизны лампочек налицо.
    Пора переходить к электронным драйверам. Здесь тоже не всё так безоблачно.
    Вот такой драйвер я заказывал. Это ссылка именно на него в начале обзора.


    Почему заказал именно такой? Объясню. Хотел сам «колхозить» светильники на 1-3Вт-ных светодиодах. Подбирал по цене и характеристикам. Меня устроил бы драйвер на 3-4 светодиода с током до 700мА. Драйвер должен иметь в своём составе ключевой транзистор, что позволит разгрузить микросхему управления драйвером. Для уменьшения ВЧ пульсаций по выходу должен стоять конденсатор. Первый минус. Стоимость подобных драйверов (US $13.75 /10 штук) отличается в бОльшую сторону от балластных. Но тут же плюс. Токи стабилизации подобных драйверов 300мА, 600мА и выше. Балластным драйверам такое и не снилось (более 200мА не рекомендую).
    Посмотрим на характеристики от продавца:

    ac85-265v" that everyday household appliances."
    load after 10-15v; can drive 3-4 3w led lamp beads series
    600ma
    А вот диапазон выходных напряжений маловат (тоже минус). Максимум, можно подцепить последовательно пять светодиодов. Параллельно можно подцеплять сколько угодно. Светодиодная мощность считается по формуле: Ток драйвера умножить на падение напряжения на светодиодах [количество светодиодов (от трёх до пяти) и умножить на падение напряжения на светодиоде (около 3В)].
    Ещё один большой недостаток этих драйверов – большие ВЧ помехи. Некоторые экземпляры слышит не только ФМ радио, но и пропадает приём цифровых каналов ТВ при их работе. Частота преобразования составляет несколько десятков кГц. А вот защиты, как правило, никакой (от помех).


    Под трансформатором что-то типа «экрана». Должно уменьшить помехи. Именно Этот драйвер почти не фонит.
    Почему они фонят, становится ясно, если посмотреть на осциллограмму напряжения на светодиодах. Без конденсаторов ёлочка куда серьёзнее!


    На выходе драйвера должен стоять не только электролит, но и керамика для подавления ВЧ помех. Высказал своё мнение. Обычно стоит либо то либо другое. Бывает, что ничего не стоит. Это бывает в дешёвых лампочках. Драйвер спрятан внутри, предъявить претензию будет сложно.
    Посмотрим схему. Но предупрежу, она ознакомительная. Нанёс только основные элементы, которые необходимы нам для творчества (для понимания «что к чему»).


    Погрешность в расчётах присутствует. Кстати, на мелких мощностях приборчик тоже подвирает.
    А теперь посчитаем пульсации (теория в начале обзора). Посмотрим, что же видит наш глаз. К осциллографу подключаю фотодиод. Два снимка объединил в один для удобства восприятия. Слева лампочка выключена. Справа – лампочка включена. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что пульсации частотой до 300Гц вредны для здоровья. А у нас около 100Гц. Для глаз вредно.


    У меня получилось 20%. Необходимо смотреть Санитарные нормы СНиП 23-05-95 «ЕСТЕСТВЕННОЕ И ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ». Использовать можно, но не в спальне. А у меня коридор. Можно СНиП и не смотреть.
    А теперь посмотрим другой вариант подключения светодиодов. Это схема подключения к электронному драйверу.


    Итого 3 параллели по 4 светодиода.
    Вот, что показывает Ваттметр. 7,1Вт активной мощности.


    Посмотрим, сколько доходит до светодиодов. Подключил к выходу драйвера амперметр и вольтметр.


    Посчитаем чисто светодиодную мощность. Р=0,49А*12,1В=5,93Вт. Всё, что не хватает, взял на себя драйвер.
    Теперь посмотрим, что же видит наш глаз. Слева лампочка выключена. Справа – лампочка включена. Частота повторения импульсов около 100кГц. Смотрим ГОСТ Р 54945-2012. А там чёрным по белому написано, что вредны для здоровья только пульсации частотой до 300Гц. А у нас около 100кГц. Для глаз безвредно.

    Всё рассмотрел, всё измерил.
    Теперь выделю плюсы и минусы этих схем:
    Минусы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
    -Во время работы КАТЕГОРИЧЕСКИ нельзя касаться элементов схемы, они под фазой.
    -Невозможно достичь высоких токов свечения светодиодов, т.к. при этом необходимы конденсаторы больших размеров. А увеличение ёмкости приводит к большим пусковым токам, портящим выключатели.
    -Большие пульсации светового потока частотой 100Гц, требуют больших фильтрующих ёмкостей на выходе.
    Плюсы лампочек с конденсатором в роли балласта по сравнению с электронными драйверами.
    +Схема очень проста, не требует особых навыков при изготовлении.
    +Диапазон выходных напряжений просто фантастический. Один и тот же драйвер будет работать и с одним и с сорока последовательно соединёнными светодиодами. У электронных драйверов выходные напряжения имеют намного более узкий диапазон.
    +Низкая стоимость подобных драйверов, которая складывается буквально из стоимости двух конденсаторов и диодного моста.
    +Можно изготовить и самому. Большинство деталей можно найти в любом сарае или гараже (старые телевизоры и т.д.).
    +Можно регулировать ток через светодиоды подбором ёмкости балласта.
    +Незаменимы как начальный светодиодный опыт, как первый шаг в освоении светодиодного освещения.
    Есть ещё одно качество, которое можно отнести как к плюсам, так и к минусам. При использовании подобных схем с выключателями с подсветкой, светодиоды лампочки подсвечиваются. Лично для меня это скорее плюс, чем минус. Использую повсеместно как дежурное (ночное) освещение.
    Умышленно не пишу, какие драйверы лучше, у каждого есть своя ниша.
    Я выложил по максимуму всё, что знаю. Показал все плюсы и минусы этих схем. А выбор как всегда делать вам. Я лишь постарался помочь.
    На этом всё!
    Удачи всем.

    Планирую купить +70 Добавить в избранное Обзор понравился +68 +157