Что лучше одноядерный или двухъядерный процессор. Multi-Core vs

Процессор в мобильном телефоне. Характеристики и их значение

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Кэш процессора

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.

Когда вы покупаете новый ноутбук или строите компьютер, процессор является самым важным решением. Но там есть много жаргона, особенно что касается ядер. Какой процессор выбрать: двухъядерный, четырехъядерный, шестиядерный или восьмиядерный. Прочитайте статью чтобы понять, что это на самом деле означает.

Двухъядерный или четырехъядерный, как можно проще

Давайте сделаем все просто. Вот все, что вам нужно знать:

  • Существует только один процессорный чип. У этого чипа может быть одно, два, четыре, шесть или восемь ядер.
  • В настоящее время 18-ядерный процессор - это лучшее, что можно получить на потребительских ПК.
  • Каждое «ядро» является частью чипа, который выполняет обработку. По сути, каждое ядро является центральным процессором (CPU).

Скорость

Теперь простая логика диктует, что больше ядер сделает ваш процессор быстрее в целом. Но это не всегда так. Это немного сложнее.

Больше ядер дают большую скорость только если программа может разделить свои задачи между ядрами. Не все программы предназначены для разделения задач между ядрами. Подробнее об этом позже.

Тактовая частота каждого ядра также является решающим фактором скорости, как и архитектура. Более новый двухъядерный процессор с более высокой тактовой частотой часто превосходит старый четырехъядерный процессор с более низкой тактовой частотой.

Потребляемая мощность

Больше ядер также приводит к более высокому потреблению энергии процессором. Когда процессор включен, он подает питание на все ядра, а не только на задействованные.

Производители чипов стараются снизить энергопотребление и сделать процессоры более энергоэффективными. Но, общее правило гласит что, четырехъядерный процессор будет потреблять больше энергии с вашего ноутбука нежели двухъядерный (и, следовательно, быстрее разряжается аккумулятор).

Выделение тепла

Каждое ядро, влияет на тепло, генерируемое процессором. И опять же, общее правило, больше ядер приводит к более высокой температуре.

Из-за этого дополнительного тепла, производители должны добавить лучшие радиаторы или другие решения для охлаждения.

Цена

Больше ядер не всегда выше цены. Как мы уже говорили ранее, в игру вступают тактовая частота, архитектурные версии и другие соображения.

Но если все остальные факторы одинаковы, тогда больше ядер будет получать более высокую цену.

Все о программном обеспечении

Вот маленький секрет, который производители процессоров не хотят, чтобы вы знали. Речь идет не о том, сколько ядер вы используете, а о том, какое программное обеспечение вы используете на них.

Программы должны быть специально разработаны, чтобы использовать преимущества нескольких процессоров. Такое «многопоточное программное обеспечение» не так распространено, как вы думаете.

Важно отметить, что даже если это многопоточная программа, также важно то, для чего она используется. Например, веб-браузер Google Chrome поддерживает несколько процессов, а также программное обеспечение для редактирования видео Adobe Premier Pro.

Adobe Premier Pro предлагает различные ядра для работы над различными аспектами вашего редактирования. Учитывая многие слои, связанные с редактированием видео, это имеет смысл, так как каждое ядро может работать над отдельной задачей.

Аналогично, Google Chrome предлагает разным ядрам работать на разных вкладках. Но в этом и заключается проблема. После того как вы откроете веб-страницу на вкладке, она обычно статична после этого. Нет необходимости в дальнейшей обработке; остальная часть работы заключается в сохранении страницы в ОЗУ. Это означает, что даже если ядро можно использовать для закладки фона, в этом нет никакой необходимости.

Этот пример Google Chrome представляет собой иллюстрацию того, как даже многопоточное программное обеспечение может не дать вам большой реальный прирост производительности.

Два ядра не удваивают скорость

Итак, допустим, у вас есть правильное программное обеспечение, и все ваше другое оборудование одинаково. Будет ли четырехъядерный процессор в два раза быстрее, чем двухъядерный процессор? Нет.

Увеличение ядер не затрагивает программную проблему масштабирования. Масштабирование до ядер - теоретическая способность любого программного обеспечения назначать правильные задачи на правильные ядра, поэтому каждое ядро вычисляет с оптимальной скоростью. Это не то, что происходит на самом деле.

В действительности задачи разбиваются последовательно (что делает большинство многопоточных программ) или случайным образом. Например, скажем, вам нужно выполнить три задачи, чтобы закончить действие, и у вас есть пять таких действий. Программное обеспечение сообщает ядру 1 решить задачу 1, в то время как ядро 2 решает вторую, ядро 3 третью; между тем, ядро 4 простаивает.

Если третья задача самая сложная и длинная, тогда было бы разумно, чтобы программное обеспечение разделило третью задачу между ядрами 3 и 4. Но это не то, что она делает. Вместо этого, хотя ядро 1 и 2 выполнят задачу быстрее, действие должно будет дождаться завершения ядра 3, а затем вычислить результаты ядер 1, 2 и 3 вместе.

Все это окольный способ сказать, что программное обеспечение, как и сегодня, не оптимизировано, чтобы в полной мере использовать преимущества нескольких ядер. И удвоение ядер не равно удвоению скорости.

Где больше ядер реально помогут?

Теперь, когда вы знаете, что делают ядра и их ограничения в повышении производительности, вы должны спросить себя: «Нужно ли мне больше ядер?» Ну, это зависит от того, что вы планируете с ними делать.

Если вы часто играете в компьютерные игры, то больше ядер на вашем ПК несомненно вам пригодятся. Подавляющее большинство новых популярных игр от крупных студий поддерживают многопоточную архитектуру. Видеоигры по-прежнему в значительной степени зависят от того, какая видеокарта у вас стоит, но многоядерный процессор тоже помогает.

Для любого профессионала, который работает с видео или аудиопрограммами, больше ядер будет полезно. Большинство популярных аудио- и видеомонтажных инструментов используют многопоточную обработку.

Фотошоп и дизайн

Если вы дизайнер, то более высокая тактовая частота и больше кэш-памяти процессора будут увеличиваться скорость лучше, чем больше ядер. Даже самое популярное программное обеспечение для проектирования, Adobe Photoshop, в значительной степени поддерживает однопоточные или слегка поточные процессы. Множество ядер не будет значительным стимулом для этого.

Более быстрый веб-просмотр

Как мы уже говорили, наличие большего количества ядер не означает более быстрый просмотр веб-страниц. В то время как все современные браузеры поддерживают архитектуру многопроцессорных процессов, ядра помогут только в том случае, если ваши фоновые вкладки являются сайтами, для которых требуется большая вычислительная мощность.

Офисные задачи

Все основные приложения Office однопоточные, поэтому четырехъядерный процессор не будет увеличивать скорость.

Нужно ли вам больше ядер?

В целом, четырехъядерный процессор будет работать быстрее, чем двухъядерный процессор для общих вычислений. Каждая программа, которую вы открываете, будет работать на своем собственном ядре, поэтому, если задачи будут разделены, скорости будут лучше. Если вы используете много программ одновременно, часто переключайтесь между ними и назначаете им свои собственные задачи, выбирайте процессор с большим количеством ядер.

Просто знайте это: общая производительность системы - это одна из областей, в которой слишком много факторов. Не ожидайте магического повышения производительности, заменив всего один компонент, даже такой как процессор.

Современная компьютерная индустрия не стоит на месте. Уже практически каждый компьютер укомплектован многоядерными процессорами. Но ведь еще не каждый знает, в чем отличие их от одноядерных аналогов, которые остаются в прошлом. Иногда при покупке человек стремится купить новинку, при этом он не осознает ее значимость и тратит деньги на вещь, которая ему не принесет существенной пользы.
Чтобы понять необходимость покупки процессора с одним или двумя ядрами необходимо осознавать разницу двух вариантов, в каких случаях каждый из них лучше.

Особенности строения одноядерных процессоров

Всем известно, что мощность и скорость работы всего персонального компьютера в первую очередь зависит именно от центрального процессора. Поэтому, чем частота работы процессора выше, тем быстрее происходит выполнение команд пользователя. Операции над данными производит именно ядро в процессоре.

При высокой частоте скорость выполнения одной команды существенная, поэтому пользователю даже при одноядерном процессоре кажется, что программы выполняются параллельно. В действительности все программы встают в очередь, которая движется с очень высокой скоростью.

Особенностью одноядерных процессоров по архитектуре можно считать:

  • Структуру с полным разделением команд и данных.
  • Скалярная архитектура, которая позволяет выполнять параллельно несколько команд в различных устройствах.
  • Изменение последовательности команд динамического типа, когда работает принцип опережения.
  • Использование команд происходит по типу конвейера.
  • Направление ветвей выполнения предсказуемо.

Хочется отметить, несмотря на то, что все больше появляется двухъядерных процессоров, одноядерные варианты постоянно дорабатываются и усовершенствуются. Поэтому некоторые модели процессоров с одним ядром по своей производительности не всегда уступают двухъядерному последователю.

Особенности работы двухъядерных процессоров

Если, в общем, рассказывать о работе процессора с двумя ядрами в сравнении с одноядерным собратом, то можно пояснить все простым примером. Например, пользователь копирует файлы, а при этом решил посмотреть фильм. Ему кажется, что обе операции проводятся одновременно, но при работе одноядерного процессора эти действия идут последовательно, так как частота выполнения команд очень высокая, то и создается такое ощущение. Но при наличии двухъядерного процесса эти операции действительно выполняются одновременно.

Стоит отметить, что по своей архитектуре двухъядерный процессор схож со строением симметричных мультипроцессоров, когда на одной плате используется два процессора. Существуют, конечно, определенные отличия, но принцип работы схож.

Наиболее эффективно двухъядерные процессоры показывают себя при работе с многопоточными приложениями, именно здесь получается наивысшая производительность. Так как многочисленные задачи распределяются между двумя ядрами для выполнения. Такое распределение позволяет снизить потребление электроэнергии. Ведь именно этот фактор тормозит развитие одноядерных процессоров.

В чем отличия двухъядерного процессора

При изучении архитектуры строения как одноядерных, так и двухъядерных процессоров можно выделить большой список различий:

  • Если не запускать сложных многопоточных приложений или несколько одновременно, то различия в работе процессора с одним ядром или двумя, будут не так ощутимы и заметны.
  • В процессоре с двумя ядрами присутствует также разделенная кэш память.
  • При наличии двухъядерного процессора существует ощутимый плюс, так как при отказе одного ядра, второе ядро будет забирать всю нагрузку только на себя.
  • Двухъядерный процессор имеет большую кэш память и частоту.

Стоит заметить, что не всегда двухъядерный процессор в домашних условиях может показать себя в полном объеме, так как многие созданные приложения не адаптированы к такому центральному процессору. Следует заметить, что из-за наличия двух ядер процессор имеет 64-битную структуру. А многие современные программы рассчитаны на 32-битную структуру, и повышения скорости работы от них не стоит ожидать.

Преимущества использования двухъядерных процессоров

Зная особенности структуры и существенные отличия процессоров с одним и двумя ядрами можно выделить основные преимущества использования двухъядерных процессоров:

  1. Быстрая работа браузера при загрузке и отображении.
  2. Высокая производительность в игровых приложениях.
  3. При работе в многозначном режиме увеличивается скорость работы нескольких потоков.
  4. Высокое быстродействие и плавность работы.
  5. Снижение энергопотребления при увеличении производительности.

В заключение можно сделать вывод, что процессор с одним ядром или двумя имеет существенные различия, как в результате работы, так и в своей архитектуре.

Конечно, понятно, что процессор с двумя ядрами и более будет более производительным. Для домашнего пользования в принципе не критически приобретать компьютер и с одним процессором. Но если есть финансовые возможности приобрести компьютер, в конфигурации которого два процессора, то стоит покупать. Ведь информационный мир не стоит на месте. Программы дорабатываются, техника усовершенствуется. С каждым днем все большее число программных продуктов ориентировано на работу с 64-битными системами.

Модуль поиска не установлен.

Одноядерный или двухъядерный?

Виктор Куц

Самым значимым событием последнего времени в области микропроцессоров стало появление в широком доступе CPU, оснащенных двумя вычислительными ядрами. Переход на двухъядерную архитектуру обусловлен тем, что традиционные методы по увеличению производительности процессоров полностью исчерпали себя - процесс наращивания их тактовых частот в последнее время застопорился.

К примеру, в последний год перед появлением двухъядерных процессоров компания Intel смогла увеличить частоты своих CPU на 400 МГц, а AMD и того меньше - всего лишь на 200 МГц. Другие же методы повышения производительности, такие как увеличение скорости шины и размера кэш-памяти, также утратили былую эффективность. Таким образом, внедрение двухъядерных процессоров, обладающих двумя процессорными ядрами в одном чипе и разделяющими между собой нагрузку, в настоящее время оказалось наиболее логичным шагом на сложном и тернистом пути наращивания производительности современных компьютеров.

Что же представляет собой двухъядерный процессор? В принципе, двухъядерный процессор представляет собой SMP-систему (Symmetric MultiProcessing - симметричная многопроцессорная обработка; термин, обозначающий систему с несколькими равноправными процессорами) и по сути своей не отличается от обыкновенной двухпроцессорной системы, состоящей из двух независимых процессоров. Таким образом, мы получаем все преимущества двухпроцессорных систем без необходимости использования сложных и очень дорогих двухпроцессорных материнских плат.

До этого компанией Intel уже была произведена попытка распараллелить выполняемые инструкции - речь идет о технологии HyperThreading, обеспечивающей разделение ресурсов одного "физического" процессора (кэш, конвейер, исполнительные устройства) между двумя "виртуальными" процессорами. Прирост производительности (в отдельных, оптимизированных для HyperThreading приложениях) при этом составлял примерно 10-20%. Тогда как полноценный двухъядерный процессор, включающий в себя два "честных" физических ядра, обеспечивает прирост производительности системы на все 80-90% и даже больше (естественно, при полном задействовании возможностей обоих его ядер).

Главным инициатором в продвижении двухъядерных процессоров выступила компания AMD, которая в начале 2005 года выпустила первый серверный двухъядерный процессор Opteron. Что касается настольных процессоров, то здесь инициативу перехватила компания Intel, примерно в это же время анонсировавшая процессоры Intel Pentium D и Intel Extreme Edition. Правда, анонс аналогичной линейки процессоров Athlon64 X2 производства AMD запоздал всего лишь на считанные дни.

Двухъядерные процессоры Intel

Первые двухъядерные процессоры Intel Pentium D семейства 8хх были основаны на ядре Smithfield, которое является ничем иным, как двумя ядрами Prescott, объединенными на одном полупроводниковом кристалле. Там же размещается и арбитр, который следит за состоянием системной шины и помогает разделять доступ к ней между ядрами, каждое из которых имеет собственную кэш-память второго уровня объемом по 1 Мбайт. Размер такого кристалла, выполненного по 90-нм техпроцессу, достиг 206 кв. мм, а количество транзисторов приближается к 230 миллионам.

Для продвинутых пользователей и энтузиастов компания Intel предлагает процессоры Pentium Extreme Edition, отличающиеся от Pentium D поддержкой технологии HyperThreading (и разблокированным множителем), благодаря чему они определяются операционной системой как четыре логических процессора. Все остальные функции и технологии обоих процессоров полностью одинаковы. Среди них можно выделить поддержку 64-битного набора команд EM64T (x86-64), технологии энергосбережения EIST (Enhanced Intel SpeedStep), C1E (Enhanced Halt State) и TM2 (Thermal Monitor 2), а также функцию защиты информации NX-bit. Таким образом, немалая ценовая разница между процессорами Pentium D и Pentium EE является по большей части искусственной.

Что касается совместимости, то процессоры на ядре Smithfield потенциально могут быть установлены в любую LGA775 материнскую плату, лишь бы она соответствовала требованиям Intel к модулю питания платы.

Но первый блин, как обычно, вышел комом - во многих приложениях (большинство из которых не оптимизированы под многопоточность) двухъядерные процессоры Pentium D не только не превосходили одноядерные Prescott, работающие на той же тактовой частоте, но иногда и проигрывали им. Очевидно, проблема кроется во взаимодействии ядер через процессорную шину Quad Pumped Bus (при разработке ядра Prescott не было предусмотрено масштабирование его производительности путем увеличения количества ядер).

Устранить недостатки первого поколения двухъядерных процессоров Intel были призваны процессоры на 65-нм ядре Presler (два отдельные ядра Cedar Mill, размещенные на одной подложке), появившиеся в самом начале нынешнего года. Более "тонкий" техпроцесс позволил уменьшить площадь ядер и их энергопотребление, а также повысить тактовые частоты. Двухъядерные процессоры на ядре Presler получили наименование Pentium D с индексами 9хх. Если сравнивать процессоры Pentium D 800-й и 900-й серий, то кроме ощутимого снижения энергопотребления новые процессоры получили удвоение кэш-памяти второго уровня (по 2 Мбайт на ядро вместо 1 Мбайт) и поддержку перспективной технологии виртуализации Vanderpool (Intel Virtualization Technology). Кроме того, был выпущен процессор Pentium Extreme Edition 955 с включенной технологией HyperThreading и работающий на частоте системной шины 1066 МГц.

Официально процессоры на ядре Presler с частотой шины 1066 МГц совместимы только с материнскими платами на чипсетах серии i965 и i975X, тогда как 800-мегагерцевые Pentium D в большинстве случаев заработают на всех системных платах, поддерживающих эту шину. Но, опять же, встает вопрос о питании этих процессоров: термопакет Pentium EE и Pentium D, за исключением младшей модели, составляет 130 Вт, что почти на треть больше, чем у Pentium 4. Согласно заявлениям самой Intel, стабильная работа двухъядерной системы возможна лишь при использовании блоков питания мощностью не менее 400 Вт.

Наиболее эффективными современными десктопными двухъядерными процессорами Intel, без сомнения, являются Intel Core 2 Duo и Core 2 eXtreme (ядро Conroe). Их архитектура развивает базовые принципы архитектуры семейства P6, тем не менее, количество принципиальных нововведений столь велико, что впору говорить о новом, 8-м поколении процессорной архитектуры (P8) компании Intel. Несмотря на более низкую тактовую частоту, они заметно превосходят процессоры семейства Р7 (NetBurst) по производительности в подавляющем большинстве применений - в первую очередь за счет увеличения числа операций, выполняемых в каждом такте, а также за счет снижения потерь, обусловленных большой длиной конвейера P7.

Десктопные процессоры линейки Core 2 Duo выпускаются в нескольких вариантах:
- серия E4xxx - FSB 800 МГц, общий для обоих ядер L2-кэш 2 Мбайт;
- серия E6ххх - FSB 1066 МГц, размер кэша 2 или 4 Мбайт;
- серия X6ххх (eXtreme Edition) - FSB 1066 МГц, размер кэша 4 Мбайт.

Буквенный шифр "E" обозначает диапазон энергопотребления от 55 до 75 ватт, "X" - выше 75 ватт. Core 2 eXtreme отличается от Core 2 Duo лишь только повышенной тактовой частотой.

Все процессоры Conroe используют хорошо отработанные процессорную шину Quad Pumped Bus и разъем LGA775. Что, однако, совсем не означает совместимости со старыми материнскими платами. Помимо поддержки тактовой частоты 1067 МГц, материнские платы для новых процессоров должны содержать новый модуль регулирования напряжения (VRM 11). Этим требованиям соответствуют в основном обновленные версии материнских плат, выполненных на базе чипсетов Intel 975 и 965 серий, а также NVIDIA nForce 5xx Intel Edition и ATI Xpress 3200 Intel Edition.

В ближайшие два года процессоры Intel всех классов (мобильные, десктопные и серверные) будут базироваться на архитектуре Intel Core, а основное развитие будет идти в направлении увеличения числа ядер на кристалле и усовершенствования их внешних интерфейсов. В частности, для рынка настольных ПК таким процессором станет Kentsfield - первый четырехъядерный процессор Intel для сегмента высокопроизводительных настольных ПК.

Двухъядерные процессоры AMD

В линейке двухъядерных процессоров AMD Athlon 64 X2 используются два ядра (Toledo и Manchester) внутри одного кристалла, произведенные по 90-нм техпроцессу с использованием технологии SOI. Каждое из ядер Athlon 64 X2 обладает собственным набором исполнительных устройств и выделенной кэш-памятью второго уровня, контроллер памяти и контроллер шины HyperTransport у них общие. Различия между ядрами - в размере кэша второго уровня: у Toledo кэш L2 имеет объем 1 Мбайт на каждое ядро, а у Manchester этот показатель вдвое меньше (по 512 Кбайт). Все процессоры имеют кэш-память первого уровня 128 Кбайт, их максимальное тепловыделение не превышает 110 Вт. Ядро Toledo состоит примерно из 233,2 млн. транзисторов и имеет площадь около 199 кв. мм. Площадь ядра Manchester заметно меньше - 147 кв. мм., количество транзисторов составляет 157 млн.

Двухъядерные процессоры Athlon64 X2 унаследовали от Athlon64 поддержку технологии энергосбережения Cool`n`Quiet, набор 64-битных расширений AMD64, SSE - SSE3, функцию защиты информации NX-bit.

В отличие от двухъядерных процессоров Intel, работающих только с памятью DDR2, Athlon64 Х2 способны работать как с памятью типа DDR400 (Socket 939), обеспечивающей предельную пропускную способность в 6,4 Гбайт/с, так и с DDR2-800 (Socket AM2), пиковая пропускная способность которой составляет 12,8 Гбайт/с.

На всех достаточно современных материнских платах процессоры Athlon64 X2 работают без каких-либо проблем - в отличие от Intel Pentium D они не предъявляют каких-либо специфических требований к дизайну модуля питания материнской платы.

До самого последнего времени наиболее производительными среди десктопных процессоров считались AMD Athlon64 X2, однако с выходом Intel Core 2 Duo ситуация в корне изменилась - последние стали безусловными лидерами, особенно в игровых и мультимедийных применениях. Кроме того, новые процессоры Intel имеют пониженное энергопотребление и гораздо более эффективные механизмы управления питанием.

Такое положение дел компанию AMD не устроило, и в качестве ответного хода она анонсировала выпуск в середине 2007 года нового 4-ядерного процессора с улучшенной микроархитектурой, известного под названием K8L. Все его ядра будут иметь раздельные L2-кэши по 512 Кбайт и один общий кэш 3-го уровня размером 2 Мбайта (в последующих версиях процессора L3-кэш может быть увеличен). Более подробно перспективная архитектура AMD K8L будет рассмотрена в одном из ближайших номеров нашего журнала.

Одно ядро или два?

Даже беглый взгляд на сегодняшнее состояние рынка десктопных процессоров свидетельствует о том, что эпоха одноядерных процессоров постепенно уходит в прошлое - оба ведущих мировых производителя перешли на выпуск в основном мультиядерных процессоров. Однако программное обеспечение, как это не раз случалось и раньше, пока что отстает от уровня развития "железа". Ведь для того чтобы полностью задействовать возможности несколько процессорных ядер, программное обеспечение должно уметь "разбиваться" на несколько параллельных потоков, обрабатываемых одновременно. Только при таком подходе появляется возможность распределить нагрузки по всем доступным вычислительным ядрам, снижая время вычислений сильнее, чем это можно было сделать путем повышения тактовой частоты. Тогда как подавляющее большинство современных программ не способны использовать все возможности, предоставляемые двухъядерными или, тем более, многоядерными процессорами.

Какие же типы пользовательских приложений наиболее эффективно поддаются распараллеливанию, то есть без особой переработки кода программ позволяют выделить несколько задач (программных потоков), способных исполняться параллельно и, таким образом, загрузить работой сразу несколько процессорных ядер? Ведь только такие приложения обеспечивают сколь-нибудь заметное увеличение производительности от внедрения многоядерных процессоров.

Наибольший выигрыш от мультипроцессорности получают приложения, изначально допускающие естественную паралеллизацию вычислений с разделением данных, например, пакеты реалистичного компьютерного рендеринга - 3DMax и ему подобные. Также можно ожидать хорошего прироста производительности от многопроцессорности в приложениях по кодированию мультимедийных файлов (аудио и видео) из одного формата в другой. Кроме того, хорошо поддаются распараллеливанию задачи редактирования двумерных изображений в графических редакторах вроде популярного Photoshop"а.

Недаром приложения всех перечисленных выше категорий широко используются в тестах, когда хотят показать преимущества виртуальной многопроцессорности Hyper-Threading. А уж о реальной многопроцессорности и говорить нечего.

А вот в современных трехмерных игровых приложениях какого-либо серьезного прироста скорости от нескольких процессоров ожидать не следует. Почему? Потому, что типичную компьютерную игру так просто не распараллелить на два или более процессов. Поэтому второй логический процессор в лучшем случае будет заниматься выполнением лишь вспомогательных задач, что не даст практически никакого прироста производительности. А разработка многопоточной версии игры с самого начала достаточно сложна и требует немалых трудозатрат - порой гораздо больших, чем для создания однопоточной версии. Трудозатраты эти, кстати, могут еще и не окупиться с экономической точки зрения. Ведь производители компьютерных игр традиционно ориентируются на наиболее массовую часть пользователей и начинают использовать новые возможности компьютерного "железа" только в случае его широкой распространенности. Это хорошо заметно на примере использования разработчиками игр возможностей видеокарт. Например, после того как появилась новые видеочипы с поддержкой шейдерных технологий, разработчики игр еще долгое время игнорировали их, ориентируясь на возможности урезанных массовых решений. Так что даже продвинутые игроки, купившие самые "навороченные" видеокарты тех лет, так и не дождались нормальных игр, использующих все их возможности. Примерно аналогичная ситуация с двухъядерными процессорами наблюдается сегодня. Сегодня не так много игр, толком задействующих даже технологию HyperThreading, несмотря на то, что уже не один год вовсю выпускаются массовые процессоры с ее поддержкой.

В офисных приложениях ситуация не столь однозначная. Прежде всего, программы такого класса редко работают в одиночку - гораздо чаще встречается ситуация, когда на компьютере запущено нескольких работающих параллельно офисных приложений. Например, пользователь работает с текстовым редактором, и одновременно происходит загрузка web-сайта в браузер, а также в фоновом режиме осуществляется сканирование на вирусы. Очевидно, что несколько работающих приложений позволяют без особого труда задействовать несколько процессоров и получить прирост производительности. Тем более что все версии Windows XP, включая Home Edition (которой изначально было отказано в поддержке мультиядерных процессоров), уже сейчас способны использовать преимущества двухъядерных процессоров, распределяя программные потоки между ними. Обеспечивая тем самым высокую эффективность исполнения многочисленных фоновых программ.

Таким образом, можно ожидать некоторого эффекта даже от неоптимизированных офисных приложений, если они запускаются параллельно, но вот стоит ли такой прирост производительности существенного увеличения стоимости двухъядерного процессора, понять сложно. Кроме того, определенным недостатком двухъядерных процессоров (особенно это касается процессоров Intel Pentium D) является то, что приложения, производительность которых ограничена не вычислительной способностью самого процессора, а скоростью доступа к памяти, могут не так сильно выиграть от наличия нескольких ядер.

Заключение

Несомненно, что будущее определенно за многоядерными процессорами, однако сегодня, когда большая часть существующего программного обеспечения не оптимизирована под новые процессоры, достоинства их не столь очевидны, как пытаются показать производители в своих рекламных материалах. Да, чуть позже, когда произойдет резкое увеличение количества приложений, поддерживающих многоядерные процессоры (в первую очередь это касается 3D-игр, в которых CPU нового поколения помогут существенно разгрузить графическую систему), приобретение их будет целесообразно, но сейчас... Давно известно, что покупка процессоров "на вырост" - далеко не самое эффективное вложение средств.

С другой стороны, прогресс стремителен, а для нормального человека ежегодная смена компьютера - это, пожалуй, перебор. Таким образом, всем обладателям достаточно современных систем на базе одноядерных процессоров в ближайшее время волноваться особо не стоит - ваши системы еще какое-то время будут "на уровне", тогда как тем, кто собирается приобрести новый компьютер, мы бы все-таки порекомендовали обратить свое внимание на относительно недорогие младшие модели двухъядерных процессоров.


Первые компьютерные процессоры с несколькими ядрами появились на потребительском рынке ещё в середине двухтысячных, но множество пользователей до сих пор не совсем понимает — что это такое, многоядерные процессоры, и как разобраться в их характеристиках.

Видео-формат статьи «Вся правда о многоядерных процессорах»

Простое объяснение вопроса «что такое процессор»

Микропроцессор — одно из главных устройств в компьютере. Это сухое официальное название чаще сокращают до просто «процессор») . Процессор — микросхема, по площади сравнимая со спичечным коробком . Если угодно, процессор — это как мотор в автомобиле. Важнейшая часть, но совсем не единственная. Есть у машины ещё и колёса, и кузов, и проигрыватель с фарами. Но именно процессор (как и мотор автомобиля) определяет мощность «машины».

Многие называют процессором системный блок — «ящик», внутри которого находятся все компоненты ПК, но это в корне неверно. Системный блок — это корпус компьютера вместе со всеми составляющими частями — жёстким диском, оперативной памятью и многими другими деталями.

Функция процессора — вычисления . Не столь важно, какие именно. Дело в том, что вся работа компьютера завязана исключительно на арифметических вычислениях. Сложение, умножение, вычитание и прочая алгебра — этим всем занимается микросхема под названием «процессор». А результаты таких вычислений выводятся на экран в виде игры, вордовского файла или просто рабочего стола.

Главная часть компьютера, которая занимается вычислениями — вот, что такое процессор .

Что такое процессорное ядро и многоядерность

Испокон процессорных «веков» эти микросхемы были одноядерными. Ядро — это, фактически, сам процессор. Его основная и главная часть. Есть у процессоров и другие части — скажем, «ножки»-контакты, микроскопическая «электропроводка» — но именно тот блок, который отвечает за вычисления, называется ядром процессора . Когда процессоры стали совсем небольшими, то инженеры решили совместить внутри одного процессорного «корпуса» сразу несколько ядер.

Если представить процессор в виде квартиры, то ядро — это крупная комната в такой квартире. Однокомнатная квартира — это одно процессорное ядро (крупная комната-зал), кухня, санузел, коридор… Двухкомнатная квартира — это уже как два процессорных ядра вместе с прочими комнатами. Бывают и трёх-, и четырёх, и даже 12-комнатные квартиры. Также и в случае с процессорами: внутри одного кристалла-«квартиры» может быть несколько ядер-«комнат».

Многоядерность — это разделение одного процессора на несколько одинаковых функциональных блоков. Количество блоков — это число ядер внутри одного процессора.

Разновидности многоядерных процессоров

Бытует заблуждение: «чем больше ядер у процессора — тем лучше». Именно так стараются представить дело маркетологи, которым платят за создание такого рода заблуждений. Их задача — продавать дешёвые процессоры, притом — подороже и в огромных количествах. Но на самом деле количество ядер — далеко не главная характеристика процессоров.

Вернёмся к аналогии процессоров и квартир. Двухкомнатная квартира дороже, удобнее и престижнее однокомнатной. Но только если эти квартиры находятся в одном районе, оборудованы одинаково, да и ремонт у них схожий. Существуют слабенькие четырёхядерные (а то и 6-ядерные) процессоры, которые значительно слабее двухядерных. Но поверить в это сложно: ещё бы, магия крупных чисел 4 или 6 против «какой-то» двойки. Однако именно так и бывает весьма и весьма часто. Вроде как та же четырёхкомнатная квартира, но в убитом состоянии, без ремонта, в совершенно отдалённом районе — да ещё и по цене шикарной «двушки» в самом центре.

Сколько бывает ядер внутри процессора?

Для персональных компьютеров и ноутбуков одноядерные процессоры толком не выпускаются уже несколько лет, а встретить их в продаже — большая редкость. Число ядер начинается с двух. Четыре ядра — как правило, это более дорогие процессоры, но отдача от них присутствует. Существуют также 6-ядерные процессоры, невероятно дорогие и гораздо менее полезные в практическом плане. Мало какие задачи способны получить прирост производительности на этих монструозных кристаллах.

Был эксперимент компании AMD создавать и 3-ядерные процессоры, но это уже в прошлом. Получилось весьма неплохо, однако их время прошло.

Кстати, компания AMD также производит многоядерные процессоры, но, как правило, они ощутимо слабее конкурентов от Intel. Правда, и цена у них значительно ниже. Просто следует знать, что 4 ядра от AMD почти всегда окажутся заметно слабее, чем те же 4 ядра производства Intel.

Теперь вы знаете, что у процессоров бывает 1, 2, 3, 4, 6 и 12 ядер. Одноядерные и 12-ядерные процессоры — большая редкость. Трёхядерные процессоры — дело прошлого. Шестиядерные процессоры либо очень дороги (Intel), либо не такие уж сильные (AMD), чтобы переплачивать за число. 2 и 4 ядра — самые распространённые и практичные устройства, от самых слабых до весьма мощных.

Частота многоядерных процессоров

Одна из характеристик компьютерных процессоров — их частота. Те самые мегагерцы (а чаще — гигагерцы). Частота — важная характеристика, но далеко не единственная . Да, пожалуй, ещё и не самая главная. К примеру, двухядерный процессор с частотой 2 гигагерца — более мощное предложение, чем его одноядерный собрат с частотой 3 гигагерца.

Совсем неверно считать, что частота процессора равна частоте его ядер, умноженной на количество ядер. Если проще, то у 2-ядерного процессора с частотой ядра 2 ГГц общая частота ни в коем случае не равна 4 гигагерцам! Даже понятия «общая частота» не существует. В данном случае, частота процессора равна именно 2 ГГц. Никаких умножений, сложений или других операций.

И вновь «превратим» процессоры в квартиры. Если высота потолков в каждой комнате — 3 метра, то общая высота квартиры останется такой же — всё те же три метра, и ни сантиметром выше. Сколько бы комнат не было в такой квартире, высота этих комнат не изменяется. Так же и тактовая частота процессорных ядер . Она не складывается и не умножается.

Виртуальная многоядерность, или Hyper-Threading

Существуют ещё и виртуальные процессорные ядра . Технология Hyper-Threading в процессорах производства Intel заставляет компьютер «думать», что внутри двухядерного процессора на самом деле 4 ядра. Очень похоже на то, как один-единственный жёсткий диск делится на несколько логических — локальные диски C, D, E и так далее.

Hyper- Threading — весьма полезная в ряде задач технология . Иногда бывает так, что ядро процессора задействовано лишь наполовину, а остальные транзисторы в его составе маются без дела. Инженеры придумали способ заставить работать и этих «бездельников», разделив каждое физическое процессорное ядро на две «виртуальные» части. Как если бы достаточно крупную комнату разделили перегородкой на две.

Имеет ли практический смысл такая уловка с виртуальными ядрами ? Чаще всего — да, хотя всё зависит от конкретных задач. Вроде, и комнат стало больше (а главное — они используются рациональнее), но площадь помещения не изменилась. В офисах такие перегородки невероятно полезны, в некоторых жилых квартирах — тоже. В других случаях в перегораживании помещения (разделении ядра процессора на два виртуальных) смысла нет вообще.

Отметим, что наиболее дорогие и производительные процессоры класса Core i7 в обязательном порядке оснащены Hyper- Threading . В них 4 физических ядра и 8 виртуальных. Получается, что одновременно на одном процессоре работают 8 вычислительных потоков. Менее дорогие, но также мощные процессоры Intel класса Core i5 состоят из четырёх ядер, но Hyper Threading там не работает. Получается, что Core i5 работают с 4 потоками вычислений.

Процессоры Core i3 — типичные «середнячки», как по цене, так и по производительности. У них два ядра и никакого намёка на Hyper-Threading. Итого получается, что у Core i3 всего два вычислительных потока. Это же относится и к откровенно бюджетным кристаллам Pentium и Celeron . Два ядра, «гипе-трединг» отсутствует = два потока.

Нужно ли компьютеру много ядер? Сколько ядер нужно в процессоре?

Все современные процессоры достаточно производительны для обычных задач . Просмотр интернета, переписка в соцсетях и по электронной почте, офисные задачи Word-PowerPoint-Excel: для этой работы подойдут и слабенькие Atom, бюджетные Celeron и Pentium, не говоря уже о более мощных Core i3. Двух ядер для обычной работы более чем достаточно. Процессор с большим количеством ядер не принесёт значительного прироста в скорости.

Для игр следует обратить внимание на процессоры Core i3 или i5 . Скорее, производительность в играх будет зависеть не от процессора, а от видеокарты. Редко в какой игре потребуется вся мощь Core i7. Поэтому считается, что игры требуют не более четырёх процессорных ядер, а чаще подойдут и два ядра.

Для серьёзной работы вроде специальных инженерных программ, кодирования видео и прочих ресурсоёмких задач требуется действительно производительная техника . Часто здесь задействуются не только физические, но и виртуальные процессорные ядра. Чем больше вычислительных потоков, тем лучше. И не важно, сколько стоит такой процессор: профессионалам цена не столь важна.

Есть ли польза от многоядерных процессоров?

Безусловно, да. Одновременно компьютер занимается несколькими задачами — хотя бы работа Windows (кстати, это сотни разных задач) и, в тот же момент, проигрывание фильма. Проигрывание музыки и просмотр интернета. Работа текстового редактора и включённая музыка. Два процессорных ядра — а это, по сути, два процессора, справятся с разными задачами быстрее одного. Два ядра сделают это несколько быстрее. Четыре — ещё быстрее, чем два.

В первые годы существования технологии многоядерности далеко не все программы умели работать даже с двумя ядрами процессора. К 2014 году подавляющее большинство приложений отлично понимают и умеют пользоваться преимуществами нескольких ядер. Скорость обработки задач на двухядерном процессоре редко увеличивается в два раза, но прирост производительности есть почти всегда.

Поэтому укоренившийся миф о том, что, якобы, программы не могут использовать несколько ядер — устаревшая информация. Когда-то действительно было так, сегодня ситуация улучшилась кардинально. Преимущества от нескольких ядер неоспоримы, это факт.

Когда меньше ядер у процессора — лучше

Не следует покупать процессор по неверной формуле «чем больше ядер — тем лучше». Это не так. Во-первых, 4, 6 и 8-ядерные процессоры ощутимо дороже своих двухядерных собратьев. Значительная прибавка в цене далеко не всегда оправдана с точки зрения в производительности. К примеру, если 8-ядерник окажется лишь на 10% быстрее CPU с меньшим количеством ядер, но будет в 2 раза дороже, то такую покупку сложно оправдать.

Во-вторых, чем больше ядер у процессора, тем он «прожорливее» с точки зрения энергопотребления. Нет никакого смысла покупать гораздо более дорогой ноутбук с 4-ядерным (8-поточным) Core i7, если на этом ноутбуке будут обрабатываться лишь текстовые файлы, просматриваться интернет и так далее. Никакой разницы с двухядерником (4 потока) Core i5 не будет, да и классический Core i3 лишь с двумя вычислительными потоками не уступит более именитому «коллеге». А от батарейки такой мощный ноутбук проработает гораздо меньше, чем экономичный и нетребовательный Core i3.

Многоядерные процессоры в мобильных телефонах и планшетах

Мода на несколько вычислительных ядер внутри одного процессора касается и мобильных аппаратов. Смартфоны вместе с планшетами с большим количеством ядер почти никогда не используют все возможности своих микропроцессоров. Двухядерные мобильные компьютеры иногда действительно работают чуть быстрее, но 4, а тем более 8 ядер — откровеннейший перебор. Аккумулятор расходуется совершенно безбожно, а мощные вычислительные устройства попросту простаивают без дела. Вывод — многоядерные процессоры в телефонах, смартфонах и планшетах — лишь дань маркетингу, а не насущная необходимость. Компьютеры — более требовательные устройства, чем телефоны. Два процессорных ядра им действительно нужны. Четыре — не помешают. 6 и 8 — излишество в обычных задачах и даже в играх.

Как выбрать многоядерный процессор и не ошибиться?

Практическая часть сегодняшней статьи актуальна на 2014 год. Вряд ли в ближайшие годы что-то серьёзно поменяется. Речь пойдёт только о процессорах производства Intel. Да, AMD предлагает неплохие решения, но они менее популярны, да и разобраться в них сложнее.

Заметим, что таблица основана на процессорах образца 2012-2014 годов. Более старые образцы имеют другие характеристики. Также мы не стали упоминать редкие варианты CPU, например — одноядерный Celeron (бывают и такие даже сегодня, но это нетипичный вариант, который почти не представлен на рынке). Не следует выбирать процессоры исключительно по количеству ядер внутри них — есть и другие, более важные характеристики. Таблица лишь облегчит выбор многоядерного процессора, но конкретную модель (а их десятки в каждом классе) следует покупать только после тщательного ознакомления с их параметрами: частотой, тепловыделением, поколением, размером кэша и другими характеристиками.

Процессор Количество ядер Вычислительные потоки Типичная область применения
Atom 1-2 1-4 Маломощные компьютеры и нетбуки. Задача процессоров Atom — минимальное энергопотребление. Производительность у них минимальна.
Celeron 2 2 Самые дешёвые процессоры для настольных ПК и ноутбуков. Производительности достаточно для офисных задач, но это совсем не игровые CPU.
Pentium 2 2 Столь же недорогие и малопроизводительные процессоры Intel, как и Celeron. Отличный выбор для офисных компьютеров. Pentium оснащаются чуть более ёмким кэшем, и, иногда, слегка повышенными характеристиками по сравнению с Celeron
Core i3 2 4 Два достаточно мощных ядра, каждое из которых разделено на два виртуальных «процессора» (Hyper-Threading). Это уже довольно мощные CPU при не слишком высоких ценах. Хороший выбор для домашнего или мощного офисного компьютера без особой требовательности к производительности.
Core i5 4 4 Полноценные 4-ядерники Core i5 — довольно дорогие процессоры. Их производительности не хватает лишь в самых требовательных задачах.
Core i7 4-6 8-12 Самые мощные, но особенно дорогие процессоры Intel. Как правило, редко оказываются быстрее Core i5, и лишь в некоторых программах. Альтернатив им просто нет.

Краткий итог статьи «Вся правда о многоядерных процессорах». Вместо конспекта

  • Ядро процессора — его составная часть. Фактически, самостоятельный процессор внутри корпуса. Двухядерный процессор — два процессора внутри одного.
  • Многоядерность сравнима с количеством комнат внутри квартиры. Двухкомнатные лучше однокомнатных, но лишь при прочих равных характеристиках (расположение квартиры, состояние, площадь, высота потолков).
  • Утверждение о том, что чем больше ядер у процессора, тем он лучше — маркетинговая уловка, совершенно неверное правило. Квартиру ведь выбирают далеко не только по количеству комнат, но и по её расположению, ремонту и другим параметрам. Это же касается и нескольких ядер внутри процессора.
  • Существует «виртуальная» многоядерность — технология Hyper-Threading. Благодаря этой технологии, каждое «физическое» ядро разделяется на два «виртуальных». Получается, что у 2-ядерного процессора с Hyper-Threading лишь два настоящих ядра, но эти процессоры одновременно обрабатывают 4 вычислительных потока. Это действительно полезная «фишка», но 4-поточный процессор нельзя считать четырёхядерным.
  • Для настольных процессоров Intel: Celeron — 2 ядра и 2 потока. Pentium — 2 ядра, 2 потока. Core i3 — 2 ядра, 4 потока. Core i5 — 4 ядра, 4 потока. Core i7 — 4 ядра, 8 потоков. Ноутбучные (мобильные) CPU Intel имеют иное количество ядер/потоков.
  • Для мобильных компьютеров часто важнее экономичность в энергопотреблении (на практике — время работы от батареи), чем количество ядер.