Что такое синтез САУ? Синтез системы автоматического управления методом логарифмических частотных характеристик Синтез линейных сау частотным методом.

Приведем лишь некоторые результаты решения задачи синтеза САУ и назовем их авторов.

К первым результатам решения задачи синтеза САУ следует отнести гиперболу И.А. Вышнеградского (1832-1895), с помощью которой определяется область устойчивости и область неустойчивости САУ, поведение которой описывается ДУ третьего порядка. Гипербола И.А. Вышнеградского направлена на решение задачи стабилизации САУ в форме «вход-выход»; она позволяет выделить области апериодических и колебательных переходных процессов. С результатом И.А. Вышнеградского тесно связана задача модального управления, формализованная Н.Н. Розенброком, и аналитическое решение этой задачи для скалярного случая, предложенное Ю. Аккерманом.

В 1940 году В.С. Кулебакиным сформулирован подход, который можно назвать принципом двухэтапного синтеза регуляторов (принцип двухэтапной коррекции). Содержание его заключается в том, что на первом этапе выбирается эталонный оператор замкнутой системы (для стационарных систем - эталонная передаточная функция (ПФ) Wэ(s)), а на втором - структурная схема и параметры регулятора, а также исполнительный элемент, имеющий мощность, обеспечивающую необходимое быстродействие.

Что касается класса стационарных линейных САУ, то существенные результаты по выбору эталонных передаточных функций систем, удовлетворяющих техническим требованиям при некоторых типовых полезных сигналах, были получены в работах В.А. Боднера, Б.Н. Петрова, В.В. Солодовникова, Г.С. Поспелова, Т.Н. Соколова, С.П. Стрелкова, А.А. Фельдбаума.

При решении задач синтеза САУ, подверженных воздействию случайных процессов, важную роль играет нахождение динамических характеристик оптимальной (эталонной) системы. Большое значение в решении этой проблемы имеют работы Н. Винера, Л. Заде и Дж. Рагаццини, В.В. Солодовникова, В.С. Пугачева, П.С. Матвеева, К.А. Пупкова, В.И. Кухтенко.

В частотном методе, разработанном В.В. Солодовниковым и получившим широкое распространение в инженерной практике, расчет производится с использованием типовых логарифмических амплитудных частотных характеристик, для которых построены подробные номограммы показателей качества процессов управления. С помощью этих номограмм можно построить эталонную амплитудную частотную характеристику (реализация 1-го этапа) синтезируемой системы, определить ее передаточную функцию, найти частотные характеристики и передаточную функцию корректирующего устройства.

Я.З. Цыпкиным рассмотрена задача определения эталонной характеристики замкнутой САУ для случаев, когда показателями качества выбраны интегральное квадратическое отклонение и энергия управления.

Теоретические положения, являющиеся основой решения задачи синтеза, нашли отражение в работах Е.П. Попова и В.А. Бессекерского.

Широкий спектр подходов к решению задачи построения ММ эталонной системы, например с использованием фильтров Баттерворса, рассмотрен А.А. Первозванским.

В.С. Кулебакиным был предложен метод синтеза систем автоматического управления, описываемых линейными дифференциальными уравнениями второго и третьего порядков, удовлетворяющих некоторым техническим требованиям. Для таких систем эталонная передаточная функция выбирается из условия реализации заданной формы переходного процесса. На основе выбранной эталонной передаточной функции можно найти параметры реальной системы. Такой метод синтеза носит название метода стандартных коэффициентов. Характерная особенность этого метода заключается в том, что искомые параметры определяются при решении системы уравнений, полученных путем приравнивания коэффициентов при соответствующих операторах эталонной и реальной передаточных функций системы управления.

Основными недостатками метода стандартных коэффициентов при решении задачи синтеза является во многих случаях неразрешимость системы уравнений, служащей для определения параметров этой системы.

В.А. Боднером показано, что при включении определенным образом обратных параллельных корректирующих устройств система становится разрешимой.

Существенные результаты, направленные на решение задачи определения параметров элементов, входящих в систему управления и обеспечивающих равенство эталонной ММ и ММ проектируемой системы, получены В.В. Солодовниковым, В.Г. Сегалиным, Гуллемином, Т.Н. Соколовым, В.Р. Эвансом, В.А. Боднером, В.С. Кулебакиным, Э.Г. Удерманом и др.

Для решения инженерных задач разрабатывались методы синтеза САУ в следующих постановках:

  • 1. Синтез по заданному расположению полюсов изображений процессов (передаточной функции), а также с использованием D-разбиения плоскости коэффициентов знаменателя изображения (или плоскости параметров системы).
  • 2. Синтез по заданному расположению полюсов и нулей передаточной функции, в том числе метод корневых годографов.
  • 3. Синтез по интегральным оценкам.
  • 4. Синтез методом подобия амплитудно-фазовых и вещественных частотных характеристик.

Методы синтеза по расположению полюсов передаточной функции рассмотрены в работах Г.Н. Никольского, В.К. Попова, Т.Н. Соколова, З.Ш. Блоха, Ю.И. Неймарка и др.

Метод синтеза по заданному (взаимному) расположению полюсов и нулей передаточной функции может обеспечить все показатели качества переходного процесса. Он рассматривается в работах С.П. Стрелкова, Е.П. Попова, Траксела и др.

Кроме того, корневые методы предложены К.Ф. Теодорчиком, Г.А. Бендриковым, Г.В. Римским, Гуллемином.

Метод, разработанный Н.Т. Кузовковым, позволяет использовать связь основных показателей качества процесса управления с величинами доминирующих полюсов и нулей синтезируемой системы, а также установить связь этих полюсов и нулей с варьируемым параметром.

Для определения части параметров используются также интегральные оценки качества переходного процесса, развиваемые в работах Л.И. Мандельштама, Б.В. Булгакова, В.С. Кулебакина, А.А. Фельдбаума, А.А. Красовского и др.

Параметры системы определяются в результате минимизации функционала

где V - в общем случае квадратичная форма.

Интеграл I находится без интегрирования дифференциальных уравнений системы.

Синтез звеньев по амплитудно-фазовым характеристикам скорректированной и нескорректированной систем предложен в работе А.В. Фатеева.

А.В. Башариным разработан графический метод синтеза нелинейных систем управления, который может применяться также к системам с переменными параметрами.

Н.Н. Соколовым изучен широкий спектр задач синтеза линеаризованных систем автоматического управления, при этом основное внимание уделено методам определения эталонных передаточных функций. Подходы к решению задачи синтеза регуляторов, доведение ее до алгоритма вычисления параметров корректирующих цепей с использованием линейных дифференциальных операторов в классе систем с переменными параметрами изучены А.В. Солодовым.

Обратные задачи динамики систем составляют один из ведущих разделов аналитической механики, суть которых состоит в том, что по заданному описанию модели динамической системы необходимо найти систему сил, действие которых порождает ее движение с заданными свойствами. Взаимосвязь задачи формирования заданных движений на выходе управляемой динамической системы с обратными задачами динамики рассматривали Л.М. Бойчук, А.А. Жевнин, К.С. Колесников, А.П. Крищенко, В.И. Толокнов, Б.Н. Петров, П.Д. Крутько, Е.П. Попов, Г.Е. Пухов, К.Д. Жук, А.В. Тимофеев и др.

В результате исследования условий подавления (парирования) влияния возмущений на поведение объекта управления А.С. Востриковым был сформулирован принцип локализации как структурное требование к построению алгоритмов управления динамическими объектами, суть которого состоит в организации в системе управления специальной быстрой подсистемы, где локализуются возмущения, влияние которых на поведение объекта нужно парировать. Метод синтеза САУ, обеспечивающих формирование заданных показателей качества переходных процессов в условиях действия неконтролируемых возмущений на основе использования старшей производной совместно с большим коэффициентом усиления в законе обратной связи, был предложен в работах А.С. Вострикова и получил дальнейшее развитие в методе локализации. Кроме того, в качестве общей методической основы для синтеза нелинейных систем управления был предложен принцип локализации как структурное требование к проектируемой системе управления, состоящее в формировании специальной быстрой подсистемы для подавления влияния сигнальных и параметрических возмущений. Структурное представление систем, удовлетворяющих данному принципу, позволяет выделить контур - «контур локализации», при этом расчет системы управления сводится главным образом к решению двух задач: проектированию эталонного уравнения и стабилизации быстрых процессов в контуре локализации. Принципу локализации удовлетворяют различные типы систем, в частности, системы со скользящими режимами, системы с большими коэффициентами в законе обратной связи, а также ряд адаптивных систем и систем, близких по свойствам к адаптивным.

В настоящее время можно выделить несколько наиболее развитых направлений в теории синтеза систем управления, позволяющих обеспечить формирование требуемых показателей качества переходных процессов по выходным переменным, а также их инвариантность по отношению к переменным характеристикам объекта и неконтролируемым возмущениям.

Важное направление - это теория синтеза систем с переменной структурой и, в частности, систем управления с организацией скользящих режимов движения вдоль многообразия, заданного в пространстве состояний объекта. Основы этого направления рассматривались в работах Е.А. Барбашина, Е.И Геращенко, С.М. Геращенко, С.В. Емельянова, Б.Н. Петрова, В.И. Уткина и получили дальнейшее развитие в работах многих исследователей. Данное направление интенсивно развивается и в настоящее время.

Системы с переменной структурой (СПС), введенные в теорию и практику автоматического управления С.В. Емельяновым, находят большое теоретическое развитие и практическое применение. Основная идея построения СПС заключается в организации нескольких структур регулятора и смене их в процессе управления объектом таким образом, чтобы в наибольшей степени использовать положительные свойства каждой из структур и получить новые движения системы, возможно несвойственные ни одной из отдельно взятых структур регулятора. При этом вся система в целом может получить качественно новые свойства.

Решение задачи компенсации в виде функциональных степенных рядов расмотрено Г. Ван-Трисом. Им же построены алгоритмы определения компенсирующих ядер в прямой цепи и цепи обратной связи.

К.А. Пупковым, А.С. Ющенко и В.И. Капалиным систематически и с единых методологических позиций изложена теория нелинейных систем; разработаны методы синтеза регуляторов в классе нелинейных систем, поведение которых описывается функциональными рядами Вольтерра. Класс систем со случайными параметрами исследован в работах Е.А. Федосова и Г.Г. Себрякова, а применение теории чувствительности - в работах Р.М. Юсупова.

Аппарат многомерных импульсных переходных функций (ИПФ), ПФ, частотных характеристик, а также многомерных интегральных преобразований Лапласа и Фурье позволил О.Н. Киселеву, Б.Л. Шмульяну, Ю.С. Попкову и Н.П. Петрову разработать конструктивные алгоритмы идентификации и оптимизации нелинейных стохастических систем, включая синтез регуляторов. Я.З. Цыпкиным и Ю.С. Попковым рассмотрены методы синтеза регуляторов в классе дискретных систем.

А.С. Шаталовым, В.В. Барковским, В.Н. Захаровым рассмотрен широкий спектр вопросов по проблеме синтеза систем автоматического управления, результаты отражены в их работах. Аппарат обратных задач динамики управляемых систем использован П.Д. Крутько для синтеза оператора обратной связи, а также для решения ряда других задач.

И.А. Орурком рассмотрена задача синтеза в следующей постановке: параметры регулятора определяются таким образом, чтобы:

  • 1) воспроизводился переходной процесс hэ(t) относящийся к координате x(t), при возмущениях определенного вида; при этом с допустимой погрешностью должна воспроизводиться кривая hэ(t) ее экстремальные значения, скорость и время протекания переходного процесса;
  • 2) обеспечивалась заданная степень устойчивости и колебательность системы. Конструктивные алгоритмы синтеза регуляторов для широкого класса систем с использованием аппарата математического программирования предложены И.А. Дидуком, А.С. Орурком, А.С. Коноваловым, Л.А. Осиповым.

В.В. Солодовниковым, В.В. Семеновым и А.Н. Дмитриевым разработаны спектральные методы расчета и проектирования САУ, позволяющие построить конструктивные алгоритмы синтеза регуляторов, В.С. Медведевым и Ю.М. Астаповым рассмотрены алгоритмы нахождения эталонных ПФ при случайных воздействиях, а также методы синтеза корректирующих устройств с использованием логарифмических частотных характеристик, по заданным собственным значениям матрицы системы управления линейными объектами по квадратичному критерию качества.

В.И. Сивцовым и Н.А. Чулиным получены результаты, позволяющие решать задачи автоматизированного синтеза систем управления на основе частотного метода; В.А. Карабановым, Ю.И. Бородиным и А.Б. Ионнисианом рассмотрены некоторые задачи обобщения частотного метода на класс нестационарных систем. В работах Е.Д. Теряева, Ф.А. Михайлова, В.П. Булекова и др. рассмотрены задачи синтеза нестационарных систем.

Чрезвычайно трудной является проблема синтеза регуляторов в многомерных системах. В работах, рассматривающих вопрос о разрешимости задачи синтеза регуляторов при выполнении известных требований, получены соответствующие условия разрешимости (Р. Брокетт, М. Месарович). В.В. Солодовниковым, В.Ф. Бирюковым, Н.Б. Филимоновым получены результаты, направленные на решение задач синтеза регуляторов в классе многомерных систем; ими предложен критерий качества, который адекватно отражает динамическое поведение многомерных систем; сформулированы условия, при которых задача синтеза разрешима. Ценные результаты получены А.Г. Александровым. Многими авторами (Б. Андерсон, Р. Скотт и др.) рассмотрен подход, в основу которого положено «модельное соответствие» синтезируемой системы и желаемой модели. В этом же русле с использованием метода пространства состояний находятся работы Б. Мура, Л. Силвермана, В. Уонема, А. Морзе и др. Используется «геометрический подход», рассмотренный В. Уонемом и Д. Персоном.

Одной из проблем, связанной с синтезом регуляторов в классе многомерных систем, является проблема «развязки» каналов. В русле решения этой проблемы находятся работы Е. Джильберта, С. Уанга, Е. Девисона, В. Воловича, Г. Бенгстона и др.

Вопросы синтеза регуляторов в многомерных системах с использованием разных подходов изложены в работах Е.М. Смагина, X. Розенброка, М. Явдана, А.Г. Александрова, Р.И. Ивановского, А.Г. Таранова.

С. Кант и Т. Калат изучили «проблему минимального проектирования». Вопросы, связанные с диагональной доминантностью, изучались О.С. Соболевым, X. Розенброком, Д. Хаукинсом.

Отдельным вопросам проблемы синтеза многомерных систем посвящены работы М.В. Меерова, Б.Г. Ильясова. В работе Е.А. Федосова рассмотрены перспективные методы проектирования многомерных динамических систем.

Современный период развития теории управления характеризуется постановкой и решением задач, учитывающих неточность наших знаний об объектах управления и действующих на них внешних возмущений. Задачи синтеза регулятора и оценивания состояния с учетом неопределенности в модели объекта и характеристиках входных воздействий являются одними из центральных в современной теории управления. Их важность обусловлена прежде всего тем, что практически в любой инженерной задаче конструирования САУ присутствует неопределенность в модели объекта и в знании класса входных возмущений.

Решению проблем теории автоматического управления, определяющих прогресс науки об управлении в последние десятилетия, посвящены книги И.В. Мирошника, В.О. Никифорова и А.Л. Фрадкова, Б.Р. Андриевского и А.Л. Фрадкова, С.В. Емельянова и С.К. Коровина , В.Н. Афанасьева, В.Б. Колмановского и В.Р. Носова.

Монография В. Д. Юркевича посвящена проблемам синтеза непрерывных и дискретных САУ в условиях неполной информации о внешних неконтролируемых возмущениях при переменных параметрах объекта управления.

Новые подходы отражены в монографии В.А. Подчукаевым, где получено решение задач синтеза в явном виде (в аналитической форме) без использования каких-либо итерационных или поисковых процедур.

Результаты, характеризующие современный этап развития важных направлений теории автоматического управления, получены Е.А. Федосовым, Г.Г. Себряковым, С.В. Емельяновым, С.К. Коровиным, А.Г. Бутковским, С.Д. Земляковым, И.Е. Казаковым, П.Д. Крутько, В.Ю. Бутковским, А.С. Ющенко, И.Б. Ядыкиным и другими.

Необходимо отметить, что вышедшие за последние годы учебники затрагивают, как правило, лишь отдельные стороны современной теории. Некоторую информацию можно извлечь из статей и обзоров на русском языке, однако все это дает лишь мозаичную картину предмета. В книге Б.Т. Поляка и П.С. Щербакова «Робастная устойчивость и управление» дано систематическое изложение современной теории управления.

В последние десятилетия опубликовано ряд монографий и статей, связанных с рассмотрением таких проблем, как применение в теории систем геометрических методов, теории катастроф и теории хаоса, адаптивного и робастного управления, класса интеллектуальных систем и нейрокомпьютеров и др.

Введено понятие бифуркаций, рассматриваются соответствующие определения, для класса операторов определены точки бифуркации, т.е. точки, в которых в уравнении с соответствующим оператором происходит рождение нового, нетривиального решения этого уравнения. Показано также, что хаотическое поведение динамических систем определяется высокой чувствительностью к начальным условиям и невозможностью предсказания поведения на большом интервале времени.

Рассмотрены некоторые положения робастного управления. Проектировщик часто не располагает полной информацией о моделях объектов, т.е. последние содержат неопределенности и, таким образом, имеют место информационные ограничения, например, при проектировании новых технологических процессов, объектов новой техники и др. Явление неопределенности может порождаться неизвестными параметрами объекта, неточно известными нелинейными характеристиками математической модели, неизмеряемыми внешними возмущениями и др. Если методы классической теории управления основаны на предположении, что все характеристики управляемого процесса известны заранее и поэтому возможно использование закона управления, заданного в явной форме, то в условиях неопределенности задача обеспечения требуемого качества управления обеспечивается применением методов робастного управления.

При проектировании систем автоматического управления часто используют свойство адаптации, когда недостаточная степень априорной информации восполняется обработкой по соответствующим алгоритмам текущей информации. Системы, обладающие свойством адаптации (что позволяет сократить сроки их проектирования, наладки и испытаний), называют адаптивными.

С учетом сказанного можно поставить вопрос о решении проблемы оптимизации в условиях неполной априорной информации (адаптивное оптимальное управление).

Изучение теории автоматического управления без учета физических процессов, протекающих в проектируемой системе, может привести к полной беспомощности в постановке и решении практических задач. Поэтому уделяется большое внимание изучению и применению численных методов для исследования и синтеза достаточно сложных автоматических систем с целью дать представление о реально используемых алгоритмах и таких понятиях, как корректность, устойчивость и обусловленность вычислительных схем.

Задача коррекции состоит в повышении точности систем как в установившихся режимах, так и в переходных. Она возникает тогда, когда стремление уменьшить ошибки управления в типовых режимах приводит к необходимости использования таких значений коэффициента усиления разомкнутой САУ, при которых без принятия специальных мер (установки дополнительных звеньев - корректирующих устройств) система оказывается неустойчивой.

Типы корректирующих устройств

Различают три вида основных корректирующих устройств (Рис.6.1): последовательные (W к1 (p)), в виде местной обратной связи (W к2 (p)) и параллельные (W к3 (p)).


Рис.6.1. Структурные схемы корректирующих устройств.

Способ коррекции с помощью последовательных корректирующих устройств прост в расчетах и легко технически реализуется. Поэтому он нашел широкое применение, особенно при коррекции систем, в которых используются электрические цепи с немодулированным сигналом. Последовательные корректирующие устройства рекомендуется применять в системах, в которых нет дрейфа параметров звеньев. В противном случае требуется подстройка параметров коррекции.
Коррекция систем управления с помощью параллельного корректирующего устройства эффективна, когда имеется необходимость высокочастотного шунтирования инерционных звеньев. В этом случае формируются достаточно сложные законы управления с введением производных и интегралов от сигнала ошибки со всеми вытекающими из этого недостатками.
Коррекция местной (локальной) обратной связью используется в системах автоматического управления наиболее часто. Достоинством коррекции в виде местной обратной связи является существенно ослабление влияния нелинейностей характеристик звеньев, входящих в местный контур, а также снижение зависимости параметров настройки регуляторов от дрейфа параметров устройств.
Использование того или иного вида корректирующих устройств, т.е. последовательных звеньев, параллельных звеньев или обратных связей, определяется удобством технической реализации. В этом случае передаточная функция разомкнутой системы должна быть одной и той же при различном включении корректирующих звеньев:

Приведенная формула (6.1) позволяет произвести пересчет одного типа коррекции на другой, чтобы выбрать наиболее простой и легко реализуемый.


Кафедра Дистанционного и Заочного

Синтез САУ

Синтез системы - это направленный расчет, целью которого является: построение рациональной структуры системы; нахождение оптимальных величин параметров отдельных звеньев. При множестве возможных решений первоначально необходимо сформулировать технические требования к системе. А при условии накладываемых на САУ определенных ограничений необходимо выбрать критерий оптимизации - статическая и динамическая точность, быстродействие, надежность, затраты энергии, цена и т.д.
При инженерном синтезе ставятся задачи: достижение требуемой точности; обеспечение определенного характера переходных процессов. В этом случае синтез сводится к определению вида и параметров корректирующих средств, которые необходимо добавить к неизменяемой части системы, чтобы обеспечить показатели качества не хуже заданных.
Наибольшее распространение в инженерной практике получил частотный метод синтеза с помощью логарифмических частотных характеристик.
Процесс синтеза системы управления включает в себя следующие операции:
- построение располагаемой ЛАЧХ L 0 (ω) исходной системы W 0 (ω), состоящей из регулируемого объекта без регулятора и без корректирующего устройства;
- построение низкочастотной части желаемой ЛАЧХ на основе предъявляемых требований точности (астатизма);
- построение среднечастотного участка желаемой ЛАЧХ, обеспечивающего заданное перерегулирование и время регулирования t п САУ;
- согласование низко- со среднечастотным участком желаемой л.а.х. при условии получения наиболее простого корректирующего устройства;
- уточнение высокочастотной части желаемой л.а.х. на основе требований к обеспечению необходимого запаса устойчивости;
- определение вида и параметров последовательного корректирующего устройства L ку (ω) = L ж (ω) - L 0 (ω), т.к. W ж (р) = W ку (р)*W 0 (р);
- техническая реализация корректирующих устройств. В случае необходимости проводится перерасчет на эквивалентные параллельное звено или ОС;
- поверочный расчет и построение переходного процесса.
Построение желаемой л.а.х. производится по частям.
Низкочастотная часть желаемой л.а.х. формируется из условия обеспечения требуемой точности работы системы управления в установившемся режиме, то есть из условия того, что установившаяся ошибка системы Δ() не должна превышать заданное значение Δ()≤Δ з.
Формирование запретной низкочастотной области для желаемой л.а.х. возможно разными способами. Например, при подаче на вход синусоидального сигнала требуется обеспечить следующие допустимые показатели: Δ m - максимальная амплитуда ошибки; v m - максимальную скорость слежения; ε m - максимальное ускорение слежения. Ранее было показано, что амплитуда ошибки при воспроизведении гармонического сигнала Δ m =g m / W(jω k) , т.е. определяется модулем передаточной функции разомкнутой САУ и амплитудой входного воздействия g m . Для того, чтобы ошибка САУ не превышала Δ з, желаемая л.а.х. должна проходить не ниже контрольной точки А к с координатами: ω=ω к, L(ω к)= 20lg|W(jω k)| =20lg g m /Δ m .
Известны соотношения:
g(t) = g m sin(ω k t); g"(t) = g m (ω k t); g""(t) = -g m ω k 2 sin(ω k t);
v m = g m k; ε m = g m ω k 2 ; g m = v m 2 /ε m ; ω k = ε m / v m . (6.2)
Запретная область, соответствующая системе с астатизмом 1-го порядка и обеспечивающая работу с требуемой погрешностью по амплитуде слежения, скорости и ускорению слежения, представлена на рис. 6.2.


Рис.6.2. Запретная область желаемой л.а.х.

Добротность по скорости K ν =v m / Δ m , добротность по ускорению K ε =ε m /Δ m . В том случае, если требуется обеспечить только статическую ошибку регулирования при подаче на вход сигнала g(t)=g 0 =const, то низко-частотный участок желаемой л.а.х. должен иметь наклон 0 дБ/дек и проходить на уровне 20lgK тр, где К тр (требуемый коэффициент усиления разомкнутой САУ) рассчитывается по формуле

Δ з ()=ε ст =g 0 /(1+ К тр), откуда К тр ≥ -1.

Если требуется обеспечить слежение с заданной точность от задающего воздействия g(t)=νt при ν=const, то установившаяся скоростная ошибка ε ск () =ν/К тр. Отсюда находится К тр =ν/ε cк и проводится низкочастотная часть желаемой ЛАХ с наклоном -20 дБ/дек через добротность по скорости К ν = К тр =ν/ε cк или точку с координатами: ω=1 c -1, L(1)=20lgk тр дБ.
Как было показано ранее, среднечастотный участок желаемой л.а.х. обеспечивает основные показатели качества переходного процесса - перерегулирование σ и время регулирования t п. Среднечастотный участок желаемой л.а.х. должен иметь наклон -20 дБ/дек и пересекать ось частот на частоте среза ω ср, которая определяется по номограммам В.В.Солодовникова (рис.6.3). Рекомендуется учитывать порядок астатизма проектируемой системы и выбирать ω ср по соответствующей номограмме.


Рис.6.3. Номограммы качества Солодовникова:
а - для астатических САУ 1-го порядка; б - для статических САУ

Так например, для σ m =35% и t п =0.6 с, пользуясь номограммой (рис.6.3,а) для астатической системы 1-го порядка, получим t п =4.33 π/ω ср или ω ср =21.7 с -1 .
Через ω ср =21.7 с -1 необходимо провести прямую с наклоном -20 дБ/дек, а ширина среднечастотного участка определяется из условия обеспечения требуемого запаса устойчивости по модулю и фазе. Известны разные подходы к установлению запасов устойчивости . Необходимо помнить, что чем выше в системе частота среза, тем больше вероятность того, что при расчетах скажется погрешность не учитываемых малых постоянных времени отдельных устройств САУ. Поэтому рекомендуется с ростом ω ср искусственно увеличивать запасы устойчивости по фазе и модулю. Так для двух типов САУ рекомендуется пользоваться приведенной в таблицей. При высоких требования к качеству переходных процессов, например,

20%<σ m <24%; ,

25%<σ m <45%; ,

рекомендуются следующие средние показатели устойчивости: φ зап =30°, H м =12 дБ, -H м =10 дБ.
На рис.6.4 приведен вид среднечастотного участка желаемой л.а.х., ширина которого обеспечивает требуемые запасы устойчивости.


Рис.6.4. Среднечастотная часть желаемой л.а.х.

После этого участки средних и низких частот сопрягаются отрезками прямых с наклонами -40 или -60 дБ/дек из условия получения наиболее простого корректирующего устройства.
Наклон высокочастотного участка желаемой л.а.х. рекомендуется оставить равным наклону высокочастотного участка располагаемой л.а.х. В этом случае корректирующее устройство будет более помехозащищенным. Согласование средне- и высокочастотного участков желаемой л.а.х. также проводится с учетом получения простого корректирующего устройства и, кроме того, обеспечения нужных запасов устойчивости.
Передаточная функция желаемой разомкнутой системы W ж (p) находится по виду желаемой л.а.х. L ж (ω). Затем строятся фазовая частотная характеристика желаемой разомкнутой САУ и переходная характеристика желаемой замкнутой системы и оцениваются реально полученные показатели качества проектируемой системы. Если они удовлетворяют требуемым значениям, то построение желаемой л.а.х. считается законченным, в противном случае построенные желаемые ЛЧХ необходимо скорректировать. Для снижения перерегулирования расширяют среднечастотный участок желаемой л.а.х. (увеличивают значение ±H м). Для повышения быстродействия системы необходимо увеличить частоту среза.
Для определения параметров последовательного корректирующего устройства необходимо:
а) вычесть из желаемой л.а.х. L ж располагаемую л.а.х. L 0 , т.е. найти л.а.х. минимально-фазового корректирующего устройства L ку;
б) по виду л.а.х. последовательного корректирующего устройства L ку написать его передаточную функцию и пользуясь справочной литературой подобрать конкретную схему и реализацию.
На рис.6.5 приведен пример определения передаточной функции последовательного корректирующего устройства.


Рис.6.5. ЛАХ располагаемой L 0 , желаемой L ж разомкнутой системы
и последовательного корректирующего устройства L ку

После графического вычитания получаем следующую передаточную функцию корректирующего устройства

Параллельное корректирующее устройство или корректирующее устройство в виде местной обратной связи может быть получено пересчетом по формуле (6.1).
По полученной передаточной функции W ку (р) необходимо спроектировать реальное корректирующее устройство, которое может быть реализовано аппаратно или программно. В случае аппаратной реализации требуется подобрать схему и параметры корректирующего звена. В литературе имеются таблицы типовых корректирующих устройств как пассивных, так и активных, как на постоянном, так и переменном токе. В том случае, если используется для управления САУ ЭВМ, то предпочтительнее программная реализация.

© В.Н. Бакаев, Вологда 2004. Разработка электронной версии: М.А.Гладышев, И.А. Чуранов.
Вологодский Государственный Технический Университет.
Кафедра Дистанционного и Заочного обуч

Большое распространение получили в настоящее время системы, построенные по принципу подчиненного регулирования, который поясняется рис.6.6. В системе предусматривается n контуров регулирования со своими регуляторами W pi (p), причем выходной сигнал регулятора внешнего контура является предписанным значением для внутреннего контура, т.е. работа каждого внутреннего контура подчинена внешнему контуру.


Рис.6.6. Структурная схема САУ подчиненного регулирования

Два главных достоинства определяют работу систем подчиненного регулирования.
1. Простота расчета и настройки. Настройка в процессе наладки ведется начиная с внутреннего контура. Каждый контур включает в себя регулятор, за счет параметров и структуры которого получаются стандартные характеристики. Причем в каждом контуре компенсируется наибольшая постоянная времени.
2. Удобство ограничения предельных значений промежуточных координат системы. Это достигается за счет ограничения определенным значением выходного сигнала регулятора внешнего контура.
Вместе с тем, из принципа построения системы подчиненного регулирования очевидно, что быстродействие каждого внешнего контура будет ниже быстродействия соответствующего внутреннего контура. Действительно, если в первом контуре частота среза л.а.х. составит 1/2T μ , где 2T μ - сумма малых нескомпенсированных постоянных времени, то даже при отсутствии во внешнем контуре других звеньев с малыми постоянными времени, частота среза его л.а.х. будет 1/4T μ и т.д. Поэтому системы подчиненного регулирования редко строятся с числом контуров больше трех.
Возьмем типовой контур рис.6.7 и настроим его на модульный (МО) и симметричный (СО) оптимумы.


Рис.6.7. Схема типового контура

На схеме рис.6.7 обозначены: Т μ - сумма малых постоянных времени;
Т о - большая постоянная времени, подлежащая компенсации; К ε и К O - соответственно коэффициенты усиления блоков с малыми постоянными времени и объекта управления. Следует заметить, что от типа звена, постоянную времени которого следует компенсировать, зависит и тип регулятора W p (p). Он может быть П, И, ПИ и ПИД. В качестве примера возьмем ПИ - регулятор:

.

Для модульного оптимума выберем параметры:

Тогда передаточная функция разомкнутого контура будет иметь вид:

Логарифмические частотные характеристики, соответствующие передаточной функции W(p), изображены на рис.6.8,а.


Рис.6.8. ЛЧХ и h(t) при модульной настройке

При ступенчатом управляющем воздействии выходная величина в первый раз достигает установившегося значения через время 4,7Тμ, перерегулирование составляет 4,3%, а запас по фазе 63° (рис.6.8, б). Передаточная функция замкнутой САУ имеет вид

Если представить характеристическое уравнение замкнутой САУ в виде Т 2 р 2 +2ξТр+1=0, то коэффициент демпфирования при модульном оптимуме имеет величину . В тоже время видно, что время регулирования не зависит от большой постоянной времени Т о. Система имеет астатизм первого порядка. При настройке системы на симметричный оптимум выбирают параметры ПИ - регулятора следующим образом:

Тогда передаточная функция разомкнутого контура имеет вид

Соответствующие ей логарифмические частотные характеристики и график переходного процесса представлены на рис.6.9.


Рис.6.9. ЛЧХ и h(t) при настройке на симметричный оптимум

Время первого достижения выходной величиной установившегося значения составляет 3,1Т μ , максимальное перерегулирование достигает 43%, запас по фазе -37° . САУ приобретает астатизм второго порядка. Следует отметить, что если звено с наибольшей постоянной времени представляет собой апериодическое 1-го порядка, то с ПИ - регулятором при Т о =4Т μ переходные процессы соответствуют процессам при настройке на МО. Если Т о <4Т μ , то настройка регулятора на τ=Т μ теряет смысл. Необходимо выбрать другой тип регулятора.
В ТАУ известны и другие типы оптимальных настроек регуляторов, например:
- биномиальная, когда характеристическое уравнение САУ представляется в виде (p+ω 0) n - где ω 0 - модуль n - кратного корня;
- баттерворта, когда характеристические уравнения САУ различных порядков имеют вид


Эти настройки целесообразно применять, когда в системе используется модальное управление по каждой координате.

© В.Н. Бакаев, Вологда 2004. Разработка электронной версии: М.А.Гладышев, И.А. Чуранов.
Вологодский Государственный Технический Университет.

Построение переходного процесса

Существуют три группы методов построения переходных процессов: аналитические; графические, использующие частотные и переходные характеристики; построение переходных процессов с помощью ЭВМ. В наиболее сложных случаях используются ЭВМ, которые позволяют кроме моделирования САУ, подключать к машине отдельные части реальной системы, т.е. близки к экспериментальному методу. Первые две группы используются в основном в случае простых систем, а также на этапе предварительного исследования при существенном упрощении системы.
Аналитические методы основаны на решении дифференциальных уравнений системы или определении обратного преобразования Лапласа от передаточной функции системы.
Расчет переходных процессов по частотным характеристикам используют тогда, когда анализ САУ с самого начала ведется частотными методами. В инженерной практике для оценки показателей качества и построения переходных процессов в системах автоматического управления получил распространение метод трапецеидальных частотных характеристик, разработанный В.В.Солодовниковым .
Установлено, что если на систему действует единичное задающее воздействие, т.е. g(t)=1(t), а начальные условия являются нулевыми, то реакцию системы, которая представляет собой переходную характеристику, в этом случае можно определить как

(6.3)
(6.4)

где P(ω) - вещественная частотная характеристика замкнутой системы; Q(ω) - мнимая частотная характеристика замкнутой системы, т.е. Ф g (jω)=P(ω)+jQ(ω).
Метод построения заключается в том, что построенную вещественную характеристику P(ω) разбивают на ряд трапеций, заменяя приближенно кривые линии прямолинейными отрезками так, чтобы при сложении всех ординат трапеций получилась исходная характеристика рис.6.10.


Рис.6.10. Вещественная характеристика замкнутой системы

где: ω рi и ω срi - соответственно частота равномерного пропускания и частота среза каждой трапеции.
Затем для каждой трапеции определяется коэффициент наклона ω рi /ω срi и по таблице h-функций строятся переходные процессы от каждой трапеции hi. В таблице h-функций дано безразмерное время τ. Для получения реального времени t i необходимо τ разделить на частоту среза данной трапеции. Переходный процесс для каждой трапеции необходимо увеличить в P i (0) раз, т.к. в таблице h-функций даны переходные процессы от единичных трапеций. Переходный процесс САУ получается алгебраическим суммированием построенных h i процессов от всех трапеций.

© В.Н. Бакаев, Вологда 2004. Разработка электронной версии: М.А.Гладышев, И.А. Чуранов.
Вологодский Государственный Технический Университет.
Кафедра Дистанционного и Заочного обучения

Вопросы по теме №6

1. Что понимается под улучшением качества процесса управления и как это достигается?
2. Назовите линейный стандартный закон управления.
3. Расскажите о типовых законах управления и типовых регуляторах.
4. Каково назначение корректирующих устройств? Укажите способы их включения и особенности.
5. Поясните постановку задачи синтеза систем.
6. Перечислите этапы синтеза систем.
7. Объясните построение желаемой ЛАХ проектируемой системы.
8. Каким образом формируется передаточная функция разомкнутой проектируемой системы?
9. Как определяются передаточные функции корректирующих устройств?
10. Каковы достоинства и недостатки параллельных и последовательны корректирующих устройств?
11. Каким образом пользуются номограммами "замыкания"?
12. Перечислите методы построения переходных процессов.
13. Как по вещественной характеристике определить установившееся значение переходного процесса?
14.Как изменить желаемую л.а.х. для повышения запасов устойчивости?

© В.Н. Бакаев, Вологда 2004. Разработка электронной версии: М.А.Гладышев, И.А. Чуранов.
Вологодский Государственный Технический Университет.
Кафедра Дистанционного и Заочного обу

Тема №7: Нелинейные САУ

Введение

Большинство характеристик реальных устройств в общем случае являются нелинейными и некоторые из них не могут быть линеаризованы, т.к. имеют разрывы второго рода и к ним кусочно-линейная аппроксимация неприменима. Работу реальных звеньев (устройств) могут сопровождать такие явления, как насыщение, гистерезис, люфт, наличие зоны нечувствительности и т.д. Нелинейности могут быть естественными и искусственными (преднамеренно вводимые). Естественные нелинейности присущи системам в силу нелинейного проявления физических процессов и свойств у отдельных устройств. Например, механическая характеристика асинхронного двигателя. Искусственные нелинейности вводятся разработчиками в системы, чтобы обеспечить требуемое качество работы: для оптимальных по быстродействию систем применяют релейное управление, наличие нелинейных законов в поисковых и безпоисковых экстремальных системах, системы с переменной структурой и т.д.
Нелинейной системой называется такая система, в состав которой входит хотя бы один элемент, линеаризация которого невозможна без потери существенных свойств системы управления в целом. Существенными признаками нелинейности являются: если некоторые координаты или их производные по времени входят в уравнение в виде произведений или степени, отличной от первой; если коэффициенты уравнения являются функциями некоторых координат или их производных. При составлении дифференциальных уравнений нелинейных систем сначала составляют дифференциальные уравнения для каждого устройства системы. При этом характеристики устройств, допускающих линеаризацию, линеаризуются. Элементы, не допускающие линеаризации, называются существенно нелинейными . В результате получают систему дифференциальных уравнений, в которой одно или несколько уравнений нелинейные. Устройства, допускающие линеаризацию, образуют линейную часть системы, а устройства, которые не могут быть линеаризованы, составляют нелинейную часть. В простейшем случае структурная схема САУ нелинейной системы представляет собой последовательное соединение безынерционного нелинейного элемента и линейной части, охваченное обратной связью (рис.7.1). Так как для нелинейных систем не применим принцип суперпозиции, то, проводя структурные преобразования нелинейных систем, единственным ограничением по сравнению со структурными преобразованиями линейных систем, является то, что нельзя переносить нелинейные элементы через линейные и наоборот.


Рис. 7.1. Функциональная схема нелинейной системы:
НЭ - нелинейный элемент; ЛЧ - линейная часть; Z(t) и X(t)
соответственно выход и вход нелинейного элемента.

Классификация нелинейных звеньев возможна по различным признакам. Наибольшее распространение получила классификация по статическим и динамическим характеристикам. Первые представляются в виде нелинейных статических характеристик, а вторые - в виде нелинейных дифференциальных уравнений. Примеры таких характеристик приведены в . На рис.7.2. приведены примеры однозначных (без памяти) и многозначных (с памятью) нелинейных характеристик. В этом случае учитывается направление (знак) скорости сигнала на входе.


Рис.7.2. Статические характеристики нелинейных элементов

Поведение нелинейных систем при наличии существенных нелинейностей имеет ряд особенностей, отличных от поведения линейных САУ :
1. выходная величина нелинейной системы непропорциональна входному воздействию, т.е. параметры нелинейных звеньев зависят от величины входного воздействия;
2. переходные процессы в нелинейных системах зависят от начальных условий (отклонений). В связи с этим, для нелинейных систем введены понятия устойчивости "в малом", "в большом", "в целом". Система устойчива "в малом", если она устойчива при малых (бесконечно малых) начальных отклонениях. Система устойчива "в большом", если она устойчива при больших (конечных по величине) начальных отклонениях. Система устойчива "в целом", если она устойчива при любых больших (неограниченных по величине) начальных отклонениях. На рис.7.3 приведены фазовые траектории систем: устойчивой "в целом" (а) и системы устойчивой "в большом" и неустойчивой "в малом" (б);


Рис.7.3. Фазовые траектории нелинейных систем

3. для нелинейных систем характерен режим незатухающих периодических колебаний с постоянной амплитудой и частотой (автоколебаний), возникающий в системах при отсутствии периодических внешних воздействий;
4. при затухающих колебаниях переходного процесса в нелинейных системах возможно изменение периода колебаний.
Эти особенности обусловили отсутствие общих подходов при анализе и синтезе нелинейных систем. Разработанные методы позволяют решать лишь локальные нелинейные задачи. Все инженерные методы исследования нелинейных систем разделяются на две основные группы: точные и приближенные. К точным методам относится метод А.М.Ляпунова, метод фазовой плоскости, метод точечных преобразований, частотный метод В.М.Попова. Приближенные методы основаны на линеаризации нелинейных уравнений системы с применением гармонической или статистической линеаризации. Границы применимости того или иного метода буду рассмотрены ниже. Следует заметить, что в обозримом будущем имеется необходимость дальнейшего развития теории и практики нелинейных систем.
Мощным и эффективным методом исследования нелинейных систем является моделирование, инструментарием которого служит компьютер. В настоящее время многие сложные для аналитического решения теоретические и практические вопросы сравнительно легко могут быть решены с помощью вычислительной техники.
Основными параметрами, характеризующими работу нелинейных САУ, являются:
1. Наличие или отсутствие автоколебаний. Если автоколебания имеются, то необходимо определить их амплитуду и частоту.
2. Время выхода регулируемого параметра в режим стабилизации (быстродействие).
3. Наличие или отсутствие скользящего режима.
4. Определение особых точек и особых траекторий движения.
Это далеко не полный перечень исследуемых показателей, сопровождающих работу нелинейных систем. Системы экстремальные, самонастраивающиеся, с переменными параметрами требуют оценки и дополнительных свойств.

© В.Н. Бакаев, Вологда 2004. Разработка электронной версии: М.А.Гладышев, И.А. Чуранов.
Вологодский Государственный Технический Университет.
Кафедра Дистанционного и Заочного обучения.

Идея метода гармонической линеаризации принадлежит Н.М. Крылову и Н.Н. Боголюбову и базируется на замене нелинейного элемента системы линейным звеном, параметры которого определяются при гармоническом входном воздействии из условия равенства амплитуд первых гармоник на выходе нелинейного элемента и эквивалентного ему линейного звена. Метод является приближенным и может быть использован только в случае, когда линейная часть системы является фильтром низких частот, т.е. отфильтровывает все возникающие на выходе нелинейного элемента гармонические составляющие, кроме первой гармоники. При этом линейная часть может быть описана дифференциальным уравнением любого порядка, а нелинейный элемент может быть как однозначным, так и многозначным.
В основе метода гармонической линеаризации (гармонического баланса) лежит предположение, что на вход нелинейного элемента подается гармоническое воздействие с частотой ω и амплитудой А, т.е. x = А sinωt. В предположении, что линейная часть является фильтром низких частот, спектр выходного сигнала линейной части ограничивается только первой гармоникой, определяемой рядом Фурье (в этом и заключается приближенность метода, т.к. высшие гармоники выбрасываются из рассмотрения). Тогда связь между первой гармоникой выходного сигнала и входным гармоническим воздействием нелинейного элемента представляется в виде передаточной функции :

(7.1)

Уравнение (7.1) называется уравнением гармонической линеаризации, а коэффициенты q и q" - коэффициентами гармонической линеаризации, зависящие от амплитуды А и частоты ω входного воздействия. Для различных видов нелинейных характеристик коэффициенты гармонической линеаризации сведены в таблицу . Следует заметить. что для статических однозначных коэффициент q"(А)=0. Подвергнув уравнение (7.1) преобразованию по Лапласу при нулевых начальных условиях с последующей заменой оператора p на jω (p = jω), получим эквивалентный комплексный коэффициент передачи нелинейного элемента

W нэ (jω,A) = q + jq". (7.2)

После того, как проведена гармоническая линеаризация, для анализа и синтеза нелинейных САУ возможно применение всех методов, применяемых для исследования линейных систем, в том числе и использование различных критериев устойчивости. При исследовании нелинейных систем на основе метода гармонической линеаризации в первую очередь решают вопрос о существовании и устойчивости периодических (автоколебательных) режимов. Если периодический режим устойчив, то в системе существуют автоколебания с частотой ω 0 и амплитудой А 0 . Рассмотрим нелинейную систему, включающую в себя линейную часть с передаточной функцией

(7.3)

и нелинейный элемент с эквивалентным комплексным коэффициентом передачи (7.2). Расчетная структурная схема нелинейной системы приобретает вид рис.7.5.


Рис.7.5. Структурная схема нелинейной САУ

Для оценки возможности возникновения автоколебаний в нелинейной системе методом гармонической линеаризации необходимо найти условия границы устойчивости, как это делалось при анализе устойчивости линейных систем. Если линейная часть описывается передаточной функцией (7.3), а нелинейный элемент (7.2), то характеристическое уравнение замкнутой системы будет иметь вид

d(p) + k(p)(q(ω,A) + q"(ω,A)) = 0 (7.4)

На основании критерия устойчивости Михайлова границей устойчивости будет прохождение годографа Михайлова через начало координат. Из выражений (7.4) можно найти зависимость амплитуды и частоты автоколебаний от параметров системы, например, от коэффициента передачи k линейной части системы. Для этого необходимо в уравнениях (7.4) коэффициент передачи k считать переменной величиной, т.е. это уравнение записать в виде:

d(jω) + K(jω)(q(ω,A) + q"(ω,A)) = Re(ω 0 ,A 0 ,K) +Jm(ω 0 ,A 0 ,k) = 0 (7.5)

где ω o и A o - возможные частота и амплитуда автоколебаний.
Тогда, приравнивая к нулю действительную и мнимую части уравнения (7.5)

(7.6)

Meтод ЛЧХ является одним из наиболее распространенных методов синтеза автоматического управления, так как построение ЛЧХ, как правило, может выполняться практически без вычислительной работы. Особенно удобно использовать асимптотические «идеальные» ЛАЧХ.

Процесс синтеза обычно включает в себя следующие операции;

1. Построение ЛАЧХ неизменяемой части системы.

Неизменяемая часть системы регулирования содержит объект регулирования и исполнительный элемент, а также основной элемент обратной связи и элемент сравнения ЛАЧХ неизменяемой части строят по передаточной функции разомкнутой неизменяемой части системы.

2. Построение желаемой части ЛАЧХ.

График желаемой ЛАЧХ делается на основе тех требований, которые предъяв­ляются к проектируемой системе управления. Желаемую ЛАЧХ Lж условно можно разделить на три части: низкочастотную, среднечастотную и высокочастотную.

2.1 Низкочастотную часть определяет статическую точность системы, точность в установившихся режимах. В статической системе низкочастотная асимптота параллельна оси абсцисс. В астатической системе наклон этой асим­птоты составляет –20мдБ/дек, где - порядок астатизма ( =1,2). Ордината низко­частотной части Lж определяется значением передаточного коэффициента К ра­зомкнутой системы. Чем шире низкочастотная часть Lж, тем больше высоких частот воспроизводится системой без замкнутого ослабления.

2.2 Среднечастотная часть является наиболее важной, так как она определяет устойчивость, запас устойчивости и, следовательно, качество переходных процес­сов, оцениваемое обычно показателями качества переходной характеристики. Основные параметры среднечастотной асимптоты -это её наклон и частота среза ср (частота при которой Lж пересекает ось абсцисс). Чем больше наклон сред­нечастотной асимптоты, тем труднее обеспечить хорошие динамические свойст­ва системы. Поэтому наиболее целесообразен наклон -20дБ/ дек и крайне редко он превышает -40дБ /дек Частота среза ср определяет быстродействие системы, и значение величины перерегулирования. Чем больше ср, тем выше быстро­действие, тем меньше время регулирования Тпп переходной характеристики, тем больше перерегулирование .

2.3 Высокочастотная часть ЛАЧХ незначительно влияет на динамические свойства системы. Лучше иметь возможно больше наклон ее асимптоты, что уменьшает требуемую мощность исполнительного opгана и влияние высоко­частотных помех. Иногда при расчете высокочастотную ЛАЧХ не принимают во внимание.

где - коэффициент, зависящий от величины перерегулирования ,

Должен быть выбран по графику приведенном на рисунке 1.

Рисунок 18- График для определения по допустимому перерегулированию коэффициента .

Ордината низкочастотной асимптоты определяется соответственно коэффици­

ентом усиления и наклоном высокочастотной асимптоты переходной, разомкну­той CAP.

3. Определение параметров корректирующего устройства.

3.1 График ЛАЧХ корректирующего устройства получается вычитанием из зна­чения графика желаемой ЛАЧХ значений графика неизменяемой, после чего по ЛАЧХ корректирующего устройства определяется его передаточная функция .

3.2 По передаточной функции регулятора подбирается электрическая схема для реализации корректирующего устройства и рассчитываются значения её па­раметров. Схема регулятора может быть на пассивных или на актив­ных элементах.

3.3 Передаточная функция корректирующего устройства, полученная в пункте 3.1,включается в обобщенную структурную схему САУ Используя обобщенную структурную схему скорректированной САУ, с помощью ЭВМ, строятся графики переходных процессов, которые должны быть не хуже заданных.

Пример:

6.Синтез системы автоматического управления методом логарифмических частотных характеристик.

Под синтезом понимают построение, создание, проектирование, настройку оптимальной системы по отношению к ее параметрам. Поэтому синтезом занимаются проектировщики, создатели САР. При эксплуатации уже созданных систем, например, серийно выпускаемых, речь может идти только о подстройке параметров при выходе системы из требуемых режимов по тем или иным причинам.

Методы синтеза

1. При создании САУ необходимого назначения прежде всего заботятся о том, чтобы она выполняла свои функции управления и регулирования с заданной точностью, имела оптимальный по технико-экономическим показателям состав элементной базы (усилители, регуляторы, преобразователи, двигатели, датчики и т.д.), чтобы она обеспечивала необходимую мощность, скорость, моменты движения, была простой, надежной, удобной в эксплуатации и экономичной.

На этом этапе вопросы динамики удается учитывать лишь в грубом приближении, например - не выбирать элементы заведомо неустойчивые, с большими постоянными времени, резонансные и т.д.

2. Вопросы обеспечения статических характеристик, точности отработки задаваемых команд и высоких технико-экономических показателей являются для технологических процессов и экономики центральными и для решения наиболее трудными. Поэтому, несмотря на то, что без хорошего качества динамических режимов САУ не будет принята в эксплуатацию, синтез ее структуры для обеспечения требуемых режимов проводится на втором этапе, когда функциональная схема, состав элементов и параметры системы предварительно установлены. Совместить сколько-нибудь эффективно оба этапа не удается.

В целом спроектированная на первом этапе САУ обычно представляет собой многоконтурную структуру со сложной передаточной функцией, анализ которой дает неудовлетворительные результаты по качеству переходных процессов. Поэтому ее необходимо упростить до желаемых характеристик и скорректировать.

Синтез САУ требуемого качества

Синтез системы должен проводиться путем изменения структуры для удовлетворения необходимым требованиям. Характеристики системы, которые соответствуют требованиям, называют желаемыми характеристиками в отличие от располагаемых, которые имеет исходная неоптимальная система.

Основой построения желаемых характеристик служат требуемые показатели системы: устойчивость, быстродействие, точность и др. Так как наибольшее распространение получили логарифмические частотные характеристики, то рассмотрим синтез САУ по желаемым ЛАЧХ и ЛФЧХ.

1. Построение желаемых характеристик начинают со среднечастотного участка, характеризующего устойчивость, быстродействие и форму переходного процесса системы. Положение его определяется частотой среза с.ж. (рис.1.8.1).

Частота среза определяется по требуемому времени переходного процесса tпп и допустимому перерегулированию:


Рис.2.

  • 2. Через точку c проводят среднечастотную асимптоту желаемых характеристики с наклоном 20 дБ/дек (рис.1.8.1.).
  • 3. Находим низкочастотную составляющую с 2.

Обычно задаются добротностью системы по скорости Dск и по ускорению Dуск.

Находим частоту

Пересечение этой асимптоты со среднечастотной ограничивает ее слева на сопрягающей частоте.

4. Сопрягающую частоту 3 выбирают так, чтобы 3/ 2=0,75 или lg 3-lg 2=0,7дек, обеспечивающий условия устойчивости.

В этом условии учтены соотношения:

которые также можно использовать для ограничения среднечастотной асимптоты.

Если нет ограничений в явном виде, то выбирают 2 и 3 из условий (рис.1.8.1,б)

L2=(616)дбLc(c) =-(616)дб(1.8.4)

Увеличение участка 3 - 2 нецелесообразно.

5. Находим низкочастотную составляющую с 1. По добротности скорости определяем коэффициент усиления

Dск=Kск.(1.8.5)

Откладываем на оси частот Kск, проводим асимптоту с наклоном 20 дБ/дек через эту точку и заканчиваем на пересечении со второй асимптотой. Точка пересечения и является низкочастотной составляющей c 1.

6. Проверяем на запас устойчивости по фазе

фаза на частоте среза c не должна превышать - с гарантией 45.

7. Проверяем выполнение условий непопадания желательной ЛАЧХ в запретную зону (рис.1.8.1,а).

и LK=20lgKск,(1.8.7)

где Kск= - коэффициент усиления разомкнутой системы или добротность по скорости.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Министерство образования и науки Российской Федерации

ФГБОУ ВО Ивановский государственный химико-технологический университет Технической кибернетики и автоматики.

КУРСОВАЯ РАБОТА

По дисциплине: Теория автоматического управления

Тема: Синтез систем автоматического управления

Иваново 2016

Переходная функция объекта управления

Табл.1. Переходная функция объекта управления.

Аннотация

В данной курсовой работе объектом исследования является стационарный инерционный объект с запаздыванием, представленный переходной функцией, а также системой управления им.

Методами исследования являются элементы теории автоматического управления, математического и имитационного моделирования.

При помощи методов идентификации, аппроксимации и графического метода были получены модели объектов в виде передаточных функций, была установлена модель, которая наиболее точно описывает заданный объект.

После выбора модели объекта были произведены расчеты параметров настройки регулятора методами Циглера-Никольса и расширенных частотных характеристик.

Для определения метода, при котором были найдены лучшие настройки регулятора замкнутой системы автоматического управления, было проведено ее моделирование в среде Matlab при помощи пакета Simulink. По результатам моделирования был выбран метод, при помощи которого были рассчитаны настройки регулятора, наилучшим образом удовлетворяющие заданному критерию качества.

Так же был произведен синтез системы управления многомерным объектом: каскадная система управления, комбинированная система управления, автономная система управления. Были рассчитаны параметры настройки ПИ-регуляторов, компенсаторов, получены отклики на типовые воздействия.автоматический управление регулятор частотный

Перечень ключевых слов:

Объект управления, регулятор, параметры настройки, система регулирования.

Сведения об объеме:

Объем работы- страниц

Количество таблиц-

Количество иллюстраций- 32

Количество использованных источников- 3

Введение

В данной курсовой работе исходными данными является переходная функция объекта управления по одному из динамических каналов. Необходимо произвести параметрическую идентификацию объекта, заданного переходной функцией графическим методом, методами аппроксимации и идентификации.

Исходя из полученных данных, устанавливаем, какая модель точнее описывает заданный объект. Решение данной задачи является достаточно актуальной проблемой, поскольку зачастую мы имеем не саму математическую модель, а лишь ее кривую разгона.

После выбора модели объекта производим расчет параметров ПИ-регулятора. Расчет производим при помощи методов Циглера-Никольса и расширенных частотных характеристик. Для того, чтобы определить по какому методу были найдены наилучшие настройки регулятора, используем в качестве критерия качества степень затухания процесса.

В данной работе проведен синтез системы управления многомерным объектом трех типов: автономную, каскадную, комбинированную. Рассчитаны параметры настройки регуляторов, исследованы отклики системы по различным каналам на типовые воздействия.

Данная курсовая работа является учебной. Навыки, полученные в ходе ее выполнения, могут быть использованы в ходе выполнения курсовой работы по моделированию систем управления и выпускной квалификационной работы.

1.Идентификация объекта управления

1.1 Идентификация с использованием приложения System Identification ToolBox

Идентификация - это определение взаимосвязи между выходными и входными сигналами на качественном уровне.

Для идентификации используем пакет System Identification ToolBox. Построим модель вsimulink.

Рис.1.1.1. Схема для проведения идентификации.

C помощью команды ident, заходим в System Identification ToolBox.

Рис.1.1.2. System Identification ToolBox.

Импортируем данные в System Identification ToolBox:

Рис.1.1.3. Импорт данных

Получаем коэффициенты передаточной функции:

Рис.1.1.4. Результаты идентификации

К=44,9994 Т=9,0905

1.2 Аппроксимация с использованием Curve Fitting Toolbox

Аппроксимация или приближение- это метод, позволяющий исследовать числовые характеристики и свойства объекта, сводя задачу к изучению более простых или более удобных объектов.

Для аппроксимации используем пакет Curve Fitting Toolbox.Строим модель в simulink без звена запаздывания.

Рис.1.2.1. Схема для проведения аппроксимации.

С помощью команды cftool заходим в Curve Fitting Toolbox. По оси х выбираем время, а по оси у выходные значения. Описываем объект функцией a-b*exp(-c*x). Получаем коэффициенты a,b и с.

Рис.1.2.2. Результаты аппроксимации.

К=(a+b)/2=45 Т=

1.3 Аппроксимация элементарными звеньями(графический метод)

Рис.1.3.1. Графический метод

Определяем время запаздывания. Чтобы определить К, проводим прямую от устоявшегося значения до оси ординат. Чтобы определить постоянную времени, проводим касательную к кривой до пересечения с прямой установившегося значения, из точки пересечения проводим перпендикуляр к оси абсцисс, из полученного значения вычитаем время запаздывания.

К=45 Т=47

1.4 Сравнение переходных функций

Для сравнения трех методов вычислим ошибку каждого метода, найдем сумму квадратов ошибок, найдем дисперсию. Для этого построим модель в simulink и подставим полученные параметры.

Рис.1.4.1. Сравнение переходных функций.

Тремя методами получены параметры передаточной функции объекта исследования. Критерием оценки получаемой математической модели объекта служит дисперсия ошибки и по этому показателю наилучшие результаты отмечены в методе аппроксимации с помощью Curve Fitting Tool. Далее за математическую модель объекта принимаем: W=45/(1/0,022222+1)*e^(-22,5p).

2.Выбор закона регулирования

Производим выбор регулятора из соотношения

Так как, выбираем ПИ-регулятор.

3. Синтез САУ одномерным объектом

3.1 Расчет САУ методом Циглера-Никольса

Метод Циглера-Никольса основан на критерии Найквиста. Суть метода заключается в нахождении такого пропорционального регулятора, который выводит замкнутую систему на границу устойчивости, и нахождении рабочей частоты.

Для данной передаточной функции найдем фазо-частотную характеристику и постоим ее график.

Определим рабочую частоту как абсциссу точки пересечения ФЧХ с.Рабочая частота равна 0,082.

Рис. 3.1.1 Нахождение рабочей частоты

Рассчитаем параметры настройки ПИ-регулятора.Рассчитываем коэффициент Kкр:

Из полученного значения рассчитываем коэффициент пропорциональности:

Рассчитываем время изодрома:

Найдем отношение:

Рис. 3.1.2 Реакция системы по каналу управления на ступенчатую функцию

Рис. 3.1.3 Реакция системы по каналу возмущения на ступенчатую функцию

Рис. 3.1.4 Реакция системы по каналу возмущения на импульсную функцию

Рис. 3.1.5 Реакция системы по каналу управления на импульсную функцию

Рассчитаем степени затухания по формуле:

Находим среднее значение степени затухания 0,93 и сравниваем с истинным значением 0,85.

3.2 Расчет САУ методом расширенных частотных характеристик

Этот метод полностью основан на использовании модифицированного критерия Найквиста (критерий Е. Дудникова), который гласит: если разомкнутая система устойчива и ее расширенная амплитудно-фазовая характеристика проходит через точку с координатами [-1, j0], то замкнутая система будет не только устойчива, но и будет обладать некоторым запасом устойчивости, определяемым степенью колебательности.

- (3.2.1) расширенная АЧХ разомкнутой системы;

-(3.2.2) расширенная ФЧХ разомкнутой системы.

Для ПИ-регулятора расширенные частотные характеристики имеют вид:

Расчет в среде Mathcad:

для Ш = 0.85 m=0.302

Произведем расчет настройки ПИ-регулятора в среде Mathcad:

Перейдем в область расширенных частотных характеристик объекта. Для этого сделаем замену:

Перейдем в область расширенных частотных характеристик регулятора:

Расширенная амплитудно-частотная характеристика регулятора:

Расширенная фазо-частотная характеристика регулятора:

После некоторых преобразований уравнения (3.2.6) получаем:

Построим график:

Рис.3.2.1 Параметры настроек с помощью метода расширенных частотных характеристик

Из графика вычисляем максимальное значение Kp/Tu на первом витке и соответствующее ему значение Кр:

Kp= 0,00565 Kp/Tu=0,00034

Исследуем реакцию системы на типовые сигналы по каналам управления и возмущения.

Переходная функция по каналу управления:

Рис. 3.2.2 Реакция системы по каналу управления на ступенчатую функцию

Переходная функция по каналу возмущения:

Рис. 3.2.3 Реакция системы по каналу возмущения на ступенчатую функцию

Импульсная переходная функция по каналу возмущения:

Рис. 3.2.4 Реакция системы по каналу возмущения на импульсную функцию

Импульсная переходная функция по каналу управления:

Рис. 3.2.5 Реакция системы по каналу управления на импульсную функцию

Рассчитаем степени затухания:

Для переходной функции по каналу управления

Для переходной функции по каналу возмущения

Для импульсной переходной функции по каналу возмущения

Для импульсной переходной функции по каналу управления

Находим среднее значение степени затухания 0,98 и сравниваем с истинным значением 0,85.

Методом расширенных частотных характеристик и методом Циглера-Никольса были рассчитаны параметры настройки ПИ-регулятора, степени затухания. Полученное при помощи метода Циглера-Никольса среднее значение степени затухания превышает истинное на 9,41%. Среднее значение степени затухания, полученное методом расширенных частотных характеристик, превысило истинное на 15,29%. Из этого следует, что лучше использовать значения, полученные методом Циглера-Никольса.

4. Синтез систем автоматического управления многомерным объектом

4.1 Синтез каскадных систем управления

Каскадные системы применяют для автоматизации объектов, обладающих большой инерционностью по каналу регулирования, если можно выбрать менее инерционную по отношению к наиболее опасным возмущения промежуточную координату и использовать для нее то же регулирующее воздействие, что и для основного выхода объекта.

Рис. 4.1.1 Каскадная система управления

В этом случае в систему регулирования включают два регулятора - основной (внешний) регулятор, служащий для стабилизации основного выхода объекта y, и вспомогательный (внутренний) регулятор, предназначенный для регулирования вспомогательной координаты y1. Заданием для вспомогательного регулятора служит выходной сигнал основного регулятора.

Расчет каскадной АСР предполагает определение настроек основного и вспомогательного регуляторов при заданных динамических характеристиках объекта по основному и вспомогательному каналам. Поскольку настройки основного и вспомогательного регуляторов взаимосвязаны, расчет их приводят методом итераций.

На каждом шаге итерации рассчитывают приведенную одноконтурную АСР, в которой один из регуляторов условно относится к эквивалентному объекту. Эквивалентный объект для основного регулятора представляет собой последовательное соединение замкнутого вспомогательного контура и основного канала регулирования; передаточная функция его равна:

(4.1.1.)

Эквивалентный объект для вспомогательного регулятора является параллельным соединением вспомогательного канала и основной разомкнутой системы. Его передаточная функция имеет вид:

(4.1.2.)

В зависимости от первого шага итерации различают два метода расчета каскадных АСР:

1-й метод. Расчет начинают с основного регулятора. Метод используют в тех случаях, когда инерционность вспомогательного канала намного меньше, чем основного.

На первом шаге принимают допущение о том, что рабочая частота основного контура намного меньше, чем вспомогательного. Тогда:

(4.1.3.)

Таким образом, в первом приближении настройки основного регулятора не зависят от настроек вспомогательного регулятора и находятся по WЭ0осн(р).

На втором шаге рассчитывают настройки вспомогательного регулятора для эквивалентного объекта.

В случае приближенных расчетов ограничиваются первыми двумя шагами. При точных расчетах их продолжают до тех пор, пока настройки регуляторов, найденные в двух последовательных итерациях, не совпадут с заданной точностью.

2-й метод. Расчет начинают со вспомогательного регулятора. На первом шаге предполагают, что внешний регулятор отключен, т.е.:

Таким образом в первом приближении настройки вспомогательного регулятора находят по одноконтурной АСР для вспомогательного канала регулирования. На втором шаге рассчитывают настройки основного регулятора по передаточной функции эквивалентного объекта WЭ1осн(р) с учетом настроек вспомогательного регулятора. Для уточнения настроек вспомогательного регулятора расчет проводят по передаточной функции, в которую подставляют найденные настройки основного регулятора. Расчеты проводят до тех пор, пока настройки вспомогательного регулятора, найденные в двух последовательных итерациях, не совпадут с заданной точностью.

Рассчитаем параметры вспомогательного ПИ-регулятора:

Рис.4.1.2. Реакция на ступенчатое воздействие по каналу управления

Рис.4.1.3. Реакция на ступенчатое воздействие по каналу возмущения

Рис.4.1.4. Реакция на импульсное воздействие по каналу управления

Рис.4.1.5. Реакция на импульсное воздействие по каналу возмущения

Система ковариантна заданию и инвариантна возмущению. Выполняется основной критерий качества- вид переходного процесса. Второй критерий качества в виде времени регулирования не выполняется. Выполняется критерий динамической ошибки.

4.2 Синтез комбинированной системы управления

Существует случай, когда к объекту прилагаются жесткие воздействия, которые можно измерить, но предлагается не одноконтурная система управления, а так называемая комбинированная система, которая является комбинацией двух принципов - принципа обратной связи и принципа компенсации возмущений.

Предлагается перехватывать возмущение раньше их воздействия на объект и с помощью вспомогательного регулятора компенсировать их действия.

Рис.4.2.1. Комбинированная система управления

Применим к схеме, приведенной на Рис. 4.2.1, условие инвариантности выходной величины y по отношению к возмущающему воздействию yв:

Принцип инвариантности к возмущению: чтобы система была инвариантна к возмущению, ее передаточная функция по каналу управления должна быть равна нулю. Тогда передаточная функция компенсатора запишется:

(4.2.2.)

Рассчитаем ПИ-регулятор в Mathcad регулятора при помощи стандартных биномиальных форм Ньютона:

Ступенчатое воздействие по каналу управления:

Рис.4.2.2. Реакция на ступенчатое воздействие по каналу управления

Ступенчатое воздействие по каналу возмущения:

Рис.4.2.3. Реакция на ступенчатое воздействие по каналу возмущения

Импульсное воздействие по каналу управления:

Рис.4.2.4. Реакция на импульсное воздействие по каналу управления

Импульсное воздействие по каналу возмущения:

Рис.4.2.5. Реакция на импульсное воздействие по каналу возмущения

Система ковариантна заданию и инвариантна возмущению. Критерий качества в виде времени регулирования не выполняется. Критерий динамической ошибки не выполняется. Система инвариантна возмущению в статике, но неинвариантна в динамике из-за инерционных свойств, входящих в нее элементов.

4.3 Синтез автономной системы управления

При управлении многомерными объектами мы часто сталкиваемся со следующей картиной:

Рис. 4.3.1 Объект управления с двумя входными и двумя выходными переменными

X1,X2 - управляющие переменные

Y1,Y2 - управляемые переменные

U1,U2 - прямые связи

P1,P2 - перекрестные связи.

Если для выходной переменной y1 выбрать в качестве регулирующей переменной переменную x2, то за счет перекрестных каналов регулирующая переменная x2 будет оказывать влияние через передаточную функцию W21 на переменную y1, а регулирующая переменная x1 будет влиять через W12 на y2. Эти обстоятельства существенно усложняют расчет такого рода системы.

Задача расчета значительно упрощается, если на система наложить дополнительные требования - требования автономности каналов регулирования. Автономность каналов регулирования можно осуществить за счет введения дополнительных связей между входными переменными, такого рода устройства называются компенсаторами.

Рис. 4.3.2 Система управления двумерным объектом

В результате введения компенсаторов появились новые регулирующие переменные, которые влияют на исходные переменные с учетом компенсирующих воздействий.

Рассчитываем передаточные функции компенсаторов:

Рассчитываем параметры настройки ПИ-регуляторов при помощи стандартных биноминальных форм Ньютона.

Рассчитаем первый ПИ-регулятор в Mathcad:

Рассчитаем второй ПИ-регулятор в Mathcad:

Переходная функция по первому каналу управления:

Рис. 4.3.3. Реакция системы на ступенчатое воздействие

Переходная функция по второму каналу управления:

Рис. 4.3.4. Реакция системы на ступенчатое воздействие

Система ковариантна заданию и инвариантна возмущению. Выполняется основной критерий качества- вид переходного процесса. Выполняется второй критерий качества в виде времени.

Заключение

В первом пункте работы были рассмотрены методы, применяемые для идентификации функции, заданных таблично. Были рассмотрены три метода: метод идентификации с использованием System Identification ToolBox, метод аппроксимации с использованием пакетаCurve Fitting Toolbox и метод аппроксимации элементарными звеньями. По результатам аппроксимации была выбрана наиболее адекватная модель. Это оказалась модель, полученная аппроксимацией с помощью Curve Fitting Tool.

Затем был определен закон регулирования и произведены расчеты настроек ПИ-регулятора двумя методами: методом расширенных частотных характеристик и методом Циглера-Никольса. При сравнении степеней затухания определили, что лучше использовать значения, полученные методом Циглера-Никольса.

Четвертый пункт курсовой работы заключался в моделировании систем. Мы провели синтез систем управления многомерным объектом. Для этих систем были рассчитаны компенсаторы возмущений, а также ПИ-регуляторы, для расчёта которых применялись стандартные биномиальные формы Ньютона. Были получены реакции систем на типовые входные воздействия.

Список использованных источников

Теория автоматического управления: учебник для вузов / В. Я. Ротач. - 5-е изд., перераб. и доп. -- М.: Издательский дом МЭИ, 2008. -- 396 с., ил.

Модальное управление и наблюдающие устройства / Н.Т. Кузовков. - М.: «Машиностроение», 1976. - 184 с.

Консультационный центр Matlab[Электронный ресурс] // MATLAB.Exponenta, 2001-2014. URL: http://matlab.exponenta.ru. Дата обращения: 12.03.2016.

Размещено на Allbest.ru

...

Подобные документы

    Анализ альтернативного метода расширенных частотных характеристик. Реализация программы в среде MatLab, с целью расчета по передаточной функции объекта управления, параметрам качества переходного процесса замкнутой САР параметров настройки регулятора.

    лабораторная работа , добавлен 05.11.2016

    Метод расширенных частотных характеристик. Обзор требований к показателям качества. Компьютерные методы синтеза систем автоматического регулирования в среде Matlab. Построение линии равного затухания системы. Определение оптимальных настроек регулятора.

    лабораторная работа , добавлен 30.10.2016

    Расчет дискретного регулятора, обеспечивающего максимальную скорость переходного процесса. Формирование интегрального квадратичного критерия. Синтез компенсатора, непрерывного и дискретного регулятора, компенсатора, оптимального закона управления.

    курсовая работа , добавлен 19.12.2010

    Выбор регулятора для объекта управления с заданной передаточной функцией. Анализ объекта управления и системы автоматического регулирования. Оценка переходной и импульсной функций объекта управления. Принципиальные схемы регулятора и устройства сравнения.

    курсовая работа , добавлен 03.09.2012

    Выбор, обоснование типов регуляторов положения, скорости, тока, расчет параметров их настройки. Синтез системы регулирования методами модального и симметричного оптимума. Построение переходных характеристик объекта регулирования по регулируемым величинам.

    курсовая работа , добавлен 01.04.2012

    Описание объекта автоматического управления в переменных состояниях. Определение дискретной передаточной функции замкнутой линеаризованной аналого-цифровой системы. Графики переходной характеристики, сигнала управления и частотных характеристик системы.

    курсовая работа , добавлен 21.11.2012

    Синтез системы управления квазистационарным объектом. Математическая модель нестационарного динамического объекта. Передаточные функции звеньев системы управления. Построение желаемых логарифмических амплитудно-частотных и фазочастотных характеристик.

    курсовая работа , добавлен 14.06.2010

    Определение динамических характеристик объекта. Определение и построение частотных и временных характеристик. Расчет оптимальных параметров настройки ПИ-регулятора. Проверка устойчивости по критерию Гурвица. Построение переходного процесса и его качество.

    курсовая работа , добавлен 05.04.2014

    Исследование режимов системы автоматического управления. Определение передаточной функции замкнутой системы. Построение логарифмических амплитудной и фазовой частотных характеристик. Синтез системы "объект-регулятор", расчет оптимальных параметров.

    курсовая работа , добавлен 17.06.2011

    Формулировка требований к системе и расчет параметров электропривода. Синтез регулятора тока. Расчет регулятора скорости. Исследование переходных процессов в системе подчиненного управления с помощью программы "Matlab". Синтез релейной системы.