Графический способ решения онлайн. Графический метод решения злп

Решение задачи линейного программирования (ЗЛП) графическим методом

Общая постановка злп

Найти значения n переменных x 1 , x 2 , …,x n , доставляющих экстремум (минимум или максимум) линейной функции Z=C 1 x 1 ,+ C 2 x 2+…+ C n x n

и одновременно удовлетворяющих m ограничениям вида

a 1,1 x 1 +a 1,2 x 2 +…+a 1,n x n £ =≥b 1 ,

a 2,1 x 1 +a 2,2 x 2 +…+a 2,n x n £ = ≥b 2 ,

. . . . . . . . . . . . . . . . . . . . . . .,

a m,1 x 1 +a m,2 x 2 +…+a m,n x n £ = ≥b m ,

при заданных a i,j , b i, C j (i=1,2,…,m; j=1,2,…,n). Знак отношения может принимать любое из трех приведенных значений.

Пример задачи линейного программирования

Рассмотрим следующую задачу. Менеджер предприятия, изготавливающего два вида красок, описал исследователю операций ситуацию, сложившуюся на производстве и рынке сбыта красок. Оказалось, что фабрика изготавливает два вида красок: для внутренних и внешних работ. Обе краски поступают в оптовую продажу. Для производства красок используются два исходных продукта – А и В. Максимально возможные суточные запасы этих продуктов 6 и 8 тонн соответственно. Опыт показал, что суточный спрос на внешнюю краску никогда не превышает спрос на внутреннюю более чем на 1 тонну. Кроме того, установлено, что спрос на внешнюю краску никогда не превышает 2 тонны в сутки. Оптовые цены одной тонны красок сложились следующим образом: 3 тысячи рублей на внешнюю краску и 2 тысячи рублей – на внутреннюю. Какое количество краски каждого вида должна производить фабрика, чтобы доход от реализации был максимальным?

Чтобы решить поставленную перед исследователем задачу, сначала необходимо разработать математическую модель описанной ситуации.

При построении математической модели специалист по исследованию операций ставит перед собой три вопроса.

  • Для каких величин должна быть построена модель? Иначе говоря, нужно идентифицировать переменные задачи.
  • Какие ограничения должны быть наложены на переменные, чтобы выполнялись условия, характерные для моделируемой системы?
  • В чем состоит цель, для достижения которой из всех возможных (допустимых) значений переменных нужно выбрать те, которые будут соответствовать оптимальному (наилучшему) решению задачи?

Введем переменные:

x 1 – суточный объем производства внешней краски (в тоннах),

x 2 – суточный объем производства внутренней краски (в тоннах).

Учитывая оптовые цены на тонну каждого вида краски, суточный доход от продажи произведенной продукции задается линейной целевой функцией Z = 3x 1 + 2x 2 .

Целью производства является получение максимальной прибыли, значит, необходимо найти значения x 1 и x 2 , которые максимизируют целевую функцию Z.

Поскольку производитель красок не может распорядиться значениями переменных произвольным образом, постольку необходимо выделить множество возможных значений этих переменных, которое определяется конкретными условиями производства и сбыта. Это множество называется областью допустимых значений.

Первый тип ограничений определяется запасами продуктов А и В, из которых производятся краски. Из технологии производства известно, что на производство тонны внешней краски идут две части продукта А, а на тонну внутренней – одна часть. Для продукта В соотношение обратное. Эти технологические условия описываются неравенствами

2x 1 + x 2 £ 6 (на складе 6 тонн продукта А),

x 1 + 2x 2 £ 8 (на складе 8 тонн продукта В).

Последние два ограничения означают очевидное обстоятельство: нельзя использовать для производства красок больше продуктов А и В, чем их имеется фактически на складе.

Ситуация с реализацией красок на рынке приводит к следующим ограничениям: x 1 – x 2 £ 1 (внешней краски реализуется не более, чем на одну тонну больше внутренней), x 1 £ 2 (внешней краски продается не более двух тонн в день).

Суммируя все сказанное, можно математическую модель, описывающую сложившуюся производственную ситуацию, задать в следующей форме:

найти ® max{ Z=2× x 1 + 3× x 2 } при следующих ограничениях на значения переменных x 1 и x 2

2 × x 1 + x 2 £ 6 ограничение (1),

X 1 + 2 × x 2 £ 8 ограничение (2),

X 1 - x 2 £ 1 ограничение (3),

X 1 £ 2 ограничение (4)

и требование неотрицательности переменных x 1 ³ 0 (5), x 2 ³ 0 (6).

Полученная математическая модель представляет собой задачу линейного программирования.

Графический метод решения злп

Графический метод решения злп может быть реализован только в двумерном случае.

Математическая модель, полученная для сформулированной типовой задачи, требует исследования, так как заранее не известно, имеет ли она (как математическая задача) решение. Исследование проведем с использованием графических построений. Одновременно с таким исследованием найдем (если оно есть) и решение.

1 этап. Построение области допустимых решений

Цель – построить область, каждая точка которой удовлетворяет всем ограничениям.

Каждое из шести ограничений геометрически задает полуплоскость. Для того, чтобы ее построить, нужно:

  • · заменить в ограничении знак неравенства на равенство (получим уравнение прямой);
  • · построить прямую по двум точкам;
  • · определить, какую полуплоскость задает знак неравенства. Для этого подставить в неравенство какую-нибудь точку (например, начало координат). Если она удовлетворяет неравенству – закрашиваем полуплоскость, ее содержащую.

Такие действия выполняем для всех ограничений. Каждую из прямых обозначим номерами, принятыми при нумерации ограничений (см. рис).

Областью допустимых решений (удовлетворяющей всем ограничениям) является множество точек первого квадранта координатной плоскости (x 1 , x 2), представляющее собой пересечение всех полуплоскостей, определяемых неравенствами ограничений.

Множество точек, удовлетворяющих всем шести ограничениям задачи – многоугольник AFEDCB.

2 этап Построение линий уровня целевой функции и определение точки максимума

Цель - найти в построенном многоугольнике A FEDCB точку, в которой функция цели Z=2x 1 + 3x 2 принимает максимальное значение.

Проведем прямую 2x 1 + 3x 2 = Сonst (линию уровня) так, чтобы она пересекала многоугольник AFEDCB (например, Const=10). Эта линия уровня на рисунке изображена пунктирной линией.

Если рассматривать значения линейной целевой функции Z на множестве точек (x 1 ,x 2), принадлежащих отрезку пунктирной прямой, расположенному внутри шестиугольника, то все они равны одному и тому же значению (Const=10).

Определим направление возрастания функции. Для этого построим линию уровня с бОльшим значением. Это будет прямая, параллельная с построенной, но расположенная правее. Значит, в заданном направлении значение целевой функции возрастает, и в наших интересах сдвинуть ее как можно дальше в этом направлении.

Сдвиг можно продолжать до тех пор, пока перемещаемая прямая пересекает многоугольник допустимых решений. Последнее положение прямой, когда она имеет одну общую точку с многоугольником AFEDCB (точка С), соответствует максимальному значению целевой функции Z и достигается в точке С с координатами x 1 = 4/3 (» 1.333), x 2 =10/3 (» 3.333). При этом Z = 38/3 (» 12.667).

Поставленная задача полностью решена. Из проведенных геометрических рассуждений видно, что решение единственное. Сделаем некоторые обобщения, вытекающие из геометрической интерпретации задачи.

Первое . Область допустимых решений – выпуклый многоугольник (Почему выпуклый? Может ли область допустимых решений представлять собой пустое множество? Точку? Отрезок? Луч? Прямую? Если да, приведите пример системы ограничений ).

Второе . Максимум целевой функции достигается в вершине многоугольника допустимых решений (а может ли быть не единственное решение? Может ли решения не быть? )

Задание 1 (выполнить на занятии, показать преподавателю)

Решить графическим методом

А) F =2 x 1 +3 x 2 è max

При ограничениях

x 1 +3 x 2 ≤ 18

2 x 1 + x 2 ≤ 16

x 2 ≤ 5

3 x 1 ≤ 21

x 1 ≥ 0 x 2 ≥ 0

B ) F =4 x 1 +6 x 2 è min

При ограничениях

3 x 1 + x 2 ≥ 9

x 1 +2 x 2 ≥ 8

x 1 +6x 2 ≥ 12

x 1 ≥ 0 x 2 ≥ 0

C ) F =3 x 1 +3 x 2 è max

При ограничениях

x 1 +x 2 ≤ 8

2x 1 -x 2 ≥ 1

x 1 -2x 2 ≤ 2

x 1 ≥ 0 x 2 ≥ 0

D ) F =2 x 1 -3 x 2 è min

При ограничениях

x 1 +x 2 ≥ 4

2x 1 -x 2 ≥ 1

x 1 -2x 2 ≤ 1

x 1 ≥ 0 x 2 ≥ 0

A) x1=6 x2=4 F=24

B) x1=2 x2=3 F=26

C) x1Î x2=8-x1 F=24

Задание 2 (выполнить на занятии, показать преподавателю)

Ответить на вопросы, выделенные курсивом.

Задание 3 (домашнее)

Написать программу.

Дан текстовый файл вида

2 3 (коэффициенты целевой функции)

4 (количество ограничений)

2 2 12 (ограничения)

1 2 8

4 0 16

0 4 12

Построить прямые так, чтобы многоугольник допустимых решений был целиком на экране (определение масштаба см. в кн. Онегова). Прямые могут быть параллельны осям!

Построить несколько линий уровня целевой функции (нажимаем клавишу – прямая перемещается, отображается значение целевой функции). Отобразить масштаб.


f = –х 1 + 5х 2 ¾> min ;

4х 1+ 3х 2 £ 24,

х 1– 10х 2 £ 0,

8х 1– 3х 2 ³ 0,

5х 1+ 3х 2 ³ 15,

х 1³0, х 2³ 0. (1)

Совокупность переменных хj , удовлетворяющих условию (1), называется областью допустимых решений. Допустимое решение, обращающее целевую функцию в min или max , называется оптимальным. Для его определения необходимо построить область допустимых решений (область определения). Так как в условии задачи заданы две переменные, то область допустимых решений находится на плоскости х 10х 2. Каждое неравенство (1) определяет полуплоскость, а равенство – прямую. Для построения полуплоскости необходимо найти ее границу и установить, с какой стороны от нее лежит искомая полуплоскость. Перепишем условия (1) в виде равенств (2) и пронумеруем их.

4х 1+ 3х 2 = 24 (I ),
х 1– 10х 2 = 0 (II ),
8х 1– 3х 2 = 0 (III ),
5х 1+ 3х 2 = 15 (IV ). (2)

Введем систему координат х 10х 2 и построим последовательно эти прямые – границы полуплоскостей. Для построения прямой на плоскости необходимо определить любые две точки, лежащие на этой прямой. Если прямая пересекает оси 0х 1и 0х 2, то можно найти координаты точек ее пересечения с осями координат. Определим координаты пересечения прямой (I ) с осью 0х 1: х 1=0; Þ 3х 2= 24; Þ х 2= 8. Соответственно определим координаты второй точки пересечения первой прямой с осью 0х 2: х 2=0; Þ 4х 1= 24; Þ х 1= 6. Следовательно, точки пересечения прямой (I ) с осями координат равны (0,8) и (6,0). Построим эту прямую (рис. 1).

Определим полуплоскость. Для этого подставим в первое неравенство (1) координаты любой точки, не лежащей на данной прямой, например (0,0). Тогда из первого условия следует: 4×0+3×0 £24, значит, неравенство справедливо, откуда следует, что полуплоскость лежит с той стороны прямой, где находится точка с координатами (0,0).


Аналогичным образом строятся и другие полуплоскости. Необходимо учесть, что прямые (II) и (III) проходят через начало координат, т.е. точку (0,0). Координаты второй точки желательно брать пропорционально коэффициентам в уравнении искомой прямой. Например, для второй прямой – точки (0,0) и (10,1), а для третьей – (0,0) и (3,8). После построения всех полуплоскостей область допустимых решений примет следующий вид (рис. 3):



Целевая функция f определяет на плоскости прямую, которая должна проходить через точку или сторону многоугольника и иметь наименьшее значение. Построим направляющий вектор для этой прямой. Данный вектор перпендикулярен искомой прямой, и его направление всегда определяет максимум целевой функции. Противоположное направление вектора определяет минимум. Обозначим этот вектор через . Он проходит через точку (0,0) и (–1,5). Координаты второй точки берут из коэффициентов целевой функции и с их помощью определяют направление вектора. Перпендикулярно ему построим прямую –х 1+ 5х 2=0. Как было сказано выше, вектор всегда показывает направление возрастания значения целевой функции (max ) , противоположный ему вектор –– направление убывания значения целевой функции (min ). Перемещаем прямую –х 1+5х 2=0 по области определения параллельно самой себе в направлении min . Целевая функция f достигнет своего минимального значения в точке С (рис. 4).


Оптимальному решению задачи (1) соответствует точка С , которая лежит на пересечении прямых (I ) и (II ):

4х 1+ 3х 2= 24;

х 1– 10х 2= 0.

Для решения данной системы уравнений умножить второе уравнение на 4 и сложить соответственно по элементам с 1-м уравнением:

4х 1+ 3х 2 = 24;

4х 1– 40х 2 = 0.

Вычтем из первого уравнения второе, получим: 43х2= 24 Þ х 2= 0,56.

Подставив найденное значение х 2во второе уравнение, получим:

х 1= 10х х 1=5,6. Подставив координаты точки С в целевую функцию, получим следующий результат:

f min = – 5,6 + 5×0,56 = – 2,8.

Окончательный результат задачи запишем в следующем виде:

х 1= 5,6, х 2= 0,56;f min = – 2,8.

Решение данного примера на ПЭВМ осуществляется программным комплексом «Блок-3». С его помощью производятся ввод, решение и вывод результативной информации на внешний носитель. Простота и доступность комплекса позволит без труда освоить его и применять на практике.

Задача № 1.1.2.

f = 2х 1+ 3х 2 ¾> max;

2х 1+ 3х 2 £ 12,

2х 1– 5х 2 £ 0,

7х 1– 2х2³ 0,

х 1, х 2³ 0. (3)

Определения и построение области допустимых решений аналогичны заданию 1.1.1. Окончательный вид области допустимых решений представлен на рис. 5 многоугольником АВС (точка А совпадает с точкой 0).

Очевидно, что прямая, определяющая целевую функцию, совпадает с прямой, образующей сторону многоугольника ВС . Отсюда следует, что решением данной ЭММ являются точки, лежащие на стороне ВС много-

угольника АВС . Для записи решения ЭММ необходимо найти координату x 1B – точки В и x 1C – точки С . Определив их, мы сможем найти отрезок, лежащий на оси 0x 1(рис. 6).


Координаты точки В – x1B определяются в результате пересечения прямых 2х 1+ 3х 2 = 12 и 7х 1– 2х 2 = 0. Для этого необходимо решить систему уравнений:

2х 1+ 3х 2= 12 ´ 2 Þ 4х 1+ 6х 2= 24;

7х 1– 2х 2= 0 ´ 3 Þ 21х 1– 6х2= 0.

Сложив два последних уравнения, получим: 25х 1=24, х 1=0,96. Из этого следует, что x 1B =0,96. Координата точки С x 1C определяется в результате пересечения прямых 2х 1+ 3х 2=12 и 2х 1–5х 2=0. Решим систему уравнений:

2х 1+ 3х 2= 12 ´ 5 Þ 10х 1+ 15х 2= 60;

2х 1– 5х 2= 0 ´ 3 Þ 6х 1 – 15х 2= 0.

Сложив два последних уравнения, получим: 16х 1= 60, х 1= 3,75, откуда следует, что x 1C = 3,75.

Значение целевой функции для данной ЭММ равно 12 (так как уравнение прямой, на которой определен отрезок ВС – 2х 1+3х 2= 12).

Таким образом, ответ данной задачи:

x 1Î[x 1B ; x 1C ] Þ x 1Î;

2х 1+ 3х 2=12 Þ 3х 2= 12 – 2х х 2= (12 – 2х 1)/3.

Полный ответ данного примера запишется в следующем виде:

x 1Î; x 2= (12 – 2х 1)/3; f max = 12.

Задача № 1.1.3.

f = 2х 1+ 3х 2 ¾> max;

2х 1+ 3х 2 ³ 12,

2х 1– 5х 2 £ 0,

7х 1– 2х 2³ 0,

х 1, х 2 ³0. (4)

Используя схему построения области допустимых решений задач 1.1.1–1.1.2, получим следующий график (рис. 7):


f = 2х 1+ 3х 2 ¾> max ;

х 1+ х2 £ 2,

2х 1+ 3х 2³ 12,

2х 1– 5х 2£ 0,

7х 1– 2х 2³ 0,

х 1, х 2³ 0. (5)

Используя график задачи 1.1.3 и достроив первую полуплоскость х 1+х2£ 2, получим область определения, показанную на рис. 8.


Из графика (рис. 8) видно, что для данной ЭММ области допустимых решений нет. Ответ: нет области допустимых решений.

Задача № 1.1.5.

f = – х 1+ 5х 2 ¾> min;

10х 1+ 3х 2£ 30,

10х 1+ 5х 2³ 50,

2х 1– 6х 2£ 0,

х 1, х 2³ 0. (6)

Область определения ЭММ (6) представлена на рис. 9. Из анализа графика следует, что областью допустимых решений будет являться точка А с координатами (0,10) (10х 1+ 5х 2= 50, х 1= 0, 5х 2= 50, х 2=10). В случае, когда решением ЭММ является единственная точка, целевую функцию можно не строить.

Ответ: x 1= 0; x 2=10; fmin = 0+5×10 = 50.


Таким образом, при решении задач ЭММ ЛП возможны следующие ситуации:

– задача имеет одно оптимальное решение;

– задача имеет бесконечное число оптимальных решений;

– задача не имеет оптимального решения;

– задача не имеет области допустимых решений.

На практике ЭММ ЛП не имеет решений только в том случае, если некорректна постановка задачи.

Как показывает опыт разработки ЭММ, основная сложность состоит в описании экономико-технологических процессов в модели и выборе критерия оптимизации. Отсюда следует, что необходимо точно определить нормативные параметры. Это в свою очередь требует поставленного учета и анализа на исследуемом объекте. В то же время особое значение в составлении модели приобретает уровень подготовки специалиста. От его умения выявить основные звенья технологического процесса, определить этапы решения задачи и сформулировать цели исследования будет зависеть и качество решения данной проблемы.

Задача № 1.1.6.

Предприятие может организовать производство своей продукции двумя способами. При первом способе предприятие за месяц выпускает C 1 тыс. изделий, при втором – C 2 тыс. изделий. Расход производственных, людских ресурсов, амортизация оборудования и ограничения ресурсов, приведены ниже в таблице.

Сколько месяцев должно работать предприятие, каким способом организовать производство, чтобы обеспечить максимальный выпуск продукции.

1) Решить графическим способом;

2) Решить на базе комплекса «Блок-3»;

3) Симплекс-методом.

Рассмотрим сначала простейший случай, когда в ЗЛП включены ровно две переменные:

Каждое из неравенств (a)-(b) системы ограничений задачи (3.8) геометрически определяет полуплоскость соответственно с граничными прямыми , Х 1 =0 и Х 2 =0. Каждая из граничных прямых делит плоскость х 1 Ох 2 на две полуплоскости. Все решения исходного неравенства лежат в одной из образованных полуплоскостей (все точки полуплоскости) и, следовательно, при подстановке координат любой ее точки в соответствующее неравенство обращает его в верное тождество. С учетом этого и определяется та полуплоскость, в которой лежат решения неравенства, т.е. путем выбора любой точки из какой-либо полуплоскости и подстановки ее координат в соответствующее неравенство. Если неравенство выполняется для данной точки, то оно выполняется и для любой другой точки из этой же полуплоскости. В противном случае решения неравенства лежат в другой полуплоскости.

В том случае, если система неравенств (a)-(b) совместна, то область её решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей выпуклое, то область допустимых решений задачи (3.8) является выпуклое множество, которое называется многоугольником решений (введённый ранее термин “многогранник решений” обычно употребляется, если n 3). Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная ЗЛП состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное (минимальное) значение.

Эта точка существует тогда, когда многоугольник решений не пуст и на нём целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины строят линию уровня L: c 1 x 1 +c 2 x 2 =h (где h – некоторая постоянная), перпендикулярную вектору-градиенту и проходящую через многоугольник решений, и передвигают её параллельно вдоль вектора-градиента до тех пор, пока она не пройдёт через последнюю её общую точку пересечения с многоугольником решений (при построении вектора-градиента откладывают точку (с 1 ; с 2) в плоскости х 1 Ох 2 и проводят к ней из начала координат направленный отрезок). Координаты указанной точки и определяют оптимальный план данной задачи.

Суммируя все выше изложенное, приведем алгоритм графического метода решения ЗЛП.

Алгоритм графического метода решения ЗЛП

1. Построить многоугольник решений, задаваемый системой ограничений исходной ЗЛП.


2. Если построенный многоугольник решений – пустое множество, то исходная ЗЛП решений не имеет. В противном случае построить вектор-градиент и провести произвольную линию уровня L, перемещая которую при решении задачи на максимум в направлении вектора (или в обратном направлении для задачи на минимум) определить крайнюю точку многоугольника решений, где и достигается максимум (минимум) целевой функции задачи.

3. Вычислить координаты найденной оптимальной точки , решив систему уравнений двух граничных прямых, пересекающихся в ней.

4. Подстановкой найденного оптимального решения в целевую функцию задачи вычислить оптимальное ее значение, т.е.: .

При графическом построении множества допустимых решений ЗЛП (многоугольника решений) возможны следующие ситуации.

Задача. Решить графически задачу линейного программирования, определив экстремальное значение целевой функции:

при ограничениях

Построим область допустимых решений, т.е. решим графически систему неравенств. Для этого построим каждую прямую и определим полуплоскости, заданные неравенствами (полуплоскости обозначены штрихом).

Построим уравнение 3x 1 +x 2 = 9 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 9. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 3. Соединяем точку (0;9) с (3;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 3 . 0 + 1 . 0 - 9 ≤ 0, т.е. 3x 1 +x 2 - 9≥ 0 в полуплоскости выше прямой.
Построим уравнение x 1 +2x 2 = 8 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 4. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 8. Соединяем точку (0;4) с (8;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 . 0 + 2 . 0 - 8 ≤ 0, т.е. x 1 +2x 2 - 8≥ 0 в полуплоскости выше прямой.
Построим уравнение x 1 +x 2 = 8 по двум точкам .
Для нахождения первой точки приравниваем x 1 = 0. Находим x 2 = 8. Для нахождения второй точки приравниваем x 2 = 0. Находим x 1 = 8. Соединяем точку (0;8) с (8;0) прямой линией. Определим полуплоскость, задаваемую неравенством. Выбрав точку (0; 0), определим знак неравенства в полуплоскости: 1 . 0 + 1 . 0 - 8 ≤ 0, т.е. x 1 +x 2 - 8≤ 0 в полуплоскости ниже прямой.

Пересечением полуплоскостей будет являться область, координаты точек которого удовлетворяют условию неравенствам системы ограничений задачи.
Обозначим границы области многоугольника решений.

Проверить правильность построения графиков функций можно с помощью калькулятора

Рассмотрим целевую функцию задачи F = 4x 1 +6x 2 → min.
Построим прямую, отвечающую значению функции F = 0: F = 4x 1 +6x 2 = 0. Вектор-градиент, составленный из коэффициентов целевой функции, указывает направление минимизации F(X). Начало вектора - точка (0; 0), конец - точка (4; 6). Будем двигать эту прямую параллельным образом. Поскольку нас интересует минимальное решение, поэтому двигаем прямую до первого касания обозначенной области. На графике эта прямая обозначена пунктирной линией.

Прямая F(x) = 4x 1 +6x 2 пересекает область в точке B. Так как точка B получена в результате пересечения прямых (1) и (2) , то ее координаты удовлетворяют уравнениям этих прямых:
3x 1 +x 2 =9
x 1 +2x 2 =8

Решив систему уравнений, получим: x 1 = 2, x 2 = 3
Откуда найдем минимальное значение целевой функции:
F(X) = 4*2 + 6*3 = 26

В линейном программировании используется графический метод, с помощью которого определяют выпуклые множества (многогранник решений). Если основная задача линейного программирования имеет оптимальный план, то целевая функция принимает значение в одной из вершин многогранника решений (см. рисунок).

Назначение сервиса . С помощью данного сервиса можно в онлайн режиме решить задачу линейного программирования геометрическим методом, а также получить решение двойственной задачи (оценить оптимальность использования ресурсов). Дополнительно создается шаблон решения в Excel .

Инструкция . Выберите количество строк (количество ограничений).

Количество ограничений 1 2 3 4 5 6 7 8 9 10
Если количество переменных больше двух, необходимо систему привести к СЗЛП (см. пример и пример №2). Если ограничение двойное, например, 1 ≤ x 1 ≤ 4 , то оно разбивается на два: x 1 ≥ 1 , x 1 ≤ 4 (т.е. количество строк увеличивается на 1).
Построить область допустимого решения (ОДР) можно также с помощью этого сервиса .

Вместе с этим калькулятором также используют следующие:
Симплексный метод решения ЗЛП

Решение транспортной задачи
Решение матричной игры
С помощью сервиса в онлайн режиме можно определить цену матричной игры (нижнюю и верхнюю границы), проверить наличие седловой точки, найти решение смешанной стратегии методами: минимакс, симплекс-метод, графический (геометрический) метод, методом Брауна.
Экстремум функции двух переменных
Вычисление пределов

Решение задачи линейного программирования графическим методом включает следующие этапы :

  1. На плоскости X 1 0X 2 строят прямые.
  2. Определяются полуплоскости.
  3. Определяют многоугольник решений;
  4. Строят вектор N(c 1 ,c 2), который указывает направление целевой функции;
  5. Передвигают прямую целевую функцию c 1 x 2 + c 2 x 2 = 0 в направлении вектора N до крайней точки многоугольника решений.
  6. Вычисляют координаты точки и значение целевой функции в этой точке.
При этом могут возникать следующие ситуации:

Пример . Компания изготавливает два вида продукции - П1 и П2. Для производства продукции используются два вида сырья - С1 и С2. Оптовые цены единицы продукции равна: 5 д.е. для П1 и 4 д.е. для П2. Расход сырья на единицу продукции вида П1 и вида П2 дан в таблице.
Таблица - Расход сырья на производство продукции

Установлены ограничения на спрос продукции: ежедневный объем производства продукции П2 не должен превышать ежедневный объем производства продукции П1 не более чем на 1 тонну; максимальный ежедневный объем производства П2 не должен превышать 2 т.
Требуется определить:
Какое количество продукции каждого вида должно производить предприятие, чтобы доход от реализации продукции был максимальным?
  1. Сформулировать математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования графическим способом (для двух переменных).
Решение.
Сформулируем математическую модель задачи линейного программирования.
x 1 - производство продукции П1, ед.
x 2 - производство продукции П2, ед.
x 1 , x 2 ≥ 0

Ограничения по ресурсам
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6

Ограничения по спросу
x 1 +1 ≥ x 2
x 2 ≤ 2

Целевая функция
5x 1 + 4x 2 → max

Тогда получаем следующую ЗЛП:
6x 1 + 4x 2 ≤ 24
x 1 + 2x 2 ≤ 6
x 2 - x 1 ≤ 1
x 2 ≤ 2
x 1 , x 2 ≥ 0
5x 1 + 4x 2 → max